Temperature-dependent butterfly dynamics

  • Author / Creator
    Wheeler, Jeanette
  • Climate change is currently a central problem in ecology, with far-reaching effects on species that may be diffcult to quantify. Ectothermic species which rely on environmental cues to complete successive stages of their life history are especially sensitive to temperature changes and so are good indicators of the impacts of climate change on ecosystems. Based on data collected in growth experiments for the alpine butterfly Parnassius smintheus (Rocky Mountain Apollo), a novel mathematical model is presented to study developmental rate in larval insects. The movement of an individual through larval instars is treated as a discrete-time four-outcome Bernoulli process, where class transition and death are assigned temperature-dependent probabilities. Transition and mortality probabilities are estimated using maximum likelihood estimation techniques. This adult emergence model is then integrated into a reproductive success model, and multi-year implications of climate change on the population dynamics of P. smintheus are explored.

  • Subjects / Keywords
  • Graduation date
    Fall 2010
  • Type of Item
  • Degree
    Master of Science
  • DOI
  • License
    This thesis is made available by the University of Alberta Libraries with permission of the copyright owner solely for non-commercial purposes. This thesis, or any portion thereof, may not otherwise be copied or reproduced without the written consent of the copyright owner, except to the extent permitted by Canadian copyright law.