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Abstract

Climate change is currently a central problem in ecology, with far-reaching effects on

species that may be difficult to quantify. Ectothermic species which rely on environ-

mental cues to complete successive stages of their life history are especially sensitive

to temperature changes and so are good indicators of the impacts of climate change

on ecosystems. Based on data collected in growth experiments for the alpine butter-

fly Parnassius smintheus (Rocky Mountain Apollo), a novel mathematical model is

presented to study developmental rate in larval insects. The movement of an individ-

ual through larval instars is treated as a discrete-time four-outcome Markov process,

where class transition and death are assigned temperature-dependent probabilities.

Transition and mortality probabilities are estimated using maximum likelihood esti-

mation techniques. This adult emergence model is then integrated into a reproductive

success model, and multi-year implications of climate change on the population dy-

namics of P. smintheus are explored.
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Chapter 1

Introduction

Since the late twentieth century, climate change has been attributed as a major driver

of changes to ecological systems worldwide. Understanding the effects of climate

change at individual, population, community, and ecosystem levels has since become

a primary area of research in ecology (Parmesan, 2006). Changes to climatic variables

can affect species in empirically detectable ways. For instance, at an individual level,

temperature changes can influence developmental rate, body size, and egg production

in ectotherms (Taylor, 1981; Atkinson, 1994; Gibbs et al., 2010). At a population

level, temperature changes can impact timing of life history events (Post et al., 2001),

and at a community level, the shift in time of such life history events (such as egg

hatching, adult emergence, and flowering) can remove or alter the temporal overlap of

previously interacting species (most common in predator-prey and insect-host plant

interactions) (Visser and Both, 2005).

Impacts of climate change have long been studied through indicator species like

insects (reviewed in (Parmesan, 2006)). Insects, and butterflies in particular, are

especially sensitive to climatic changes due to their reliance on environmental cues

such as temperature and photoperiod to complete stages of their life history (Tay-

lor, 1981). Butterflies make excellent study species when considering climatic effects,

as data sets for certain species extend back as far as 100 years (Parmesan et al.,

1999), so that the influences of long-term climatic shifts may be studied. Further,

many species may be reared experimentally to determine temperature effects on larval

growth or body size (see Taylor, 1981; Atkinson, 1994). These effects are often under-

stood in a “normal” temperature range, but potential climatic changes predicted by

global climate models may challenge this understanding of temperature-dependent

dynamics. Further, these perturbations may present threats to species persistence

through multiple mechanisms: habitat fragmentation and range shifts (Hill et al.,

1999; Parmesan et al., 1999), and changing phenology, which may impact a popula-
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tion by way of trophic mismatches (Thomson et al., 2010; Schweiger et al., 2008; Hoye

and Forchhammer, 2008; Both et al., 2009), temporal overlap with new predators or

parasites (Thomson et al., 2010), and density-regulated activities such as successfully

attacking resources (Berryman et al., 1985) and mate-finding (Calabrese and Fagan,

2004; Calabrese et al., 2008). The adaptability of species to rapid climatic shifts

may ensure their survival, and mathematical modelling provides a tool which may

allow the prediction of such persistence. By studying the effects of temperature on

larval growth on a small population sample, for instance, a mathematical model may

be parameterized by which predictions for a vast array of climatic scenarios may be

made. It is at this interface of biology and mathematics in which the present study

is conducted.

In this study, the effects of temperature on development time, phenology, and adult

reproductive success are considered for the alpine butterfly Parnassius smintheus

(Rocky Mountain Apollo). Found in isolated populations in alpine meadows sur-

rounded by the treeline in the Rocky Mountains of Western Canada and the United

States, this species is under the potential threat of climate change due to its geograph-

ical isolation. As an alpine species, if climate warming shifts the temperatures in these

habitats outside the species’ thermal tolerance range, extinction of populations may

occur due to their inability to migrate to new suitable habitats (Parmesan, 2006).

The following research questions are addressed in this study: How does temperature

affect development time and final larval body size in P. smintheus larvae? Secondly,

how does a changing temperature regime impact adult emergence in P. smintheus?

Finally, does temperature as experienced by larvae affect adult reproductive success

in P. smintheus?

In this work, influences of temperature on developmental time and resultant ef-

fects on phenology and adult reproductive success of P. smintheus are studied. In

Chapter 2, an experiment to determine direct effects of temperature on developmen-

tal time in P. smintheus larvae is detailed. Larvae were collected from a field site

in Kananaskis, Alberta and reared in temperature-controlled growth chambers. The

thermal regime for an ambient temperature treatment was determined from historical

weather data with constant day and night time temperatures which changed weekly

to simulate temperatures experienced by larvae in the wild. Two other treatments

reared larvae in warmer and cooler thermal regimes by increasing and decreasing the

ambient treatment by 2◦C respectively. Larval weights and successful transitions were

recorded daily, as well as temperature on a given day. Significant differences in devel-

opment time or body size would motivate further exploration of temperature impacts

on P. smintheus, through the use of mathematical models. In fact, the experimental

12



data is used to parameterize the models presented in Chapters 3 and 4.

A significant experimental result for temperature on developmental time would

illustrate the potential utility for a mathematical model that predicts the direct ef-

fects of temperature on larval development and subsequent adult emergence. Due

to the small number of treatments and the variable temperature regimes, a cumula-

tive developmental model where the temperature profile of previous days influences

the present development (such as a degree-day model) would not be very useful for

predicting effects outside the experimental regimes. The data may be used, how-

ever, to parameterize a model which treats temperature-dependent development as

non-cumulative (that is, only the temperature in a given time step impacts its de-

velopment in that time step). These considerations prompt a novel method of pre-

dicting temperature-dependent insect development presented in Chapter 3. Survival

and transition through successive larval instars are modelled as Bernoulli processes

with temperature-dependent transition probabilities. The model is exactly solved in

the simple case in which transition and mortality probabilities are constants (i. e.,

comparing developmental times in “cooler”, “ambient”, and “warmer” scenarios with

different transition and mortality probabilities as estimated from the experimental

data sets). The case in which transitional probabilities are modelled as temperature-

dependent functions is considered numerically. In both constant and varying proba-

bility cases, the probabilities are estimated by maximum likelihood methods. Due to

the memoryless nature of the Bernoulli process underlying the developmental model,

the experimental data for a given day (temperature and transitional success/failure)

may be considered as independent of any other day, allowing the parameterization

of the model for a large range of temperatures. The resultant model takes as input

a seasonal temperature regime under which the larvae develop and predicts adult

emergence distributions in time. These emergence distributions are then validated

using mark-recapture data for P. smintheus adults.

Changes to phenology, as previously discussed, may adversely affect a popula-

tion through changing temporal overlap with host plants and predators (Thomson

et al., 2010; Schweiger et al., 2008; Hoye and Forchhammer, 2008; Both et al., 2009),

and through density-regulated activities such as attacking resources (Berryman et al.,

1985) and finding mates (Calabrese and Fagan, 2004; Calabrese et al., 2008). In Chap-

ter 4, this final point is considered. A model is constructed to predict direct effects of

temperature (as experienced by larvae) on adult reproductive success in P. smintheus.

A system of coupled non-linear ordinary differential equations, this model tracks the

size of male, unmated female, and mated female populations within a season, as well

as the number of eggs produced. This model incorporates the temperature-dependent
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larval development model of Chapter 3, and the adult emergence function from that

model acts as input to the male and unmated female populations. Direct effects

of temperature (as experienced by larvae) on adult reproductive success have not

previously been modelled, since such a model framework requires an appropriately

parameterized adult emergence function such as that derived in Chapter 3, which

itself relies on the temperature-dependent transitional success data from the experi-

ment detailed in Chapter 2. The reproductive success model may be used to predict

the number of eggs produced in a given breeding season. The presence of some initial

number of eggs in the system, which produces the population, allows the iteration of

the model through multiple seasons. Changing temperature regimes produce differ-

ent adult emergence functions, so the model may be used to determine qualitative

behaviour of the population in a changing climate. Quantitative predictions of re-

productive success (using mark-recapture data for validation) are impossible due to

accumulated error in the model parameters, as well as unknown overwinter mortality

in eggs, an area of future study. However, a potential explanation is presented for

observed yearly fluctuations in population size, which may be temperature driven, as

higher adult emergence in warmer years prompts reproductive success which is not

achieved in cooler years.

In this study, effects of temperature on larval P. smintheus are considered both

experimentally and from a modelling perspective, with implications for reproductive

success in adults. It presents a first attempt at understanding the effects of a warming

climate on the population dynamics of this alpine butterfly.
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Chapter 2

Experimental test of
temperature-dependent
development in larval Parnassius
smintheus (Lepidoptera:
Papilionidae)

2.1 Introduction

Climate change is currently a central problem in ecology, with far-reaching effects on

species that may be difficult to quantify (Parmesan, 2006). Ectothermic species such

as insects, which rely on environmental cues to complete successive stages of their life

history, are especially sensitive to temperature changes and so are good indicators of

the impacts of climate change on ecosystems.

In insects, temperature affects individual physiology and spatial distributions of

populations: within the lifetime of a single organism, a change in temperature may

influence developmental rate, body size, and mortality (Atkinson, 1994). Over mul-

tiple generations, consequences of a changing temperature regime may include range

expansion or contraction (Parmesan et al., 1999; Hill et al., 1999), changing voltinism

patterns (Powell and Logan, 2005; Bryant et al., 1997) and speciation (Scriber and

Ording, 2005).

Ecological theories of body size dependence on temperature also consider both

physiological and spatial perspectives. The temperature-size rule posits that the final

size of an organism decreases as environmental temperature increases. Multiple mea-

sures have been used to describe “size”, especially in insects, where weight, length,

wingspan, and head size are common. Strong correlation between such measures al-

low such a breadth to the definition, and the temperature-size rule is consistently
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seen in ectotherms, where more than 83.5% of species studied exhibit this pattern

(Atkinson, 1994). Bergmann’s rule presents a similar idea for the geographic range of

a species, where individuals are expected to have larger body masses at increasing lat-

itudes, towards the northern edge of their range (associated with cooler temperatures)

(Bergmann, 1847). When considering optimum temperatures for development, Tay-

lor has suggested that insects in more northerly latitudes adapt for lower optimum

temperatures, with sharp developmental declines at temperatures away from this

optimum, while in southern latitudes insect development becomes more seasonally-

dependent (Taylor, 1981).

As species evolve under past environmental conditions, perturbations to their en-

vironment may make species unsuited to new environmental conditions (Fred and

Brommer, 2010). The ability of the present generation to adapt to environmen-

tal perturbations, however, may indicate the potential for long-term survival of the

species. This provides a motivation for studying the effects of temperature on growth

in many species, especially those encountering warming climate conditions. Insects

are ideal ectotherms for studying physiological responses to environmental pressures,

due to relatively short generations, high fecundity, and ease of capture for use in

field and laboratory experiments. Understanding the relationship between tempera-

ture and development in insect species is crucial for predicting their survival under

changing climatic regimes. This relationship is increasingly relevant for species in

geographically isolated habitats such as mountaintops (Parmesan, 2006). Changing

climatic regimes may not provide an escape outlet for such alpine species; should they

be unable to adapt to new environmental conditions, they have no new habitats into

which they may expand, and must go extinct.

The study species Parnassius smintheus (Rocky Mountain Apollo) is one such

alpine species that may be threatened by climate change. A butterfly commonly

found in the alpine meadows of the Rocky Mountain foothills in Western Canada and

the United States, P. smintheus is a pollinator of many alpine plants. Figure 2.1

illustrates the alpine meadow habitat of P. smintheus. The Albertan habitat of this

parnassian is under potential threat from climate change, with some global climate

models (GCMs) predicting that mean spring and summer temperatures in Alberta

may rise by 3◦C in the next 40 years. Days of mean temperature greater than 5◦C

(a lower threshold for insect development) are predicted to increase in excess of 20%

with respect to 1961-1990 (Barrow and Yu, 2005). Figure 2.2 indicates the projections

of five GCMs for the increase per year in number of degree days > 5◦C.

Potential effects of climate change for P. smintheus include changes to phenology

or timing of life history events, caused by direct effects of temperature on develop-
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Figure 2.1: Alpine meadow in Kananaskis, Alberta.

mental time in larvae. The objectives of the present study are to determine effects of

temperature on developmental rates of P. smintheus larvae, which were collected from

the wild and reared under three temperature regimes: an ambient regime reflecting

the temperatures recorded near the field site, a cooler regime shifted 2◦C below the

ambient regime, and a warmer regime shifted 2◦C above the ambient regime. The

hypotheses under consideration are as follows: growth rates increase in the higher

temperature regimes and body size (both maximum weight and weight at pupation)

decrease with temperature according to the temperature-size rule.

2.2 Materials and methods

2.2.1 Study species

Parnassius smintheus is an alpine butterfly with a geographic range stretching through-

out mountainous areas of Western Canada and the United States. It is a common

butterfly in the Rocky Mountain foothills of Alberta (Roland et al., 2000) and larvae

are specialists, feeding on the leaves and occasionally flowers of Sedum lanceolatum.

Egg hatching is triggered by snowmelt, and five larval instars occur prior to pupation.

In Alberta, adults are seen to emerge in early to mid-July, with males emerging first

(Calabrese et al., 2008).
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Figure 2.2: Projected fractional increase for the 2050s in Alberta relative to 1961-1990 baseline data,
for degree days > 5◦C (in percent). Predictions were based on the following IPCC GCMs (left to
right from top to bottom): NCARPCM A1B, HadCM3 A2(a), CGCM2 B2(3), CCSRNIES A1FI,
and HadCM3 B2(b), each with attached prediction summaries for changes to Alberta’s climate. The
field site is indicated by an X (modified from Barrow and Yu (2005)).
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Figure 2.3: A fifth instar P. smintheus larva feeding on S. lanceolatum (left) and an adult male
nectar feeding on Potentilla fruticosa (right).

2.2.2 Experimental design

An experiment was developed to test hypotheses regarding thermal effects on growth

rates and body size, and also to collect data for the partial parameterization of the

temperature-dependent larval development model presented in Chapter 3. This ex-

periment was designed in collaboration with Amanda Doyle (Department of Biolog-

ical Sciences, University of Alberta). Ninety three P. smintheus caterpillars ranging

from third to fifth instar were collected from field sites at Lusk and Jumpingpound

Ridges (51◦57′ N, 114◦54′ W), both in Kananaskis, Alberta. A sufficient supply of S.

lanceolatum was also collected to serve as a food source for the caterpillars.

Caterpillars were divided into three groups and placed in individual plastic cups

containing soil from a Lusk meadow and a S. lanceolatum plant. See Figure 2.3 for

the relative size of a fifth instar caterpillar to the cup. Caterpillars were then placed

in temperature-regulated growth chambers: an ambient chamber, a chamber 2◦C

warmer than the ambient and a chamber 2◦C cooler than the ambient. Sample sizes

in the ambient, warmer, and cooler chambers are denoted na = 15, n+2 = 15, and

n−2 = 63, respectively. Sample size in the cooler chamber was larger than the others

due to geographic proximity to the field site and because other experiments were

conducted concurrently on a portion of this sample which did not significantly affect
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growth rates (pers. comm., Doyle). The extra S. lanceolatum was divided between the

growth chambers, so that the plants were kept in the same temperature-controlled

environment as the caterpillars. Host plant quality has been seen to influence growth

rates and final size in several insect species (see (Atkinson, 1994) for review), and

thus S. lanceolatum was kept in alpine meadow soil and well-watered for the duration

of the experiment. Further, experiments comparing larval growth in lab and field

settings have detected no significant difference in development of larvae reared on

transplanted versus non-transplanted S. lanceolatum plants (pers. comm., Doyle), so

it may be concluded that transplanting does not induce any significant defenses in

the host plant in the time period of the experiment.

Chambers were programmed with 16/8 hour diurnal cycles having constant tem-

perature and humidity in the day and night periods, changed weekly according to

the procedure described below. Photoperiod was held constant across all treatments,

as changes in daylight length have been shown to induce developmental response

in several species of butterfly (Gotthard, 2008). Historical weather data for Nakiska

Ridgetop, Kananaskis (50◦ 56.550′ N, 115◦ 11.417′ W), having a comparable elevation

to the field sites, as well as a geographic proximity, determined the weekly temper-

ature profile for the ambient chamber (Environment Canada, 2010). Each week, an

averaging procedure was applied to the data corresponding to the same week over a

ten year period (1999-2008), given as follows:

1. To account for differences between air and ground temperature, 5◦C was added

to the maximum daytime temperature (weather station is located approximately

1 m above the ground). This offset was recorded in May 2009 at Kananaskis.

2. Of these new maximum temperature values, the mean was calculated from sev-

enty data points (seven data points per week over a ten year period).

3. A mean minimum temperature was calculated similarly, though without the off-

set of the air-to-ground temperature difference (see growth chamber limitations

below).

The mean maximum and minimum temperatures were then used as the daytime

and night time temperatures, respectively, in the ambient chamber. The other two

chambers had their day and night temperatures adjusted accordingly from those of

the ambient chamber. Technical considerations in the growth chambers required a low

temperature threshold to be set at 5◦C, which was the substituted night temperature

in the event of a lower mean temperature, for all the chambers. Because 5◦C is an

approximate lower threshold for larval development in many insect species (Taylor,
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1981), this technical limitation was deemed permissible. Humidity in all growth

chambers was maintained at 80% during the day and 65% at night, as high humidity

was required for larval survival, as low humidity results in desiccation (pers. comm.,

Matter) but low night time temperatures prevented higher humidity (as chambers

would develop frost). Following this procedure for obtaining temperature regimes,

the ambient temperature regime for each week is recorded in Table 2.1.

Week Day Temperature Night Temperature

June 19− 25 14.5◦ C 2.3◦ C
June 26–July 2 17.1◦ C 5.1◦ C

July 3− 9 17.3◦ C 4.3◦ C
July 10− 16 19.9◦ C 6.2◦ C
July 17− 23 20.0◦ C 6.9◦ C
July 24− 30 19.8◦ C 6.3◦ C

July 31–Aug 6 18.0◦ C 4.6◦ C
Aug 7− 13 17.3◦ C 4.6◦ C
Aug 14− 20 19.2◦ C 6.1◦ C
Aug 21− 27 19.2◦ C 6.1◦ C

Table 2.1: Ambient experimental temperatures corresponding to historical weather data for given
weeks.

At 6 pm daily, caterpillars were removed from their growth chambers and their

weights were recorded. Mortality and moultings (indicative of an instar transition)

which had occurred in the previous twenty four hours were also recorded. S. lanceola-

tum in each individual cup was watered and replaced as necessary, so that a sufficient

food source was always present. Caterpillars did not move between cups.

2.2.3 Data management and statistical methods

Each day both weight and instar were recorded for each living caterpillar; from this

data, both maximum weight and weight at pupation, as well as number of days from

fifth instar onset to pupation were documented. Both pupal and maximum weight

were documented as the larvae were observed to lose weight prior to pupation, so

pupal weight might not demonstrate the temperature-size rule.

Given the disparity in the (relatively small) sample sizes, all statistical tests are

non-parametric. In the ambient and warmer treatments, time spent in fifth instar was

documented only for individuals which were captured prior to fifth instar onset (the

date of fifth instar onset was known). However, the cooler treatment, when subjected

to this restriction, had too small a sample size, so individuals collected from the field

in fifth instar were included in the group (though dates of transition to fifth instar

were unknown). Any statistical estimates of time spent in fifth instar in the cooler

treatment are thus decreased.
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The Kruskal-Wallace Rank Sum Test is used to determine the significance of dif-

ferences between temperature treatments in both developmental time to pupation,

pupation weight, and maximum weight. The null hypotheses state that the develop-

mental time (or pupal weight or maximum weight, depending on the case) are the

same in the different treatments, and the alternate hypotheses state that these times

(or weights) are different. Dunn’s test for non-parametric multiple comparisons (with

standard error modified to account for tied ranks) (Zar, 2010) is applied to isolate

significant differences between treatments. Using Dunn’s test for each measure as

required, the null hypotheses state that the development time (or pupal weight or

maximum weight) are the same between two specific treatments, while the alternate

hypotheses state that these times (or weights) are different in the specified treatments.

2.3 Results

2.3.1 Developmental time in fifth instar

Thirty-eight larvae survived to pupation (npa = 6, np+2 = 9 and np−2 = 23), and

a significant difference existed between the treatments (Kruskal-Wallace Rank Sum

test, p = 0.00111, df = 2). The developmental times to pupation were significantly

different between the ambient and the warmer treatment (Dunn’s test, Qobs = 2.638)

and between the colder treatment and the warmer treatment (Qobs = 3.591). The

difference between the ambient and the colder treatment was not significant (Qobs =

0.0473). See Appendix A for details of the Dunn’s test calculation. The distributions

of waiting times across the different treatments are presented in Figure 2.4a. The null

hypothesis was thus rejected for the warmer treatment, in that the developmental

time was significantly shorter than in the cooler and ambient treatments. The null

hypothesis was not rejected when comparing the ambient and cooler treatments, in

that the difference between developmental times was non-significant.

2.3.2 Body size

Of the thirty-eight larvae surviving to pupation, no significant difference existed be-

tween the weights at pupation (Kruskal-Wallace Rank Sum test, p = 0.1862, df = 2).

The null hypothesis, that body size does not change across temperature treatments,

was not rejected. However, recalling that the anticipated result from the temperature-

size rule was that body size would decrease in increasing temperatures, the opposite

result was seen. The mean weights (m) at pupation (m−2 = 0.3845 g, ma = 0.4192

g, and m+2 = 0.4279 g) increased as the temperature regimes warmed, contrary to
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the temperature-size rule. The distributions of body weight at pupation across the

different treatments are presented in Figure 2.4b.

Differences between maximum body weight across the three treatments were also

non-significant (Kruskal Wallace Rank Sum test, p = 0.4747, df = 2), not rejecting

the null hypothesis that body size does not change with temperature. The opposite

pattern as that expected from the temperature-size rule was present in the mean

maximum weights (m): they increased with increasing temperature (m−2 = 0.4949

g, ma = 0.5067 g, m+2 = 0.5225 g). See Figure 2.4c for the distribution of maximum

body weight across the different temperature treatments.

2.4 Discussion

The developmental time spent in the fifth instar is significantly longer in both the

ambient and cooler treatments than in the warmer treatment, though no significant

difference in developmental time was observed between the ambient and cooler treat-

ments. Larval body size, measured by both weight at pupation and maximum larval

weight, does not differ significantly between the temperature treatments, and in fact

mean weights increase with temperature.

2.4.1 Time spent in fifth instar

Developmental times are significantly shorter in the warmer temperature treatment,

which satisfies the first hypothesis linking increasing temperatures to faster growth.

The developmental times in the cooler and ambient developmental times are interest-

ing because no significant difference is detected between them. Unless the experimen-

tal temperatures fall near a threshold for development (Figure 2.5a) or the optimal

developmental temperature (Figure 2.5b), one would expect developmental rates to

increase as temperature increases (Figure 2.5c) (Taylor, 1981). Given that field tem-

peratures for P. smintheus larvae demonstrably fall outside the experimental thermal

range (Environment Canada, 2010), the former case is unlikely from an evolutionary

perspective. Since developmental rates are higher in the warmer treatment, the tem-

peratures associated with the cooler and ambient treatments are unlikely to be near

an optimum growth temperature, ruling out the latter case.

It is possible, however, that the cooler treatment is sufficiently near a lower de-

velopmental threshold that mortality reduces the variability in development times,

due to death of individuals having longer developmental times (Sharpe et al., 1977).

That is, the statistical analysis only considers the developmental times of larvae that

survive to pupation, and if lower temperatures prompt longer developmental times,
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Figure 2.4: a) Developmental time in fifth instar; b) Weight at pupation; c) Maximum weight. The
mean and median of each treatment are indicated by the square and red line, respectively, the edges
of the box are the 25th and 75th percentiles, whiskers extend to the most extreme data points not
considered outliers, and outliers are denoted by crosses.
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slow-developing larvae have the most opportunity to die. Such individuals are thus ex-

cluded from the analysis and thus the developmental time is skewed towards a shorter

than expected time. This idea is supported by a comparison of development time vari-

ability and mortality in the ambient and cooler treatments: mortality is higher in the

cooler treatment and development time variability is higher in the ambient treatment.

A decrease in variability may be prompted by the lack of longer developmental times

(induced by greater mortality). Thus it is possible that the developmental times in

the ambient and cooler treatments are non-significantly different because the cooler

temperatures prompt a higher mortality in longer-developing individuals.

2.4.2 Body size

Patterns expected by the temperature-size rule, as documented in multiple butterfly

species (Atkinson, 1994), are absent in this experiment. No significant differences

are detected between temperature treatments. This is potentially an artefact of the

small sample size, but when considering both the mean weight at pupation and mean

maximum weight, an increase is present in increasing temperature treatments, which

actively contradicts the temperature-size rule. Further experimental work, with larger

sample sizes, is thus needed to determine if body size in P. smintheus larvae is inde-

pendent of temperature or if perhaps P. smintheus is an exception to the temperature-

size rule. Such exceptions have previously been experimentally demonstrated in Lep-

idoptera for Pseudaletia unipuncta (Guppy, 1969). Occasionally, reversals to the

temperature-size rule have been documented in species subjected to extreme envi-

ronmental conditions: Manduca sexta larvae, which under expected environmental

conditions follow the temperature-size rule, may reverse this growth behaviour when

subjected to combined lower temperatures and sub-optimal host plant quality (Dia-

mond and Kingsolver, 2010). Given the present experimental design, however, it is

unlikely that a poor food source significantly influenced body size in the P. smintheus

larvae, as S. lanceolatum is the primary food source for P. smintheus larvae and it

was refreshed regularly.

It should also be noted that measures of body size used in this analysis are both

absolute. Only weight at pupation and maximum weight are considered, neither of

which account for body weight at the beginning of the experiment. No measures were

undertaken in this analysis to consider relative growth, because the individuals were

of different ages and instars at the start of the experiment. The data could not be

normalized to consider relative body size, which might have influenced the results.
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2.4.3 Implications for P. smintheus

Further study is needed to understand how changes to developmental time in P.

smintheus affect interactions with other species. Vegetation generally responds more

slowly to climatic changes than insects (Singer and Parmesan, 2010), and potential

temporal asynchronies in P. smintheus with its host plants have not been studied. For

instance, little is known about the effects of warming temperatures on S. lanceolatum,

the primary host plant for P. smintheus larvae. Should S. lanceolatum development

also increase, and flowering occur earlier, its nutritional value as a host plant would

decrease. If temperature change has no effect on flowering, then early emergence of

P. smintheus adults might no longer synchronize with flower emergence, and nectar

resources for adults (essential for reproduction, Matter et al. (2009)) would decrease.

Furthermore, a significant enough temperature increase, while still within the thermal

tolerance for P. smintheus, might force host and nectar flowers out of the shared

habitat. Even a change to host plant density or spatial heterogeneity might influence

larval survivorship, as is the case in Parnassius apollo (Fred and Brommer, 2010).

This experiment and subsequent statistical analysis of developmental data for P.

smintheus have indicated some effects of temperature on development in larvae. One

may now consider how to predict temperature-dependent changes in P. smintheus

larval development, and what effects such phenological changes may have to the

population dynamics of the species. These questions are addressed in Chapters 3 and

4.
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Chapter 3

A multi-outcome Bernoulli process
model to predict development time
in insect larvae

3.1 Introduction

Temperature-dependent developmental rates in insects have long been a question of

scientific interest, and the advent of anthropogenic climate change offers a new moti-

vation for such study. Phenology, or the study of climatic effects on the timing of life

history events, becomes particularly relevant under changing climatic conditions. The

ability to accurately model the changes to life history events in insects (larval moult-

ings and adult emergence, for instance) is relevant from a conservation perspective.

Appropriate emergence times in larval instars may, for instance, allow individuals

to avoid predators and parasites which they would otherwise encounter (Visser and

Both, 2005; Thomson et al., 2010). Further, temperature-dependent timing can con-

trol adult emergence, which can affect mating success (Calabrese and Fagan, 2004;

Calabrese et al., 2008) or ability to attack resources (Berryman et al., 1985).

Perhaps most significantly, individual development time must coincide with re-

source availability, a consideration especially important for specialist herbivores and

pollinators (Yurk and Powell, 2009). In the worst-case scenario, a host plant or other

necessary resource cannot persist within a changing temperature regime, which re-

sults in habitat fragmentation for the insect species under consideration (Stork et al.,

2009; Schweiger et al., 2008). Habitat fragmentation and contraction is especially

dangerous for species that are geographically isolated or have barriers to dispersal,

such as mountainous species (Parmesan, 2006). Resources need not be absent from

a habitat, however, to make them unavailable. Trophic mismatches can occur when

the seasonal temporal overlap of a resource and its consumer are influenced by cli-
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matic changes (documented in Lepidoptera Epiphyas postvittana, Boloria titania, the

Nymphalidae family, and Operophtera brumata and Tortrix virirdana in (Thomson

et al., 2010; Schweiger et al., 2008; Hoye and Forchhammer, 2008; Both et al., 2009),

respectively). Thus, understanding how climate drives developmental rate change in

insects is important for species conservation.

3.1.1 A review of temperature-dependent insect developmental models
and a motivation for the present study

The study of temperature-dependent dynamics in insects is an old one, with experi-

mental work conducted as early as the 1800s (Uvarov, 1931). Prior to the 1970s, much

of the modelling work conducted for temperature-dependent dynamics in insects fo-

cused on degree-day models, which assume a linear relationship between temperature

and developmental rate, where development is measured in terms of time accumu-

lated above a lower threshold temperature. Degree-day models were commonly used

as they were computationally tractable and adequately predictive within the usual

range of temperatures insects might encounter in the field (Worner, 1992). With the

advent of more powerful computing resources, researchers began to re-evaluate these

linear models and their deficiencies; linear degree-day models do not perform well

for extreme temperature ranges for organisms, nor under variable conditions (Stinner

et al., 1974). Further, they do not capture behaviours, such as diapause or hiber-

nation, which occur in insects during periods of environmental stress (Tanigoshi and

Logan, 1979). Studying non-linear effects becomes especially important in the face of

climatic change, where temperature regimes may become more variable or shift into

entirely new ranges.

Early non-linear developmental models were pioneered in the 1970s as compu-

tational resources improved, using various techniques to introduce skewed non-linear

development times, and to capture effects of varying temperatures. Two major frame-

works exist in the literature for modelling temperature-dependent insect development,

consisting of developmental rate models to predict larval growth rates or development

times, and distribution models to predict completed development times.

Stinner et al. (1974) were among the first to address non-linear dynamics in growth

rates for insect modelling, proposing a sigmoid curve to represent insect growth rates

at different temperatures. They published the paper with a FORTRAN code to

demonstrate the tractability of the non-linear problem. Logan et al. (1976) captured

the non-linear dynamics of a temperature-dependent growth rate by formulating it

as a boundary layer problem, with low and high temperature growth rates mod-

elled as outer and inner solutions, respectively. They considered the question of
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variable temperature input by assuming additive effects of temperature on devel-

opment, so the model allowed for variable temperatures in simulation by dividing a

variable temperature regime into short intervals of constant temperature. This model

later was modified by Lactin et al. (1995) to better simulate development near the

lower temperature developmental threshold. While Stinner et al. (1974) and Logan

et al. (1976) were more concerned with phenomenological approaches to temperature-

dependent insect growth rates, Sharpe and DeMichele (1977) were among the first to

consider a mechanistic approach. In their model, development is considered propor-

tional to the temperature-dependent reaction rate of control enzymes. Later modified

by Schoolfield et al. (1981) to improve parameter estimation techniques, this biophys-

ical model is presently known as the Sharpe-Schoolfield equation. It was modified by

van der Have and de Jong (1996) who developed it further to consider both growth

(body size) and differentiation (rate of movement between developmental stages) as

independent temperature-driven processes.

From the perspective of climate change studies, this separation of body size from

differentiation rate is an important consideration in insect growth, as perturbations

caused by climate change may affect the environmental cues that insects use in devel-

opment. Under increasing temperature regimes, insects may complete development

faster at the expense of body size (Atkinson, 1994; van der Have and de Jong, 1996),

and environmental perturbations may in fact increase variability in developmental

times (Iwasa and Levin, 1995). It is therefore crucial to understand how a varying

temperature regime impacts developmental time (which may or may not influence

body size) in larval insects. With these considerations in mind, the mechanistic model

presented in this chapter will consider direct effects of temperature on developmental

time.

As the present objective of this study is to mechanistically consider direct effects of

temperature on larval development time, a model that considers this developmental

time independently of growth rate is most appropriate. This satisfies the first of the

major framework types presented in the literature, the temperature-dependent devel-

opmental rate model. The second framework that is often discussed is, as previously

mentioned, the distribution model which considers completed development times from

a probabilistic perspective. Such a framework is useful for studying effects of larval en-

vironmental conditions on adult dynamics. Variability in developmental times may, as

previously suggested, impact density-dependent adult activities such as mate-finding

(Calabrese and Fagan, 2004; Calabrese et al., 2008) or resource-attacking (Berryman

et al., 1985). The importance of developmental variability was first considered by

Stinner et al. (1975) using fitted phenomenological cumulative developmental distri-
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butions , and was later modelled by Sharpe et al. (1977) using inverted normal and

quadratic probability distributions, and by Wagner et al. (1984) using cumulative

Weibull distributions.

As environmental conditions (such as temperature) experienced by larvae may be

important to adult population dynamics, the model presented in this chapter will also

predict a cumulative development distribution, or an adult emergence distribution.

This will allow further consideration of how variability in developmental times may

impact population dynamics.

A review of the literature has, up until this point, motivated a mechanistic temperature-

dependent developmental time model which predicts an adult emergence distribution.

The final consideration which must be addressed in the present model is the difference

between constant and variable temperature input. In most of the models discussed

above, temperature is considered as a constant, or, when varied, is discretized into

small intervals of constant temperature. Worner (1992) suggested that this method

is inherently flawed when considering cumulative development. When cumulative

development is summed from discrete intervals of developmental rates, and these

developmental rates change non-linearly according to a non-constant temperature

regime, a rate summation or Kauffmann error results, giving very different results for

constant and non-constant temperature regimes. Worner tested the boundary layer

model of Logan et al. (1976) and the mechanistic control enzyme model of Sharpe

and DeMichele (1977) under constant and variable temperature regimes and found

large differences in their predictions, especially apparent when developmental rates

were strongly non-linear or diurnal amplitudes (differences between constant day and

night time temperatures) were large.

The contention in the literature between constant and variable temperature regime

developmental models, as well as the available data for parameterization motivates

here a different kind of model. The experimental design of Chapter 2 resulted in a

data set which gives transitions and mortality for three different variable tempera-

ture regimes. Because the rearing temperatures were not constant, developmental

rate curves such as the ones proposed in Bentz et al. (1991) (which incorporate the

previously mentioned developmental rate model of Logan et al. (1976) and the de-

velopmental distribution models of Stinner et al. (1975) and Wagner et al. (1984))

are not appropriate for the present data set. A degree-day model formulation would

permit the prediction of cumulative effects of temperature on development for the

three experimental temperature treatments, but might not be quantitatively useful

given temperature regimes outside the experimental range. Therefore, a model which

ignores cumulative effects of temperature on growth is proposed.
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To consider direct and non-cumulative effects of temperature on developmen-

tal times and in adult emergence, a Bernoulli process model is proposed, where

temperature-dependent transition between larval instars and mortality are modelled

as memoryless Bernoulli outcomes. That is, in a given time step, the transition and

mortality probabilities are independent of those of the previous time steps, though

maturation to adulthood is conditional on having successfully transitioned through

all the larval classes. A probabilistic framework also allows for a measure of uncer-

tainty in transitional success and emergence, unlike many of the deterministic models

discussed above. Further, previous modelling efforts consider various mechanisms by

which temperature influences developmental rates and emergence times, but larval

mortality is largely ignored; for many univoltine species, long development times (as-

sociated with lower temperatures) are indicative of lower individual fitness and higher

juvenile mortality (Atkinson, 1994). A change in developmental time may also change

temporal overlaps with predator or host-plant species which may influence juvenile

mortality. The model presented in the following section thus considers larval survival

as a prerequisite to adult emergence.

The objectives of the present study are to determine direct effects of temperature

on larval development in Parnassius smintheus from the perspective of developmen-

tal time and adult emergence. To this end, a model is designed (for a general insect

species) which presents the probability distribution of an individual insect being alive

in a given instar (class) at a given time step. The model is a discrete-time pure-

birth Markov process, where each time step allows for one of two outcomes in the

no-mortality model (transition or non-transition) and four outcomes in the mortal-

ity model (transition and survival, transition and death, non-transition and survival,

or non-transition and death). The transitional probabilities are considered as both

constants and temperature-dependent functions, while the mortality probabilities are

considered solely as constants, due to negligible effects of small temperature changes

on mortality. These probabilities act as the parameters in the distributions under

consideration. These models for general temperature-dependent larval insect devel-

opment are then parameterized specifically for P. smintheus.

The model is derived from multi-outcome Bernoulli distributions, where first the

constant transition and mortality probability two-class and multi-class model are de-

rived with no mortality (Sections 3.2.1 and 3.2.2). The derivation of the distribution

of larval development time (through an arbitrary number of larval classes) is demon-

strated, and the expectation and variance of this distribution are computed (Section

3.2.3). The model is then derived with mortality as a system of non-homogeneous

linear difference equations (master equations) in Section 3.2.4. Time evolution in the
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system is governed by this set of discrete-time master equations, the solution of which

generates the time-dependent probability that an individual larva resides in a given

larval class on a given day. From here, probability distributions for adult emergence

are derived for the constant transition and mortality probability model. In Section

3.3, the varying transitional probability model is formulated.

The transition and mortality probabilities are then estimated using maximum like-

lihood methods from data for P. smintheus collected in the experiment detailed in

Chapter 2, for both the constant and varying probability cases (Sections 3.4.1 and

3.4.2). In the constant transitional probability case, these constants correspond to

three different scenarios for spring and early summer temperatures: one which reflects

the present-day ambient temperature regime for the elevation of the field site from

which the P. smintheus larvae were obtained, one which shifts this regime 2◦C higher

than ambient, and one which shifts this regime 2◦C lower. In the varying transitional

probability case, linear functions of temperature-dependent transitional success are

set from experimental data with slopes estimated by bootstrapped maximum likeli-

hood estimates.

Section 3.5 presents methods by which mark-recapture data for adult P. smintheus

is analysed for model validation, and describes the statistical tests used to determine

model validity.

Results of the two models are presented in Section 3.6, and are discussed in Section

3.7 along with a discussion of climate change impacts on mortality and emergence

times in P. smintheus.

Temperature regimes under which larvae develop influence instar developmental

times and adult emergence times in both the constant and varying transition proba-

bility models. Under parameterization of P. smintheus transition and mortality data,

the constant transition probability model predicts earlier emergence in the warmer

treatment, with higher mortality in the colder treatment. The varying transition

probability model is statistically indistinguishable from observed adult emergence,

though the model performs better in cooler years. More data for parameterization

would allow a more biologically accurate transitional success probability function for

prediction of adult emergence from temperature regimes experienced by larvae.

3.2 Modelling insect development with constant transitional
probabilities

Suppose there exist multiple populations of larval insects, where each population de-

velops under a different temperature regime. Consider the transition of an individual
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in the population from one instar/larval class to the next as a Bernoulli stochastic

process. The following assumptions must hold:

• the process is memoryless, that is, the development of an individual in one time

interval is independent of its development in any other time interval

• the probability of transitioning (movement between classes) is constant (for a

given temperature regime)

Supposing first a simple two class life history for the insect, the development of

a population under a given temperature regime may be considered. The probability

that individuals leave the first class for the second, for all individuals within the

population, is denoted µ(T (t)), where T (t) represents a thermal regime (in this case,

a diurnal cycle). A thermal regime is defined as temperature as a function of time

over the course of a season. In the simplest case, transitional probability is a constant

function of temperature, so for a given regime T (t), suppose µ to be constant.

3.2.1 Development times for two classes

Let Xn be a Bernoulli random variable in a distribution with mean µ(T (n)), and

X0 = 0. This random variable, having possible values of 0 and 1, denotes the failure

or success (respectively) of an individual to leave the first class for the second with

probability µ(T (n)) in the nth time step. Note that this process does not consider

mortality for the population.

Of interest is the developmental time of the individual, or the amount of time it

spends in the first class. This time is the number of steps k before the first occurrence

of Xk = 1, or success in leaving the class. The developmental time for the individual

insect governed by Xn is denoted by Y . So the developmental time Y = k is equivalent

to the occurrence of the events

X0 = 0, X1 = 0, . . . , Xk−1 = 0, Xk = 1.

The random variable which represents the number of failures before the first success

in a sequence of Bernoulli trials is governed by a geometric distribution having a

mean equal to that of the Bernoulli distribution (Larson and Schubert, 1979). The

random variable Y therefore has a geometric distribution with mean µ(T (n)), so that

the probability of a development time of duration k, where k ∈ Z+, has probability

mass function (pmf)

P (Y = k) = (1− µ(T (n)))k−1µ(T (n)). (3.1)
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A difference equation model can be formulated which considers the probability of

an individual’s remaining in the first class at time n+ ∆n, given that it is in the first

class at time step n. Let pn = P (Y > n), so that pn denotes the probability of an

individual’s presence in the first class at time n. The probability of leaving the class

in the time step n+ ∆n, given that the development time already exceeds n, is

P (Y = n+ ∆n|Y > n) = µ(T (n))∆n.

Then

P (Y > n) = P (Y = n+ ∆n) + P (Y > n+ ∆n)

= P (Y = n+ ∆n | Y > n) P (Y > n) + P (Y > n+ ∆n)

= P (Y > n) µ(T (n)) ∆n+ P (Y > n+ ∆n)

which gives the difference equation

pn+∆n = (1− µ(T (n))∆n)pn.

Supposing ∆n = 1 day, the above equation can be rewritten as

pn+1 = (1− µ(T (n)))pn.

3.2.2 Developmental times for multiple classes

Suppose there are now r classes in the life history, where the rth class is adulthood.

A schematic representation of the life history of the insect having r− 1 larval instars

prior to adulthood is given in Figure 3.1. The transition probability from class i to

class i+ 1 at the nth time step is µi(T (n)) and the death rate in class i is di(T (n)).

Figure 3.1: Schematic representation of the r instar insect life history where µi is the probability
of leaving the ith class in a time step and di is the probability of mortality in a time step. Daily
outcomes for individuals are as described in Table 3.3. Individuals accumulate in the rth instar
(adulthood).

In the simplest case, there is no larval mortality in any class (di = 0, i =

1, 2, . . . , r − 1), and the probability that the larvae mature between any two classes
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is identical and constant (µ1(T (n)) = µ2(T (n)) = · · · = µr−1(T (n)) = µ). Hereafter

the functional dependence of µi(T (n)) is suppressed for brevity, and it is denoted µi,

for all i = 1, 2, . . . , r − 1.

Given an unchanging constant probability of movement from class to class, denoted

µ, the number of time steps required for r − 1 successes (a successful transition to

adulthood) has a negative binomial distribution (Larson and Schubert, 1979). If the

developmental time to adulthood is k time steps, k − 1 steps must be spent in the

larval classes, followed by a successful transition on the kth step. Let the random

variable Yi denote the number of time steps spent in the ith class. That is, the event∑r−1
j=1 Yj = k − 1 is equivalent to

∑k−1
j=1 Xj = r − 2 and Xk = 1 (since an individual

starts in the first class and moves forward to the rth class in r − 1 developmental

events). So the probability that the developmental time to adulthood is k has pmf

P (
r−1∑
j=1

Yj = k − 1) =

(
k − 2

r − 2

)
µr−1(1− µ)k−r. (3.2)

where k ≥ r. See Figure 3.2 for sample pmfs.

A more complicated case occurs when µ1 6= µ2 6= · · · 6= µr−1. Neglecting mortality

once more, a model giving probabilities of an individual’s being in each class at time

step n+ 1 can be expressed as follows:

p1
n+1 = (1− µ1)p1

n

p2
n+1 = µ1p

1
n + (1− µ2)p2

n

...

pr−1
n+1 = µr−2p

r−2
n + (1− µr−1)pr−1

n

prn+1 = µr−1p
r−1
n + prn

where pin = P (
∑i−1

j=1 Yj < n ∩ Yi > n −
∑i−1

j=1 Yj). That is, pin is the probability that

the insect is still in the ith class, where the individual has entered the ith class by

the nth time step (
∑i−1

j=1 Yj < n) and has not yet transitioned to the (i + 1)th class

(Yi > n−
∑i−1

j=1 Yj).

The probability distribution for the value of the developmental time through r− 1

classes, P (
∑r−1

j=1 Yj = k − 1), can also be derived. Here r is the adult class. Before

deriving the general formula for the developmental time distribution given arbitrary

r and k, consider first a simple illustrative example. Choose r − 1 = 3 and k = 5, a

four stage life history where an individual takes five days to mature. Then the 5th

step moves into the fourth and final class, and one step must be spent moving into

each larval class, so the steps can be distributed as illustrated in Table 3.1.
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r=3 r=4

r=5 r=6

Figure 3.2: The negative binomial probability mass function (3.2) with µ = 0.1, with respect to
number of classes r and total developmental time k. These distributions illustrate the probability
of reaching adulthood on the kth day, for varying numbers of classes, given transitional success
probability µ = 0.1.

The probability distribution can thus be directly computed:

P (

3∑
j=1

Yj = 4) = P (Y1 = 2 ∩ Y2 = 1 ∩ Y3 = 1) + P (Y1 = 1 ∩ Y2 = 2 ∩ Y3 = 1) + P (Y1 = 1 ∩ Y2 = 1 ∩ Y3 = 2)

gives the sum of probabilities of all possible paths the insect can take to adulthood in five time steps.
Since the random variables Yi are independent with a geometric distribution,

P (

3∑
j=1

Yj = 4) = P (Y1 = 2)P (Y2 = 1)P (Y3 = 1) + P (Y1 = 1)P (Y2 = 2)P (Y3 = 1)

+ P (Y1 = 1)P (Y2 = 1)P (Y3 = 2)

= (1− µ1)µ1µ2µ3 + µ1(1− µ2)µ2µ3 + µ1µ2(1− µ3)µ3.

This example can be extended by allowing the development time k to be arbitrary. Now an insect
matures on the kth time step, and has k − 1 time steps to spend in the first three classes. Table
3.2 illustrates how these steps can be distributed. Using geometric distribution probability mass
functions and the given table, the first terms in the series for P (

∑3
j=1 Yj = k−1) may be expressed.

The coefficient µ1µ2µ3 in front of the series arises from the condition that each class must be exited
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Class 1 Class 2 Class 3

2 1 1
1 2 1
1 1 2

Table 3.1: Potential paths taken to adulthood (r = 4) in 5 days, denoted by number of days spent
in each class.

Class 1 Class 2 Class 3

k − 3 1 1
k − 4 2 1
k − 4 1 2
k − 5 3 1
k − 5 2 2
k − 5 1 3

...
...

...

Table 3.2: Potential paths taken to adulthood (r = 4) in k days, denoted by the number of days
spent in each class.

since adulthood is reached in a finite number of time steps k (and because an individual spends one
time step moving into each class). The first three terms of the series are the paths illustrated in the
first three rows of Table 3.2:

P (

3∑
j=1

Yj = k − 1) = µ1µ2µ3[(1− µ1)k−4 + (1− µ1)k−5(1− µ2) + (1− µ1)k−5(1− µ3) + · · · ].

Consider now the general case with k time steps in r classes. If the individual reaches adulthood
(rth class) in the kth time step, and at least one time step must be spent transitioning through the
r− 1 larval classes, then k− (r− 1) steps remain to be distributed between the larval classes (where
transitional success does not occur). The number of possible paths to adulthood through the classes
is then given by (

k − (r − 1) + (r − 1)− 1

k − (r − 1)

)
=

(
k − 1

k − (r − 1)

)
(Nelson, 1995). One may see from the previous examples that the terms in the probability distri-
bution must have exponents that sum to the total number of steps spent in the first r − 1 classes.
Supposing that the number of steps an insect spends in the first class without transitioning is initially
fixed at k−(r−1) and iterating downward, one may find all possible paths through the intermediate
r− 2 classes that take the remaining time steps not used in the first class. Let mi denote the iterate
for number of time steps spent in the ith class, except for m1, where k − (r − 1)−m1 denotes the
number of time steps spent in the first class. For notational brevity, let M1 = k − (r − 1) − m1.
One may thus express the probability mass function for development times for different numbers of
classes. When r = 2, the probability mass function is the geometric pmf:

P (Y1 = k − 1) = µ1(1− µ1)k−1.

When r = 3,

P (

2∑
j=1

Yj = k − 1) = µ1µ2

k−2∑
m1=0

(1− µ1)k−2−m1(1− µ2)m1 .
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For r > 3,

P (

r−1∑
j=1

Yj = k − 1) = µ1µ2 · · ·µr−1
∑

M1+m2+···+mr−1=k−(r−1)

(1− µ1)M1

· (1− µ2)m2 · · · (1− µr−1)mr−1 (3.3)

or equivalently,

P (

r−1∑
j=1

Yj = k − 1) = µ1µ2 · · ·µr−1
k−(r−1)∑
m1=0

(1− µ1)k−(r−1)−m1

m1∑
m2=0

(1− µ2)m2

·
m1−m2∑
m3=0

(1− µ3)m3 · · ·
m1−m2−···−mr−4∑

mr−3=0

(1− µr−3)mr−3

·
m1−m2−···−mr−3∑

mr−2=0

·(1− µr−2)mr−2(1− µr−1)m1−m2−···−mr−2 . (3.4)

Summing over all possible values of k using repeated applications of the geometric summation
formula gives

∞∑
k=r−1

P (

r−1∑
j=1

Yj = k − 1) = 1 (3.5)

as required for a probability distribution. See Figure 3.3 for some examples of this probability mass
function given varying total development times and a varying number of classes. In Appendix B, a
sample calculation is carried out for summation (3.5) with r = 4.

3.2.3 Expectation and variance for developmental times

Having derived the development time distribution (3.4), the expectation and variance of the distri-
bution may be calculated directly or by the use of generating functions.

First the expectation may be calculated using the standard method for discrete probability
distributions:

E

r−1∑
j=1

Yj

 ≡
∞∑

k=r−1

k · P (

r−1∑
j=1

Yj = k − 1)

=
1∏r−1

i=1 µi

 ∑
1≤j1<j2<···<jr−2≤r−1

µj1µj2 · · ·µjr−2


where the rightmost sum denotes the sum of the set of all (r−2) element combinations of the (r−1)
larval classes. The expectation may then be simplified to give

E

r−1∑
j=1

Yj

 =

r−1∑
i=1

1

µi
. (3.6)

For instance, when r = 4, the expectation of total development time is

E

 3∑
j=1

Yj

 =
1

µ1µ2µ3
(µ1µ2 + µ1µ3 + µ2µ3) =

1

µ1
+

1

µ2
+

1

µ3
.

One may consider (3.6) for the special cases µi = 0 and µi = 1, i = 1, . . . , r − 1. When µi = 0 for
any i, the expected developmental time to adulthood is infinite, because individuals become trapped
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r=2 r=3

r=4 r=5

Figure 3.3: The probability mass function for total developmental time k given geometric distri-
butions (3.1) for developmental time within each class, for r classes. Parameter values used are
µ1 = 0.1, µ2 = 0.095, µ3 = 0.0925, µ4 = 0.0857 (probability of transition decreases 5% for each
successive class from the previous class probability).
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in the ith class. If µi = 1 for all i, the expected developmental time to adulthood is r−1 time steps,
as individuals pass through each instar with probability 1 on each time step.

The variance of the distribution, E

((∑r−1
j=1 Yj

)2)
− E

(∑r−1
j=1 Yj

)2
, may also be calculated,

using standard computational techniques:

Var

r−1∑
j=1

Yj

 ≡ E


r−1∑
j=1

Yj

2
− E

r−1∑
j=1

Yj

2

=

∞∑
k=r−1

k2 · P (

r−1∑
j=1

Yj = k − 1)−

 ∞∑
k=r−1

k · P (

r−1∑
j=1

Yj = k − 1)

2

=
−1∏r−1
i=1 µ

2
i

r−1∏
i=1

µi
∑

1≤j1<j2<···<jr−2≤r−1

µj1µj2 · · ·µjr−2

−
∑

1≤j1<j2<···<jr−2≤r−1

µ2
j1µ

2
j2 · · ·µ

2
jr−2


=

r−1∑
i=1

(
1

µ2
i

− 1

µi

)
. (3.7)

So for instance, when r = 4,

Var

 3∑
j=1

Yj

 =
−1

µ2
1µ

2
2µ

2
3

(
µ1µ

2
2µ

2
3 + µ2

1µ2µ
2
3 + µ2

1µ
2
2µ3 − µ2

1µ
2
2 − µ2

1µ
2
3 − µ2

2µ
2
3

)
=

(
1

µ2
1

− 1

µ1

)
+

(
1

µ2
2

− 1

µ2

)
+

(
1

µ3
1

− 1

µ3

)
.

As with the expectation, the variance (3.7) may be considered in the special cases µi = 0 and
µi = 1, i = 1, . . . , r − 1. When µi = 0 for any i, the variance is infinite, as adulthood is not reached
in finite time. If µi = 1 for all i, the variance in developmental times is 0, as each individual reaches
adulthood in r − 1 steps with probability 1.

One may also calculate the expectation and variance of the total development time distribution
using the method of generating functions. Recall that each larval class i independently follows a
geometric distribution with probability µi of leaving the class. The developmental time in each class
Yi then has an associated polynomial generating function, where the coefficient of each term gives
the probability that the developmental time in the class is equal to the power of said term. For a
class i,

0 · 1 + µi · s+ µi(1− µi) · s2 + µi(1− µi)2 · s3 + · · · = µi

∞∑
j=1

(1− µi)j−1sj

= µis

∞∑
j=0

(s(1− µi))j

=
µis

1− s(1− µi)
≡ gi(s)

gives the generating function for Yi. The total developmental time to adulthood
∑r−1
j=1 Yj then has

a generating function that is the product of the generating functions for the developmental time in
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each individual class, since the random variables are independent. A generating function

G(s) = g1(s)g2(s) · · · gr−1(s)

=
µ1µ2 · · ·µr−1sr−1

(1− s(1− µ1))(1− s(1− µ2)) · · · (1− s(1− µr−1))

may be defined for the total development time. This function agrees with that derived by Flajolet
and Sedgewick (2009) for a pure-birth type random walk. Further similarities of this model to a
pure birth type process are discussed in Section 3.2.4. As usual, the expectation and variance of the
total development time distribution can be derived from this generating function:

E

r−1∑
j=1

Yj

 =
dG

ds

∣∣∣∣
s=1

and

Var

r−1∑
j=1

Yj

 =
d2G

ds2

∣∣∣∣
s=1

+
dG

ds

∣∣∣∣
s=1

−
(
dG

ds

∣∣∣∣
s=1

)2

(Feller, 1970).
The method of generating functions gives the same expectation and variance as the direct method,

when the above formulae are used.

3.2.4 Modelling mortality

In this section, mortality is included in the constant transition probability model. The difference
equations governing the probability of an individual’s presence in a given instar on a given time
step are rewritten to incorporate mortality, and the similarities of the model equations to discrete-
time pure birth processes are presented, to indicate that the solution to the system of difference
equations is a novel result. The equations are then solved and the solutions presented, and a
probability function governing mortality prior to adulthood is derived. The section concludes with
the derivation of the function governing adult emergence.

The addition of mortality to the model requires the consideration of additional events which may
occur in a time step. Without mortality, an individual takes one of two actions in each time step: it
remains in class i or it transitions to class i+ 1 with probabilities 1− µi and µi, respectively. With
mortality, one must consider the following possibilities in each time step: an insect in class i may
remain in class i and survive, it may remain in class i and die, it may transition to class i + 1 and
survive, or it may transition to class i + 1 and die. The associated probabilities of the four events
are given in Table 3.3 for class i.

Event Probability of occurrence

no transition and survival (1− µi)(1− di)
no transition and death (1− µi)di
transition and survival µi(1− di+1)
transition and death µidi+1

Table 3.3: Potential outcomes in each time step in the constant transition probability model with
constant mortality. Probabilities associated with each outcome for the ith instar are presented.

The r class model must now be modified to account for the probability of death in each class in
each time step, as well as the probability of survival. The probability of surviving in the ith class
in the nth time step is denoted by pin and the probability of dying in the ith class in the nth time
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step is denoted by qin. The model can be expressed as follows:

p1n+1 = [(1− µ1)(1− d1)] p1n

q1n+1 = [(1− µ1)d1] p1n

p2n+1 = [(1− µ2)(1− d2)] p2n + [µ1(1− d2)] p1n

q2n+1 = [(1− µ2)d2] p2n + [µ1d2] p1n
...

pin+1 = [(1− µi)(1− di)] pin + [µi−1(1− di)] pi−1n (3.8)

qin+1 = [(1− µi)di] pin + [µi−1di] p
i−1
n

...

prn+1 = prn + µr−1 p
r−1
n

qrn+1 = 0

which accounts for all possible survival and death events in each time step. The model assumes no
mortality once an individual reaches the adult class, simply because no further development occurs,
so individuals accumulate in this class.

Discrete-time pure birth processes

This model treats daily transitional success and mortality as a Bernoulli process which only permits
movement between adjacent states, and thus defines a discrete-time birth-death process, but as an
individual may only move from the ith instar to the (i + 1)th instar and not the (i − 1)th instar
(i. e., the process is transient), it is a discrete-time pure birth process. See Tornambè (1995) for
the normal formulation of this process. Pure birth processes are normally used to model the size
of a population with no mortality, where the population size may increase by one in each time step
(Lawler, 2006); the instars of the above model are analogous to the population size in the usual
formulation of the pure birth process. To avoid confusion with standard terminology, the difference
between a birth-death process and a pure birth process with mortality (like that in the model
above) should be mentioned. A birth-death process is one where movement is permitted between all
adjacent states, so the process could increment by one unit in the positive or negative direction, or
remain in its present state (Tornambè, 1995). In the pure birth process with mortality, the process
may only remain in its present state, increment forward, or terminate (representing the individual’s
non-transition, transition, and death, respectively).

The model given above differs from the standard presentation of the discrete-time pure birth
process in two ways. The standard formulation of the pure birth process has an infinite state space
(giving the potential for an infinite population size) which does not occur when the states considered
are larval instars; as seen above, the state space for the model is {1, 2, . . . , r} with a finite upper
bound r. The usual formulation of the pure birth process also does not consider terminating the
system as a potential outcome (mortality), as the usual system is driven by a two-outcome Bernoulli
process (to transition or not to transition). Mathematically, this is manifested in the coefficients of
the model equation having only the components µi, i = 1, 2, . . . , r − 1:

pin+1 = (1− µi)pin + µi−1p
i−1
n

as opposed to the above formulation (3.8), where the coefficients are expressed in terms of µi and
di. These deviations from the usual formulation lead to a different analysis of the system, as will be
discussed in the next section.

Solutions to model equations

The model (3.8) as presented above contains equations to determine probabilities of being alive or
dead in a given instar in a given time step. One may also consider strictly the probabilities of being
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alive, given as follows:

p1n+1 = [(1− µ1)(1− d1)] p1n (3.9)

p2n+1 = [(1− µ2)(1− d2)] p2n + [µ1(1− d2)] p1n (3.10)

...

pin+1 = [(1− µi)(1− di)] pin + [µi−1(1− di)] pi−1n (3.11)

...

prn+1 = prn + µr−1 p
r−1
n . (3.12)

The system has a set of initial conditions which supposes that all individuals begin their lives in the
first instar, so p10 = 1 and pi0 = 0 for all i = 2, . . . , r.

If µi and di are treated as constants, then the coupled linear system of difference equations
(3.9)-(3.12) may be solved as follows. Equation (3.9) is homogeneous and linear and is solved by
iteration to obtain

p1n = ((1− µ1)(1− d1))n.

This solution is substituted into the second instar equation (3.10), giving it the non-homogeneous
linear form

p2n+1 = (1− µ2)(1− d2)p2n + µ2(1− d2)[(1− µ1)(1− d1)]n.

It can be shown by induction that the unique solution to this linear non-homogeneous difference
equation (with initial condition p20 = 0) has the following form (Elaydi, 2005):

µ2(1− d2)

n−1∑
k=0

[(1− µ2)(1− d2)]n−k−1[(1− d1)(1− µ1)]k.

One may substitute the solution to the second instar equation into the third instar equation to
obtain another linear non-homogeneous difference equation, and subsequent substitutions generate
all solutions. Algebraic manipulations give the solutions in a compact form for the first instar
equation, all intermediate instar equations, and the final instar equation, respectively:

p1n = ((1− µ1)(1− d1))n (3.13)

pin =

i∏
k=2

[µk−1(1− dk)]

i∑
j=1


[(1− µj)(1− dj)]n∏

k 6=j
1≤k≤i

[(1− µj)(1− dj)− (1− µk)(1− dk)]



prn =
1

1− d1

r−1∏
k=1

[µk(1− dk)]


r−1∑
j=1


[(1− µj)(1− dj)]n

(−µj − dj + µjdj)
∏
k 6=j

1≤k≤r−1

[(1− µj)(1− dj)− (1− µk)(1− dk)]


+

(−1)r−1

r−1∏
k=1

(−µk − dk + µkdk)


where i = 2, . . . , r − 1.

One may verify that these solutions hold, by direct substitution for the first and last instar
solutions and by induction for the intermediate instar solution. See Appendix C for the proof.
These solutions are not defined when (1 − µj)(1 − dj) = (1 − µk)(1 − dk) for j 6= k ∈ [1, r − 1],

48



recalling the initial assumption in the no-mortality case that µ1 6= µ2 6= · · · 6= µr−1. The second
denominator term in prn, (−µj − dj + µjdj), does not affect the solutions because

(−µj − dj + µjdj) = 0 =⇒ µj =
dj

dj − 1

which implies µj < 0 if 0 < dj < 1, µj =∞ if dj = 1, and µj = 0 if dj = 0. In the first two cases, µj
would violate the constraints of probability and in the latter case, a solution could not be reached
in finite time.

The method of solution presented here is apparently novel because of differences in the formula-
tion of the birth-death process from the usual. Flajolet and Sedgewick (2009) presented the solution
for the intermediate instar equation assuming an infinite state space and no mortality, while Tor-
nambè (1995) found the intermediate instar solution in an infinite state space assuming no mortality
and equal transition probabilities. Bocharov and D’Apice (2004) gave the intermediate solution to
a infinite state space birth-death process. Coolen-Schrijner and van Doorn (2006) proved the exis-
tence and uniqueness of a quasi-stationary distribution for a discrete-time birth-death process with
mortality, and derived the distribution. Their derivation was analogous to solving the system of dif-
ference equations (3.9)-(3.12), though their results relied on infinite state spaces, as well as non-zero
probabilities of leftward transition, so their results do not hold for a finite state-space pure birth
process with mortality. The probability distributions (3.13) presented in the solutions of (3.9)-(3.12)
are therefore not a special case of their result. Lawler (2006) solved the system assuming a finite
state space for the continuous-time analogue, though the system of solutions to a finite state space
discrete-time pure birth process is apparently novel.

Probability mass functions for developmental time random variables

Consider a probability distribution for development time to adulthood, given a probability di of
dying in class i in each time step. Recall that in the absence of mortality, the development time in
each class Yi is independently governed by a geometric distribution:

P (Yi = k) = (1− µi)k−1µi.

A model with mortality included also requires that the individual survives in each time step. Define a
development time of k time steps to be the successful survival in a class for k−1 time steps, followed
by a successful transition to the next class on the kth time step. A successful transition requires
that the individual survives to the end of this time step. The new pseudo-geometric distribution
(generated by a four-outcome Bernoulli process) for each class is

P (Yi = k) = [(1− µi)(1− di)]k−1µi(1− di+1).

One may derive the probability mass function for the total developmental time with mortality by
taking the original result (3.3)

P (

r−1∑
j=1

Yj = k − 1) = µ1µ2 · · ·µr−1

∑
M1+m2+···+mr−1=k−(r−1)

(1− µ1)M1(1− µ2)m2 · · · (1− µr−1)mr−1

and substituting each (1− µi) and µi term with (1− µi)(1− di) and µi(1− di+1), respectively, for

all i = 1, 2, . . . , r − 1. The modified probability mass function P
(∑r−1

j=1 Yj = k − 1
)

then becomes

P

(
r−1∑
j=1

Yj = k − 1

)
=

r−1∏
j=1

µj(1− dj+1)
∑

M1+m2+···+mr−1=k−(r−1)

[(1− µ1)(1− d1)]M1

· [(1− µ2)(1− d2)]m2 · · · [(1− µr−1)(1− dr−1)]mr−1 . (3.14)

This probability mass function, when summed over all possible development times, will be less
than 1, since it only accounts for the individual’s development time should the individual survive to
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adulthood. A second probability mass function is thus necessary to capture all the possible outcomes
of the individual’s growth, a function governing the probability of an individual’s mortality in any
time step prior to k. To derive this function one must use the set of probabilities (3.13) generated by
solving the model equations. The model solutions are necessary because both the instar in which the
individual dies and the time step in which the death occurs are required in the derivation (whereas in
(3.14), only the last time step is significant, since the individual must have survived in all previous
time steps). In the pmf governing the development time until death, there is no such condition,
as death ends the Bernoulli process on which the individual’s development is based. If adulthood
transition occurs to class r at time step k, then

P (death occurs prior to adulthood transition) ≡ P (Zrk)

is computed as follows:

P (Zrk) = P (death from first class in time step k) + P (death from second class in time step k)

+ · · · + P (death from penultimate class in time step k)

= ((1− µ1)d1 + µ1d2)p1k−1 + · · ·+ ((1− µr−1)dr−1 + µr−1dr)p
r−1
k−1

where each model solution pik has a coefficient made up of the sum of two terms, which yield the
probabilities of a non-transition and death and a transition and death, respectively, from the ith
class in the kth time step. Using computer algebra, it can be shown that summing over all possible
development times to adulthood for both the probability mass functions derived (the probability of
transitioning to adulthood in the kth time step and the probability of dying before the kth time
step) yields a value of 1:

∞∑
k=1

P
r−1∑
j=1

Yj = k − 1

+ P (Zk)

 = 1.

Adult emergence probability functions

From the model solutions (3.13), an adult emergence distribution εn (the probability that an indi-
vidual emerges as an adult on day n) may be expressed by

εn ≡ µr−1p
r−1
n−1 (3.15)

= µr−1

r−1∏
k=2

[µk−1(1− dk)]

r−1∑
j=1


[(1− µj)(1− dj)]n−1∏

k 6=j
1≤k≤r−1

[(1− µj)(1− dj)− (1− µk)(1− dk)]

 .

That is, the adult emergence probability on day n assumes the individual is alive in the (r−1)th
class on the (n− 1)th day and successfully transitions (multiplying by µr−1) on day n.

The adult emergence probability function εn using experimental temperature regimes will be
considered in the results.

3.3 Modelling insect development with varying transitional
probabilities

In the case of non-constant transitional probabilities µi, i = 1, . . . , r − 1, the analytic solutions
(3.13) no longer hold because the difference equations from which they originated are no longer
autonomous. Now µi = µi(Tn) is temperature-dependent, where Tn denotes daytime temperature
on day n. The transitional probability may change in each time step according to some temperature-
dependent functional form, to be discussed in the next section. The input to the model is therefore
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a set of daytime temperatures {Tn} in which the temperature is constant within a time step n. The
master equations (3.9)-(3.12) may be rewritten accordingly:

p1n+1 = [(1− µ1(Tn))(1− d1)] p1n (3.16)

p2n+1 = [(1− µ2(Tn))(1− d2)] p2n + [µ1(Tn)(1− d2)] p1n (3.17)

...

pin+1 = [(1− µi(Tn))(1− di)] pin + [µi−1(Tn)(1− di)] pi−1n (3.18)

...

prn+1 = prn + µr−1(Tn) pr−1n . (3.19)

Mortality in the model is assumed to be constant and independent of temperature, as no relationship
between mortality and temperature is observed (as will be discussed further in Section 3.4.2.

Solutions to this system are generated numerically, where the master equations (3.16)-(3.19) are
computed in each time step and iterated forward in time accordingly. The adult emergence function
εn, similar to in the constant probability case, is expressed as

εn ≡ µr−1(Tn)pr−1n−1.

3.4 Parameter estimation

The model may now be parametrized using developmental data for P. smintheus, the collection
details of which were discussed in Chapter 2. The movement of an individual caterpillar through
the larval classes is independent of the trajectories of all other individuals, and this transitional
success/failure data for each individual will be used for multiple parameter estimates. Both the
constant and variable probability cases will be discussed in the following subsections. Because
larvae reared in the experiment were collected from the field in the third instar or later, estimates
are made for first and second instar parameters based on third instar parameter values.

3.4.1 Constant-valued transition and mortality probabilities

Supposing the transition and mortality probabilities to be constants, the simplest way to compare
differences in temperature-dependent development is to compare predicted adult emergence for the
three different temperature treatments in which the experiment was conducted (Chapter 2).

The treatments are thus considered individually, and constant temperature-dependent transition
and mortality probabilities are estimated for each instar according to the following maximum likeli-
hood method. Consider the movement through larval instars of a given caterpillar in the course of
the experiment. The probability that larva j takes its precise trajectory can be expressed generally
as

P (xj|µ,d) = µ
xj1
3 (1− µ3)x

j
2µ
xj3
4 (1− µ4)x

j
4µ
xj5
5 (1− µ5)x

j
6µ
xj7
6 (1− µ6)x

j
8

· d
xj9
3 (1− d3)x

j
10d

xj11
4 (1− d4)x

j
12d

xj13
5 (1− d5)x

j
14d

xj15
6 (1− d6)x

j
16 (3.20)

where xji ∈ Z+ and xji ∈ {0, 1} for i = 1, 3, 5, 7 denote the number of successful transitions from the

third, fourth, fifth, and sixth/pupating instars, respectively. Similarly, xji for i = 2, 4, 6, 8 denote
the number of non-successful transitions in these instars. Mortality occurring in the third, fourth,
fifth, and sixth instars is denoted by xji ∈ {0, 1} for i = 9, 11, 13, 15 and survival in these instars

is denoted by xji for i = 10, 12, 14, 16. The vector xj therefore contains all the information for the
duration of the experiment about transition and mortality for individual j.

For instance, suppose individual j begins the experiment in the third instar, transitions to the
fourth instar after seven days, transitions to the fifth instar after fifteen more days, pupates after a

51



further eighteen days, and emerges as an adult after twenty more days have passed. The probability
of that precise trajectory, is

P (xj|µ,d) = µ1
3(1− µ3)7µ1

4(1− µ4)15µ1
5(1− µ5)18µ1

6(1− µ6)20

· d03(1− d3)7d04(1− d4)15d05(1− d5)18d06(1− d6)20

which gives
xj = [1, 7, 1, 15, 1, 18, 1, 20, 0, 7, 0, 15, 0, 18, 0, 20].

In a simpler example, if individual j begins the experiment in the fourth instar and dies after
three days, then the probability of this trajectory is

P (xj|µ,d) = (1− µ4)3(1− d4)3(1− µ4)d4

= (1− µ4)4(1− d4)3d4

so
xj = [0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 1, 3, 0, 0, 0, 0].

Given an experiment with n individuals, the experimental trajectories of each individual, being
independent and having identical distribution (3.20), may be multiplied together to give a likelihood
function

L(x1, . . .xn|µ,d) =

n∏
j=1

P (xj|µ,d)

= µ
∑n
j=1 x

j
1

3 (1− µ3)
∑n
j=1 x

j
2 · · · d

∑n
j=1 x

j
15

6 (1− d6)
∑n
j=1 x

j
16 .

The likelihood function may be separated into independent functions of each parameter, denoted by

Lµi ≡ µ
∑n
j=1 x

j
a

i (1− µi)
∑n
j=1 x

j
b (3.21)

and

Ldi ≡ d
∑n
j=1 x

j
a

i (1− di)
∑n
j=1 x

j
b

and a and b are the associated indices of i. Maximizing each of these functions individually thus
maximizes the entire likelihood function.

Supposing that
∑n
j=1 x

j
a > 0 and

∑n
j=1 x

j
b > 0, the maximum likelihood estimate for µi may be

found as follows:

Lµi = µ
∑n
j=1 x

j
a

i (1− µi)
∑n
j=1 x

j
b

dLµi
dµi

=

 n∑
j=1

xja

µ
(
∑n
j=1 x

j
a)−1

i (1− µi)
∑n
j=1 x

j
b − µ

∑n
j=1 x

j
a

i

 n∑
j=1

xjb

 (1− µi)(
∑n
j=1 x

j
b)−1.

For notational convenience, let yk ≡
∑n
j=1 x

j
k. Then setting the derivative equal to zero and solving

for µi,

0 = yaµ
ya−1
i (1− µi)yb − µyai yb(1− µi)

yb−1

µi =
ya

ya + yb
.

The second derivative test, after simplification, yields

d2Lµi
dµ2

i

= − (ya + yb)
3

yayb

(
ya

ya + yb

)ya ( yb
ya + yb

)yb
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which is strictly negative when
∑n
j=1 x

j
a > 0 and

∑n
j=1 x

j
b > 0. The maximum likelihood estimate

for µi, the value which maximizes Lµi , is

µ̂i =

∑n
j=1 x

j
a∑n

j=1 x
j
a +

∑n
j=1 x

j
b

. (3.22)

If both
∑n
j=1 x

j
a = 0 and

∑n
j=1 x

j
b = 0, then no data exists for the transitions in this instar so

no estimate can be made. If
∑n
j=1 x

j
a = 0 and

∑n
j=1 x

j
b > 0 (no successful transitions), then Lµi

is maximized at the left boundary of µi, so µ̂i = 0. If
∑n
j=1 x

j
a > 0 and

∑n
j=1 x

j
b = 0 (no failed

transitions), then Lµi is maximized at the right boundary of µi, so µ̂i = 1.
An identical method follows for maximizing Ldi .

Confidence intervals and error propagation

The function Lµi as previously defined is equal to the product of a random sample of size ya+yb taken
from a Bernoulli distribution with probability of success µi, with ya successes (successful transitions).
In other words, take a random sample X1, X2, . . . , Xya+yb from a distribution bin(1, µi). From this
perspective, the maximum likelihood estimate (3.22) is the sample proportion of successes. Because

µ̂i and d̂i are binomial proportions of successes, adjusted Wald confidence intervals may be used to
compute (1− α)% confidence intervals for transition and mortality probabilities (Zar, 2010). Let

X̃ =

n∑
j=1

(xja) +
1

2
Z2
α
2

and

ñ =

n∑
j=1

xja +

n∑
j=1

xjb + Z2
α
2

where Zα
2

is the normal deviate of critical value α. Let µ̃i = X̃
ñ ; the adjusted Wald confidence

interval for µ̂i is then

(µ̂i
LB, µ̂i

UB) =

(
µ̃i − Zα

2

√
µ̃i(1− µ̃i)

ñ
, µ̃i + Zα

2

√
µ̃i(1− µ̃i)

ñ

)
. (3.23)

Here µ̂i
LB and µ̂i

UB denotes the lower and upper bounds, respectively, on the (1− α)% confidence

interval for µ̂i. A similar confidence interval holds for d̂i.
Each parameter estimate contributes error to the adult emergence distribution εn, as such a

distribution may be considered a function of these parameters. Since P. smintheus has six instars
prior to adulthood (r = 7), and mortality for adults upon emergence is assumed to be non-existent
(d7 = 0), the adult emergence function (3.15) can be expressed as

εn = µ6

6∏
k=2

[µk−1(1− dk)]

6∑
j=1


[(1− µj)(1− dj)]n−1∏

k 6=j
1≤k≤6

[(1− µj)(1− dj)− (1− µk)(1− dk)]

 .

This distribution may be denoted ε(n,µ,d) to emphasize the dependence of the distribution on
the model parameters. The (1 − α)% confidence interval for µ̂i (3.23) as expressed above is non-
symmetric about µ̂i, so denote the upper and lower errors of the estimate as δµUB

i = |µ̂i− µ̂iUB| and

δµLB
i = |µ̂i − µ̂iLB|, respectively. Similar errors, denoted δdUB

i and δdLBi , can be determined for d̂i.

Following the method of Taylor (1997), the errors δµ
UB/LB
i and δd

UB/LB
i propagate through the

model to give the following errors for the adult emergence distribution:

δεUB/LB =

√√√√ 6∑
i=1

(
∂εUB/LB

∂µi
δµ

UB/LB
i

)2

+

6∑
i=1

(
∂εUB/LB

∂di
δd

UB/LB
i

)2

. (3.24)
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3.4.2 Variable transition probabilities

Supposing transitional probabilities to be temperature-dependent functions, the experimental tran-
sitional success/failure data may be used to fit function parameters for µi(T ). Instead of separating
treatments into cool/ambient/warm as in the previous section, the experimental data is pooled to-
gether and considered with respect to daytime temperature. The function (3.20) is again used to
calculate the probability of individual j demonstrating an observed experimental trajectory, but now
each transitional probability µi is a temperature-dependent function instead of constant. From the
experimental data, both daytime temperature and transitional success/failure is recorded, so on day
n, successful and failed transitions appear as (Tn, 1) and (Tn, 0) respectively.

A linear functional form
µi(T ) = ai(T − T0)

is assumed because the experimental data is constrained to a temperature range of 12.5−22 ◦C, which
neglects lower temperatures at which development occurs. Polynomial fits to this data, supposing
T -intercept is uncontrolled, would intercept zero near 12.5 ◦C, rendering it less useful for numerical
simulations with temperature regimes falling outside the experimental range. Thus T0, the lower
thermal bound at which development may occur, must be fixed, and because the introduction of
higher order polynomials would require further constraints on parameter values, the linear fit is
deemed the most straightforward for use. Acceptable values for T0 are presented in the results.

The transitional success probability on day n is expressed as

µi = ai(Tn − T0)

and the transitional failure probability is

1− µi = 1− (ai(Tn − T0),

where the binomial experimental data (Tn, 1) and (Tn, 0) may now be used for parameter estimation.
The slope ai for the linear transitional probability function is the sole unknown parameter, and is
estimated using linear regression on the binomial data. A likelihood function for each instar similar to
(3.21) is constructed using the method detailed in the previous subsection with the new functional
form for µi. The likelihood function may be written in terms of the unknown parameter ai and
maximized according to the procedure detailed in the previous section. Due to a more complicated
likelihood function than that expressed in the constant transitional probability case, the maximum
likelihood estimate for ai is determined numerically.

A disadvantage to this method is that it produces seemingly low estimates when sample sizes at
lower temperatures are larger than those at higher temperatures. Such a dataset was generated from
the experiment, as the colder temperatures (early in the experiment in the coldest treatment) had the
most individuals, owing to a larger sample population in the colder treatment. This disadvantage
may be overcome by generating a maximum likelihood estimate for ai using bootstrapped data
(randomly selecting the same number of individuals from the cold treatment as from the other
treatments). The mean of the slope is then taken from 1000 trials as the parameter value, as
demonstrated in the results section.

As no strong relationship between temperature and mortality probability appears in the exper-
imental data, a constant mortality probability d̂ is applied across all instars, set to be the mean of
constants d̂i, i = 3, . . . , 6 as estimated in the previous section:

d̂ =
1

12

(
6∑
i=3

d̂ci +

6∑
i=3

d̂ai +

6∑
i=3

d̂wi

)
(3.25)

where d̂ci , d̂
a
i , and d̂wi denote the mortality probabilities in the ith instar in the colder, ambient

and warmer treatments, respectively. The input to the larval development model is a time series of
daytime temperatures, which changes transitional success on a day by day basis. These temperature
time series are taken from Environment Canada (2010) for Nakiska Ridgetop (near the study site at
Kananaskis).
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Confidence intervals and sources of error

A Wald test is used to determine (1− α)% confidence intervals for âi, i = 3, . . . , 6 (Zar, 2010). The
width of the confidence interval is Zα

2
SEâi , where SEâi is the standard error of the estimate âi.

Since âi is the slope of a linear regression to the data,

SEâi =

√
1∑m

n=1 x
2
n

(∑m
n=1(yn − ŷn)

m− 2

)
,

where m is the sample size, (xn, yn) is daytime temperature and associated success/failure data on
day n, and ŷn is the predicted transitional success where

ŷn = µi(xn) = âi(xn − T0)

(Zar, 2010). The confidence interval for âi is therefore(
âi − Zα

2

√
1∑m

n=1 x
2
n

(∑m
n=1(yn − ŷn)

m− 2

)
, âi + Zα

2

√
1∑m

n=1 x
2
n

(∑m
n=1(yn − ŷn)

m− 2

))
. (3.26)

For the bootstrapped data, 95% confidence intervals for âi are computed directly by determining
a range of values centered at the newly estimated slope in which 95% of the bootstrapped estimates
fall.

Error in adult emergence is computed similarly to that in the constant transition probability
model, as shown in (3.24). The adult emergence distribution εn, however, does not have an analytic
solution in the variable transition probability case, so the derivatives in (3.27) are numerically
approximated using forward difference schemes. The error δai is the distance between âi and the
edge of the confidence interval. The variable transition probability analogue to (3.24) is then

δεUB/LB =

√√√√ 6∑
i=1

(
∂εUB/LB

∂ai
δai

)2

+

(
∂εUB/LB

∂d
δdUB/LB

)2

. (3.27)

Because the constant mortality probability d̂ is set as the mean of d̂i (3.25) as previously estimated
for the constant transition probability model, the associated error is computed from the previous

errors (δd
UB/LB
i )2, summed in quadrature (Taylor, 1997), and then divided by 12:

δdUB/LB =
1

12

√√√√ 6∑
i=3

(δd
c,UB/LB
i )2 +

6∑
i=3

(δd
a,UB/LB
i )2 +

6∑
i=3

(δd
w,UB/LB
i )2.

Here δd
c,UB/LB
i denotes upper and lower bound error in the ith instar of the colder treatment, while

δd
a,UB/LB
i and δd

w,UB/LB
i denote the same in the ambient and warmer treatments, respectively.

There are two potential sources of error in the larval development model, as parameterized by
these linear temperature-dependent transition probability functions, which will be considered in the
results. The thermal lower bound for development, T0, is fixed prior to simulation, and while an
approximate range of T0 can be considered for P. smintheus, it is necessary to determine if the
estimate âi changes significantly as T0 is varied. Another source of error in the model, since it is
generated numerically, is where to fix the model start date, associated with egg hatching.

3.5 Model validation

The larval development model gives an adult emergence distribution as output in both the constant
and variable transition probability cases, and in the latter case, the model may be validated using
mark-recapture data for P. smintheus populations in Kananaskis, Alberta (Roland et al., 2000;
Matter and Roland, 2002; Matter et al., 2003, 2004; Roland and Matter, 2007; Matter et al., 2009). In
this section, the method by which mark-recapture data is converted into emergence data is explained,
as are the statistical methods by which observed and predicted emergences are compared.
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3.5.1 Converting mark-recapture data to emergence data

In the mark-recapture data, each capture records the following pertinent information about the
individual: date, meadow, new or recapture, identification code, and wing condition. To convert
this to emergence data, only new captures are considered, then divided into meadows of origin (see
Figure 3.4 for a map of the study site identifying the 17 meadows by letter). For model validation,
spatially connected meadows are grouped together, giving populations in Meadows F; G,g,H; I,J,K;
L,M; O; P,Q; R; S; Y; Z. In a given year, the meadow with the largest number of sampling days is
used for validation.

Figure 3.4: Study site at Jumpingpound Ridge, Kananaskis, where mark-recapture field experiments
for adult P. smintheus are carried out. Letters identify meadows, and bars between meadows indicate
spatial connection through broken treeline. Used with permission from Matter et al. (2009).

This data then gives the number of new emergences first observed on a given day, which may be
transformed into a probability of emergence on that day by normalizing the frequency data by
total number of butterflies having emerged in the meadow. Wing condition data indicates that
most butterflies were observed when “new” (as opposed to “old” or “tattered”). Large temporal
gaps between sampling days are still problematic, however, as butterflies which emerge after one
sampling day may die before the next sampling day. While death of unobserved butterflies may not
be quantified from the mark-recapture data, dispersal events (movement of an individual out of one
meadow into a spatially unconnected meadow) are rare. Matter et al. documented 24 dispersal events
in 839 individuals (1136 captures) in 1995 and 27 dispersal events in 759 individuals (873 captures)
in 1996 (Matter et al., 2004), or 2.8% and 3.8% of the population migrating, respectively. Table 3.4
documents the number of dispersal events in other years for which mark-recapture experiments were
conducted. It can thus be concluded that migration is likely a negligible source of error to observed
adult emergence.

3.5.2 Statistical methods for model validation

Observed versus predicted emergence on a given day are compared using both a Wilcoxon signed-
rank test (Zar, 2010) and linear regression of observed emergence on predicted emergence (Haefner,
2005). The Wilcoxon signed rank test is a non-parametric test used to detect differences between
two datasets, where observations from each set are compared pairwise. In this context, emergence
as predicted by the model and observed emergence are compared, for each sampling day. Because
sampling does not occur every day, the model predictions are aggregated to sampling days in this
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Year # individuals captured # captures # migration events % migrated

2001 1099 2208 15 1.4%
2003 92 176 3 3.3%
2004 380 979 9 2.3%
2005 839 1869 27 3.2%
2006 1443 2356 25 1.7%
2007 1709 2600 15 0.9%
2008 1939 3329 30 1.5%
2009 951 2348 34 3.7%

Table 3.4: Number and proportion of dispersal events each year recorded in P. smintheus adult
mark-recapture experiments, with respect to number of individuals and number of captures.

analysis. That is, if sampling occurs on day 1 and day 4, the analysis compares the predicted and
observed emergence on day 1, but compares the observed emergence on day 4 with the sum of the
predicted emergence of days 2, 3, and 4. The null hypothesis states that observed and predicted
emergence on a given day are the same, while the alternative hypothesis states that they differ. The
differences between the emergences on each sample day are ranked according to absolute size, and
the sign of the difference is assigned to the rank. The positive and negative ranks (denoted T+ and
T− in the results) are compared to a critical value Tcrit which varies according to significance level
and sample size (Zar, 2010). If either T+ < Tcrit or T− < Tcrit, then the null hypothesis is rejected
and one may conclude that the model does not predict the observed emergence.

The linear regression analysis determines model validity by regressing observations on predicted
values. The null hypothesis states that the slope (b) and x-intercept (a) of the regression line are 1
and 0, respectively, while the alternative hypothesis states that these values are not 1 and 0. This
approach involves comparing a test statistic F

F =
na2 + 2a(b− 1) +

∑n
i=1 xi + (b− 1)2

∑n
i=1 x

2
i

2sRMSE

against a critical value Fcrit, from an F distribution with 2 and n − 2 degrees of freedom, where n
is the number of paired samples, and xi is the model-predicted value on day i. The term sRMSE is
the residual mean square error where

sRMSE =

∑n
i=1 (yi − ŷi)2

n− 2

and yi is the observed value on day i and ŷi = a + bxi. Similar to the Wilcoxon signed-rank test,
the model predictions are aggregated to sample days.

For both these tests, a non-rejected null hypothesis is desired, so that the observed and predicted
emergence distributions are indistinguishable statistically.

3.6 Results

In this section, maximum likelihood estimates are first generated for the constant transition and
mortality probability case, with associated confidence intervals. Adult emergence is then predicted
by the model using these parameter values, with uncertainty as propagated through the model.

The variable transitional probability case is then considered, beginning with error pertaining to
thermal lower bound for development. Appropriate maximum likelihood estimates and confidence
intervals are then generated for the slopes of transitional probability functions. The validity of these
estimates is then tested by bootstrapping the data, and new estimates for the slopes are generated as
necessary from the bootstrapping procedure. Finally, the error associated with varying start dates
for the model is considered.

This variable transitional probability model is then validated using emergence data for P. smintheus
by way of Wilcoxon signed-rank tests and linear regression analysis.

57



3.6.1 Constant-valued transition and mortality probabilities

Maximum likelihood estimates and associated 95% confidence intervals are presented in Table 3.5.
Because the estimates are calculated from binomial data which has no error, estimates are reported
to five decimal places (where appropriate) for brevity.

Colder Ambient Warmer

Parameter Estimate CI Estimate CI Estimate CI

µ3 0.06173 (−0.06262, 0.22577) 0.14285 (0.04135, 0.35482) 0.10 (−0.00394, 0.42597)
µ4 0.06710 (0.04967, 0.08995) 0.05556 (0.03025, 0.09778) 0.09677 (0.05489, 0.16289)
µ5 0.02216 (0.01464, 0.03320) 0.02206 (0.00901, 0.04842) 0.04663 (0.02350, 0.08747)
µ6 0.02200 (0.01184, 0.03945) 0.03101 (0.00948, 0.07966) 0.01923 (0.00401, 0.05756)
d3 0.0 (−0.00955, 0.05767) 0.0 (−0.03083, 0.20672) 0.11111 (−0.00182, 0.45672)
d4 0.01391 (0.00657, 0.02771) 0.01579 (0.00324, 0.04753) 0.00885 (−0.00331, 0.05331)
d5 0.02746 (0.01904, 0.03931) 0.01805 (0.00651, 0.04276) 0.02041 (0.00612, 0.05314)
d6 0.02148 (0.01156, 0.03853) 0.01527 (0.00072, 0.05744) 0.03704 (0.01530, 0.08022)

Table 3.5: Maximum likelihood estimates with associated 95% confidence intervals for constant
transitional and mortality treatments, in each of the three temperature treatments.

These parameter estimations and confidence intervals are presented graphically in Figure 3.5, to
demonstrate overlap in confidence intervals.

Because no experimental data exists for first and second instars, transitional and mortality
probabilities in each treatment are fixed as follows:

µ̂1 = 1.1µ̂3

µ̂2 = 1.05µ̂3

d̂1 = 1.1d̂3

d̂2 = 1.05d̂3,

recalling the condition of the solutions that (1 − µj)(1 − dj) 6= (1 − µk)(1 − dk) for j 6= k. These
estimates are substituted into (3.13) to generate adult emergence predictions in each treatment
(Figure 3.6).

Emergence occurs first in the warmer treatment, with peak emergence occurring 53 days after
hatching, with probability 0.01292 (Figure 3.6c). Total probability of emergence in this treatment
is 0.07934. Next is the ambient treatment, with peak emergence at day 76 and probability 0.01920
(Figure 3.6b), having total emergence probability 0.1727. The final emergence distribution is the
cooler treatment, which peaks at day 78 with probability 0.01410 (Figure 3.6a), with total emergence
probability 0.1260.

3.6.2 Variable transition probabilities

One source of error in the model is the requirement that T0 must be fixed prior to maximum likelihood
estimation of slopes (âi) for transitional probability functions. A range of biologically reasonable
T0 values are fixed, from 3 − 6◦C (Taylor, 1981), and âi are calculated along with associated 95%
confidence intervals, to determine the range of freedom available for fixing T0, presented in Table
3.6. Because slopes âi are estimated from binomial data without error, estimates are reported to six
decimal places for brevity.

For the remainder of the results, T0 = 5 is fixed.
The validity of the maximum likelihood estimates for ai is tested by bootstrapping the data to

determine the number of trials which estimate ai outside its 95% confidence interval. In 1000 trials,
the estimated â3 value falls outside the acceptable range in 4.3% of cases, while â4 falls outside
in 3.1% of cases, â5 falls outside in 90.6% of cases, and â6 falls outside in 53.3% of cases. New
parameter values, which will be used in the remainder of the results, are generated from the mean
of the bootstrapped estimates, to be
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Figure 3.5: Maximum likelihood estimates for cooler (triangle), ambient (diamond) and warmer
(square) treatments, with adjusted Wald 95% confidence intervals (3.23) denoted by bars, for µ and
d parameters.
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Figure 3.6: Predicted adult emergence εn in different temperature treatments with associated error
(3.24) shaded, having constant transition and mortality probabilities. Later emergence occurs in a)
cooler treatment and b) ambient treatment than in c) warmer treatment.
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T0 = 3 T0 = 4
Slope Estimate CI Estimate CI

a3 0.009876 (0.005387, 0.014366) 0.010860 (0.006375, 0.015346)
a4 0.006199 (0.005035, 0.007363) 0.006758 (0.005594, 0.007922)
a5 0.001720 (0.001282, 0.002158) 0.001854 (0.001416, 0.002292)
a6 0.001496 (0.000956, 0.002036) 0.001600 (0.001060, 0.002140)

T0 = 5 T0 = 6
Slope Estimate CI Estimate CI

a3 0.012060 (0.007581, 0.016543) 0.013560 (0.009085, 0.018037)
a4 0.007428 (0.006265, 0.008592) 0.008245 (0.007082, 0.009409)
a5 0.002010 (0.001573, 0.002448) 0.002196 (0.001759, 0.002634)
a6 0.001720 (0.001180, 0.002261) 0.001860 (0.001319, 0.002400)

Table 3.6: Maximum likelihood estimates for ai with associated 95% confidence intervals, when
transitional probabilities µi(T ) = ai(T − T0) change due to varying developmental lower threshold
temperatures T0 .

â3 = 0.012341 (0.008303, 0.016379)

â4 = 0.007337 (0.006270, 0.008404)

â5 = 0.002837 (0.002314, 0.003361)

â6 = 0.002273 (0.001934, 0.002613).

Figure 3.7 graphically illustrates the results of the bootstrapping method, and Figure 3.8 il-
lustrates the final transitional probability functions. The constant mortality probability is fixed
at d = 0.019807 (0.009127, 0.054254) for each instar, being the mean of the maximum likelihood

estimates d̂i calculated in the previous section.
The model is quite robust to a changing start date within a two month range of May 1st (calendar

day 121 or 122). All numerical simulations are hereafter fixed with a May 1st start date. See
Appendix D for figures of adult emergence under varying start dates.

The predicted emergence in each year with associated error is presented in Figures 3.9 and 3.10.

3.6.3 Validation of variable transition probability model

The observed emergence of P. smintheus adults is first compared graphically to predicted model
output in Figures 3.11 and 3.12. The meadows used for comparison were those having the largest
number of sampling days in a given year. Within a sampling period, model emergence is aggregated
to sampling days for comparative purposes, that is, model predictions between sampling days are
summed to the next sampling day to compare against observations. While Figures 3.11 and 3.12
represent discrete data, the data is presented continuously for purposes of clarity.

The results of the Wilcoxon signed-rank tests and linear regression of observed on predicted
emergence are presented in Tables 3.7 and 3.8, respectively. Values are compared for both the
Wilcoxon signed-rank test and the linear regression only if they occur on sampling days within the
observed sampling period. Recall that for both tests, the null hypothesis H0 states that the observed
and predicted emergence distributions are statistically indistinguishable.

The Wilcoxon signed-rank test does not reject the model as a predictor of the observed emergence
distribution in any year (save 2005 when the sample size is too small to conduct the test). The linear
regression analysis fails to reject the model in in 2001− 2008, and does reject the model in 2009.
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Figure 3.7: For each instar, black squares on left denote original maximum likelihood estimates for ai,
with bars denoting associated 95% confidence intervals (3.26), as presented in Table 3.6 for T0 = 5.
On the right, for each instar, the estimates for ai from 1000 bootstrapping trials are presented, with
the mean ai value denoted by the black square. The means of the bootstrapping trials are hereafter
used as the estimates for ai.

Year # observations T+, T− Tcrit Conclusion

2001 7 7, 21 2 Do not reject H0

2003 6 7, 14 0 Do not reject H0

2004 7 6, 22 2 Do not reject H0

2005 5 −− −− Sample too small
2006 11 23, 43 11 Do not reject H0

2007 20 72, 138 52 Do not reject H0

2008 18 69, 102 40 Do not reject H0

2009 17 57, 96 34 Do not reject H0

Table 3.7: Results of Wilcoxon signed-rank test, with critical values taken from Zar (2010). Predicted
model emergence is not significantly different from observed emergence in all years.
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Figure 3.8: Linear transitional probability functions, µi(T ) = ai(T − 5), i = 3, . . . , 6, using boot-
strapped slope estimates as presented in Figure 3.7.

Year # observations F Fcrit Conclusion

2001 7 2.57 8.43 Do not reject H0

2003 6 1.48 10.6 Do not reject H0

2004 7 1.97 8.43 Do not reject H0

2005 5 0.45 16.0 Do not reject H0

2006 11 1.19 5.71 Do not reject H0

2007 20 3.80 4.56 Do not reject H0

2008 18 3.75 4.69 Do not reject H0

2009 17 9.03 5.26 Reject H0

Table 3.8: Results of linear regression of observed on predicted emergence, with critical values taken
from Zar (2010). Predicted model emergence is not significantly different from observed emergence
in 2001− 2008, and is significantly different in 2009.
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Figure 3.9: Adult emergence probability distributions εn (black curves) predicted from the variable
transition probability model, with associated error (3.27) shaded in blue. Temperature regimes used
as input are those from 2001, 2003− 2005.
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Figure 3.10: Adult emergence probability distributions εn (black curves) predicted from the variable
transition probability model, with associated error (3.27) shaded in blue. Temperature regimes used
as input are those from 2006− 2009.
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Figure 3.11: Observed versus predicted emergence probability distributions in 2001, 2003-2005.
Black curves denote observed emergence (generated from mark-recapture data) and blue curves
denote predicted emergence (generated from variable transition probability model with appropriate
year’s temperature regime as input).
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Figure 3.12: Observed versus predicted emergence probability distributions in 2006-2009. Black
curves denote observed emergence (generated from mark-recapture data) and blue curves denote
predicted emergence (generated from variable transition probability model with appropriate year’s
temperature regime as input).
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3.7 Discussion

Both the constant and varying transition probability models exhibit biologically reasonable be-
haviour in their predictions of temperature-dependent adult emergence. The constant transition
probability model indicates the utility of a simplified and analytically tractable model, demonstrat-
ing earlier emergence in the warmer treatment and similar emergence times in the cooler and ambient
treatments. The varying transition probability model mostly captures the range and shape of the
observed emergence distribution, though with some variability in the predicted values.

3.7.1 Constant-valued transition and mortality probabilities

In the constant probability model, individuals in the warmer treatment emerge earlier than those
in the other treatments (Figure 3.6c), with a peak emergence 23 days before that of the ambient
treatment and 25 days before that of the cooler treatment. This is expected from the experimental
analysis of the previous chapter, which indicated a shorter fifth instar development time in the
warmer treatment. Though experimental data was insufficient to determine differences between
developmental times in other instars, this model suggests that a similar pattern holds at least
in the fourth instar, where the maximum likelihood estimates for µ4 (Figure 3.5) indicate a higher
transitional probability in the warm treatment. The proximity of the emergence peaks in the ambient
and cooler treatments is further supported by the statistical analysis of the previous chapter, which
determined no significant differences between fifth instar development time in these treatments.
However, overall mortality is higher in both the warmer and cooler treatments than in the ambient;
from the previous statistical analysis, which links mortality to longer development time, one might
expect mortality to be highest in the cooler treatment. An examination of the maximum likelihood
estimates (Figure 3.5) offers a partial explanation. The estimated mortality probability for the third

instar d̂3 is ten times higher in the warmer treatment than the other two, but this is likely a product
of the small third instar sample size which yielded the estimate. For d̂4 and d̂5, the estimates
are very consistent across the different treatments, lending credence to the idea that mortality
probabilities do not depend directly on temperature (at least in the experimental thermal range),
and higher mortality at low temperatures is attributable to longer development times. The sixth
instar indicates a slightly higher mortality probability in the warmer treatment, which may be due to
desiccation of pupae in the growth chambers. Such desiccation could have occurred if the chambers
were insufficiently humid for the soil in which the pupae burrowed to retain moisture. Overall,
the earlier emergence of the warmer treatment individuals using this model and parameterization
method indicate the value of a simplified and analytically tractable model, should one desire to
address general questions of “warming” or “cooling” on a population of P. smintheus. Such a
model could be improved by a larger experimental sample size (especially in the third instar) and
experimental data for transitional success and mortality in the first and second instars. Due to
considerable difficulties in rearing this species in the laboratory (pers. comm., Matter), however,
this model, as well its variable transitional probability analogue, may offer the best insight (when
compared to pure experimental work) into the effects of temperature on P. smintheus development.

3.7.2 Variable transition probabilities

In the varying transitional probability model, the maximum likelihood method demonstrably fails
to accurately estimate slopes (âi) for transitional success functions (Figure 3.7). In all estimates
but for the fourth instar, the mean of the bootstrapped estimates was larger than the original
estimate. When the model fails to match the observed emergence distribution given the modified
parameterization, the failing is a late predicted emergence (Figures 3.11 and 3.12, 2001− 2003 and
2006−2007). In no year does the model predict substantial emergence prior to observed emergence.
Since the transitional probabilities assume a linear relationship with temperature, the original model
parameterization (having mostly smaller slopes) would predict later emergences and perform more
poorly. Bootstrapping the data clearly indicates the importance of working with similar sample sizes
at various temperatures, but the large variance in the estimates (Figure 3.7) may indicate a range for
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parameter estimation, and the mean of the bootstrapped estimates, while a reasonable parameter
estimate, is perhaps not the best. The estimates as used, however, demonstrate a strict decrease as
instars increase (Figure 3.8), indicating that an individual in the third instar at a given temperature
has a larger transitional probability than a member of its cohort in the sixth instar. This offers some
evidence that the parameter estimates are at least biologically reasonable, as energy requirements
are higher in later instars, normally prompting longer development times.

The estimates for ai can further be influenced by the fixed value of T0, the thermal lower bound
for development, since this parameter was fixed prior to either maximum likelihood estimation or
bootstrapping for ai. The experimental data offers little insight into what such a parameter value
might be, as the experimental temperature range was too high to prompt a cessation in development
for any individual. A review of the literature prompted the fixed T0 = 5, as it is seen in multiple
butterfly species (Hill et al., 1999; Taylor, 1981) as an approximate lower developmental threshold
for larvae. In fact, as estimated from the data for P. smintheus, â3 and â6 do not change significantly
as T0 is varied from 3− 6◦C (that is, each estimate falls within all confidence intervals for estimates
between 3 − 6◦C), as reported in Table 3.6. The estimate â5 does not change significantly as T0 is
varied from 3− 5◦C, and â4 does not change significantly as T0 is varied from 4− 5◦C. It can thus
be concluded that the model demonstrates some robustness to a varying T0.

The model is also robust to changes in start date, due to very low temperatures in the range
of hatching dates used. Hatching in P. smintheus eggs is triggered by snowmelt, so sufficiently
high temperatures were required prior to the calendar day on which the model simulations were to
begin. Given that transitional probabilities were zero at temperatures lower than 5◦C, the adult
emergence distribution changed very little in shape or range given simulated hatching dates from
April 15th to June 3rd (Figures D.1 and D.2), due to low temperatures within these time periods.
Care must still be taken when fixing simulated hatch dates, however, as the constant daily mortality
probability used in the model causes lower overall adult emergence in simulations where hatching
occurred earlier (as individuals, trapped in first instar by low temperatures, fall prey to mortality).

A comparison of predicted versus observed emergence in P. smintheus adults gives some indica-
tion of the model’s validity. The Wilcoxon signed-rank test (Table 3.7) did not reject that observed
and predicted emergence distributions were the same (excepting 2005, when an insufficient num-
ber of sampling days precluded the use of the test). A linear regression of observed on predicted
emergence probabilities (Table 3.8), rejected the null hypothesis that the emergence probabilities
corresponded in 2009 only. This rejection may have been due to model failure, but may also have
been due to the large amount of variability in the data, which can cause Type I errors in linear
regression analysis (Haefner, 2005).

By inspecting Figures 3.11 and 3.12, one may note, as mentioned earlier, that predicted emergence
lagged behind observed emergence most especially in 2001, 2003, 2006, and 2007. In validating the
model, however, one must also consider the validity of the data against which it is compared. In
early years of the field experiment, sampling was intermittent, with periods of up to 13 days between
samples in a meadow in 2001, 12 days in 2003, 10 days in 2004, and 11 days in 2005. In 2006−2009,
sampling was more frequent, with at most 6, 4, 4, and 5 days between samples in a meadow,
respectively. Large gaps between samples are sometimes attributable to bad weather (P. smintheus,
like many butterflies, does not fly on non-sunny days) but other gaps may be due to sampling
taking place in other meadows. While it was demonstrated that migration between meadows likely
has a negligible impact on emergence probability (Table 3.4), mortality within a meadow might
influence emergence probabilities should the period between sampling be sufficiently long. That is,
a butterfly may emerge after one sampling day and die prior to the next sampling day; lifespans
between 2 − 20 days have been documented in female P. smintheus adults (pers. comm., Matter).
This might influence the shape of the observed emergence distributions, especially in 2001 − 2005
when sampling was less frequent. The difference between predicted and observed emergence in 2001
and 2003 (Figure 3.11), for instance, on the last sampling day (calendar day 232 in both years) may
be in part explained by natural mortality in the observed system between sampling days.

In the years with more sampling days, however, such an explanation is less likely. In 2006 and
2007, the model by visual inspection predicts emergence later than that observed, in contrast to
2008, where the model temporally overlaps the observed emergence quite well. Both 2006 and 2007
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were characterized by warm temperatures and early, brief emergence periods, having initial observed
emergence on calendar days 196 and 191 and peak emergence on days 198 and 201, respectively.
(It is worth noting however that the abrupt peak in 2006, immediately after sampling began, may
indicate that initial emergence in that meadow was missed, having occurred prior to the start of the
sampling period). In contrast, the cooler 2008 temperatures may have prompted the later and longer
observed emergence period, having initial emergence on day 203 and peak emergence on day 236.
That the model captured the emergence in 2008, but not 2006 and 2007 suggests that the model
parameterization works best for cooler temperatures, and that it underestimates transitional success
at higher temperatures. One may speculate that the linear form of the temperature-dependent tran-
sition probability function is generally unsuitable, though appropriate for cooler years. The linear
form was chosen as the most appropriate based on the experimental data used for parameterization,
given the narrowness of the experimental temperature range. A natural extension to this research
would conduct the developmental experiments again at a wider range of temperatures, with a larger
number of individuals. Such experimental work might give a better indication of the thermal lower
threshold for development, as well as a potential upper threshold for development (a point at which
heat stress prevents development and prompts mortality (Taylor, 1981)). Then a different functional
form could better capture the temperature-dependent dynamics of the system, and better predict
emergence in the warm years.

3.7.3 Implications for P. smintheus

Understanding the developmental behaviour of P. smintheus near the thresholds of its developmental
temperature range is important when considering climate change, which may cause warming as well
as increased variability in temperatures. If warm years prompt early and brief emergence periods, it
may have a profound effect on population dynamics and community dynamics. The early emergence
from faster larval development (as demonstrated both experimentally and through modelling) may
confer both advantages and disadvantages to a population. Experimental results suggested that
mortality is lower in faster developing larvae, so that more successfully reach adulthood. Growth
experiments in Proclossiana eunomia indicate death rates in adults increase in time from first emer-
gence, possibly caused by higher fitness in early emerging individuals or increasing competition for
limited resources (Schtickzelle et al., 2002), though it is unknown whether such a pattern is present
in P. smintheus. The present model also treats individuals as identical, so such individual effects
would be difficult to capture. Emergence of adults may also influence reproductive success in Par-
nassius clodius and P. smintheus (Calabrese et al., 2008), an area which will be explored more fully
in the next chapter.

Temperature-driven effects on adult emergence must also be studied at a community level. In
the previous chapter, P. smintheus emergence synchrony with host plants, both at larval and adult
stages, was indicated to be critical to population survival (Fred and Brommer, 2010; Matter et al.,
2009). Warming temperatures may destabilise the synchrony of these interacting species or even
force species out of a previously shared habitat. The effects of temperature on interacting species is
thus an important subsequent step to this research.

Another area of interest for effects of temperature on P. smintheus development lies in adapting
the model to consider protandry and sex-specific larval development. Protandry has been observed
in P. smintheus adult populations, with earlier initial emergence of males than females (Calabrese
et al., 2008). The current model framework permits protandrous species modelling, given sex-specific
development data; separate parameterizations for male and female larvae would allow two distinct
adult emergence distributions. Protandry is not considered in the present study as male and female
P. smintheus are physically indistinguishable in their larval form. That is, while individuals surviving
to adulthood may be sexed posteriori, no information can be determined from individuals dying prior
to adulthood. While it is possible to genetically determine sex after death in larvae (Roland, pers.
comm.), such analysis is beyond the scope of the present study.

Understanding temperature-driven effects on insect phenology is crucial to the understanding of
how species will react to climate change. In this chapter, a model framework has been presented
to predict developmental success and adult emergence in P. smintheus, but this represents only the
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first steps in understanding how a changing climate may impact this alpine species.
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Chapter 4

A model for
temperature-dependent
reproductive success and egg
production in Parnassius
smintheus

4.1 Introduction

Temperature and other climatic variables may influence larval development in insects, which in turn

impact the individuals later in life. Specifically, phenological changes in insect species stemming

from larval development may impact resource availability for adults (Hoye and Forchhammer, 2008;

Schweiger et al., 2008; Both et al., 2009; Thomson et al., 2010), predator avoidance (Thomson et al.,

2010), and adult reproductive success (Iwasa and Levin, 1995; Calabrese and Fagan, 2004; Calabrese

et al., 2008). It is this final point, adult reproductive success, which is considered in this chapter.

Multiple theoretical and empirical studies have been conducted which consider effects of low pop-

ulation density on persistence. Allee effects at low population densities may threaten a population,

especially by way of mate-finding success (see Gascoigne et al., 2009). Links between component

spatial mate-finding Allee effects and demographic Allee effects have been found (in insects) in

gypsy moth Lymantria dispar (Tcheslavskaia et al., 2002; Tobin et al., 2009), and Glanville fritillary

Melitaea cinxia (Kuussaari et al., 1998).

Mate-finding Allee effects are not restricted to the spatial domain, as some studies have considered

temporal effects on population density. Calabrese and Fagan (2004) and Calabrese et al. (2008)

considered models of adult reproductive success in reproductively asynchronous populations; that

is, populations in which individual lifetimes do not completely overlap. Reproductive asynchrony is

common in species where individual lifespan is less than the overall breeding period, as in univoltine

butterflies, and Calabrese et al. (2008) correspondingly parameterized their model for Parnassius

smintheus and P. clodius. Populations may also suffer from combined temporal asynchrony and low

spatial density, the combination of which can exacerbate demographic Allee effects (Fagan et al.,

2010). From a mathematical perspective, the standard deviation of an adult emergence function is
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an approximate measure of temporal synchrony, as it determines the proximity of high emergence

rate days to the mean emergence rate day. When the standard deviation in adult emergence is

small, the bulk of adults emerge quickly over a short time period (synchronous emergence), while

increasing the standard deviation increases the time period over which the bulk of adults emerge

(asynchronous emergence).

Climate change increases the importance of understanding temperature effects on insect develop-

ment (Parmesan, 2006). With this in mind, attempts have been made at predicting insect response

to thermal change at the larval level (as discussed in Chapter 3), as well as the adult level. Yurk and

Powell (2009) presented a theoretical model for multiple generations with temperature-dependent

development and heritable phenological traits such as dependence of developmental time on temper-

ature, so that variations in development time evolve in response to changing temperatures. Further,

populations which do not evolve with changing temperatures risk changing their voltinism patterns

(Logan and Powell, 2001).

Currently there exist models which present temporal Allee effects (Calabrese and Fagan, 2004;

Calabrese et al., 2008; Fagan et al., 2010) and models which allow for evolutionary response to

temperature changes through inheritance of phenological traits (Yurk and Powell, 2009). However,

to my knowledge, no model frameworks presently exist which explicitly explore how a temperature

increase affects the synchrony of a population’s emergence, and how this temperature increase thus

affects adult reproductive success. That is, no studies exist which examine the direct impact of

temperature on total adult emergence and the timing of adult emergence, which in turn affect

reproductive success. Such direct effects have not previously been studied due to the lack of models

such as that presented in Chapter 3, which uses a seasonal temperature regime to predict an adult

emergence distribution. Total emergence and standard deviation in adult emergence are controlled

by larval survival and development time, which are in turn controlled by temperature-dependent

parameters. Therefore, to construct a temperature-dependent adult reproductive success model

requires the incorporation of the mechanistic temperature-dependent larval development model from

the previous chapter.

The purpose of the present study is to understand how spring and early summer temperatures

as experienced by P. smintheus larvae influence population persistence both within seasons and over

multiple years. To this end, a model framework for reproductive success in adult P. smintheus is

constructed, modified from Calabrese et al. (2008) in which the temperature-dependent emergence

function of Chapter 3 may be used as input. A system of ordinary differential equations models

the breeding period dynamics of male, unmated female, and mated female butterflies, as well as the

eggs produced by the breeding females.

Two emergence functions are studied: a Gaussian function to isolate effects of varying to-

tal emergence and standard deviation, and a continuous-time analogue to the discrete numerical

temperature-dependent emergence function considered in the previous chapter. The Gaussian emer-

gence function is used because it has a closed form and the direct effects of varying its parameters

(total emergence and standard deviation) independently may be studied. The parameters and in-

put of the mechanistic temperature-dependent model may then be linked to the parameters in the

Gaussian function: increasing temperature increases total emergence and standard deviation in the

temperature-dependent emergence function, while increasing mortality probability decreases total

emergence and increases standard deviation. Studying the independent effects of parameters in
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the Gaussian function offers a clearer insight than studying the temperature-dependent function

alone, as competing effects are observed in the temperature-dependent emergence function as the

parameters of interest (total emergence and standard deviation) may not be varied independently.

Using the temperature-dependent emergence function, effects of varying larval mortality, as well as

temperatures experienced by larvae are considered.

Errors as propagated through the previous chapter’s developmental model to adult emergence,

as well as new errors accumulated in the larger reproductive model are considered. Such error

analysis demonstrates how under the present parameterization the model contains too great an

error for quantitative predictions of reproductive success. A qualitative example of multi-year egg

production is instead presented, to demonstrate how temperature variation between years may

prompt constantly fluctuating population dynamics in the system.

The model indicates that total adult emergence and emergence synchrony are crucial to reproduc-

tive success in a season, suggesting that temperature regimes as experienced by larvae are important

contributors to population persistence. Further, yearly variations in these spring and summer tem-

perature regimes may drive reproductive success in the system to produce the fluctuating population

sizes as observed from year-to-year in the field for P. smintheus.

4.2 Model formulation and parameterization

A reproductive success model for P. smintheus is constructed based on Calabrese et al. (2008).

Let M , U , R, and E be the number of adult males, unmated adult females, reproducing adult

females, and eggs, respectively. A dynamical model is proposed which tracks these quantities over

time throughout a single season, which is presented here as a system of non-linear coupled ordinary

differential equations.

In the year τ ,

dMτ

dt︸ ︷︷ ︸
rate of change

in # males

= θMEτ−1(tf )ε(t)︸ ︷︷ ︸
emergence of males

− γMMτ︸ ︷︷ ︸
male mortality

dUτ
dt︸︷︷︸

rate of change
in # unmated females

= θFEτ−1(tf )ε(t)︸ ︷︷ ︸
emergence of

unmated females

− γFUτ︸ ︷︷ ︸
unmated female

mortality

− cMτUτ︸ ︷︷ ︸
mating success

(4.1)

dRτ
dt︸︷︷︸

rate of change
in # mated females

= cMτUτ︸ ︷︷ ︸
mating success

− γFRτ︸ ︷︷ ︸
mated female

mortality

dEτ
dt︸︷︷︸

rate of change
in # eggs

= βRτ︸︷︷︸
egg production

where θM and θF are proportions of eggs which are male and female, γM and γF are constant

male and female per-day death rates, c is a constant per-day mating rate, and β is a fecundity rate

77



(average number of eggs produced per mated female per day). The adult emergence rate ε(t) is

continuous and integrates to give the total proportion of the population which successfully emerges

in the season, so
∫
t
ε(k)dk < 1 unless no larval mortality occurs. Further, ε(t) ≥ 0 for all t. An

estimate for β is generated by taking the mean fecundity rate from unpublished experiments (pers.

comm., Matter). The confidence interval for β as presented in Table 4.1 is calculated assuming a

normal distribution for the fecundity rate. The initial number of eggs in year τ is the number of

eggs produced in year τ − 1, or Eτ−1(tf ). Here tf is the fixed season end date, where tf = 260

in Julian calendar days (September 16th or 17th). This was fixed as the end date as no butterflies

were observed flying after this day. So the number of eggs at the end of the (τ − 1)th year gives the

number of eggs at the beginning of the τth year. The in-season population dynamics of the model

thus produce a number of eggs which act as input to the male and unmated female populations in

the next year. Over-winter mortality is presently ignored. This type of model, with continuous-time

dynamics for part of the year (the emergence and breeding period, in this case) with repeated discrete

changes (linking eggs produced in year τ with the initial number of eggs in year τ + 1) has recently

been classified as a semi-discrete model (Mailleret and Lemesle, 2009). Table 4.1 presents parameter

estimates and confidence intervals where known for these parameters. The initial conditions for the

above model are Mτ (t0) = Uτ (t0) = Rτ (t0) = Eτ (t0) = 0, where t0 is egg hatching date used to

generate the temperature-dependent adult emergence function. In the simulations presented in this

chapter, t0 is fixed at t0 = 122 in Julian calendar days (May 1st or 2nd). For notational simplicity

the τ subscript is hereafter omitted, except where required for clarity.

A brief consideration of the mathematical properties of the model assure existence and uniqueness

of solutions, continuous dependence on initial conditions, and positive invariance in the positive

state space (i. e., the region where M , U , R and E are all non-negative). As the non-autonomous

system is continuous in time and continuously differentiable in state variables M , U , R, and E,

the system has a unique solution in some time interval containing the initial time t0 (Perko, 2000).

Further, the same continuity and differentiability conditions ensure that the unique solution depends

continuously on t and (continuous) differentiably onM , U , R, and E (Anosov et al., 1997). Numerical

simulations demonstrate that this time interval exceeds the breeding season length tf − t0. To

consider positive invariance to the positive state space, the axes are considered as follows: when

M = 0, dM
dt = θMEτ ε(t) ≥ 0; when U = 0, dU

dt = θFEτ ε(t) ≥ 0; when R = 0, dR
dt = cMU ≥ 0

if M ≥ 0 and U ≥ 0; and finally, when E = 0, dE
dt = βR ≥ 0 if R ≥ 0. Therefore, supposing

M,U,R,E ≥ 0, no trajectory can escape the positive state space. The region thus is positively

invariant, so no biologically unreasonable solutions (negative population sizes) may occur.

4.2.1 Emergence rate functions

The model equations are non-autonomous due to ε(t), which is a continuous adult emergence rate

function. In this chapter, two functions will be presented as adult emergence rates: first, a simple

Gaussian function

ε(t) =
A√
2πσ

exp

(
−(t− t1)

2σ2

)
where A is the proportion of individuals which survive to adulthood, t1 is the mean, and σ2 is the

variance. The second function is a continuous temperature-dependent emergence
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rate analogous to the temperature-dependent adult emergence probability distribution derived in

the previous chapter. Given that the previous discrete function is numerically generated as a set

of daily emergence probabilities, the continuous analogue ε(t) is produced by linear interpolation

between successive days’ emergence probabilities. Figure 4.1 shows two sample emergence functions,

the first a Gaussian function and the second a temperature-dependent function.

The purpose of presenting two emergence functions is as follows: the Gaussian is simpler than

the temperature-dependent function, and thus it is simpler to see how population dynamics and egg

production are influenced by varying its parameters. The tractable and closed form of the function

approximates the emergence shape of the more complicated temperature-dependent function, and

furthermore, the parameters which influence egg production, A and σ, have analogous parameters

which generate the temperature-dependent emergence function: daily temperature Ti and mortality

probability d, respectively.

The parameter A of the Gaussian function gives the total emergence over all time (the proportion

of individuals which successfully emerge),

A =

∫ ∞
−∞

ε(t)dt,

so increasing A increases the total emergence within a season. Total emergence proportion in the

temperature-dependent function can be increased by several mechanisms: first, due to the linear

dependence of transitional probability on temperature and fixed death probability, an increased

daily temperature would increase emergence as individuals would move through the larval instars

more quickly, having less opportunity to die. Second, decreasing the constant mortality probabil-

ity would also increase emergence, as individuals would have a higher probability of surviving to

adulthood. Thus, either an increase in temperature or a decrease in mortality probability in the

temperature-dependent function should generate qualitatively similar dynamics to those generated

by an increasing A in the Gaussian function. An increase to the slopes of the linear transitional

probability functions (ai, i = 1 . . . , 6) in the temperature-dependent case would also generate similar

dynamics, though these are not considered here, as the slope estimates of the previous chapter have

considerably smaller confidence intervals than the mortality probability, so there is a larger interval

in which mortality can be varied to produce different dynamics that remain within the range of

confidence.

The standard deviation σ is a measure of the width of the emergence distribution in the Gaussian

function and also influences reproductive success. In the temperature-dependent function, standard

deviation can be calculated by √∫ tf

ti

k2ε̃(k)dk −
(∫ tf

ti

kε̃(k)dk

)2

,

where

ε̃(k) =
ε(k)∫ tf

ti
ε(k)dk

(since
∫ tf
ti
ε(k)dk < 1 in a system with larval mortality, so normalization is necessary to produce a

probability distribution). Here ti is the first day of non-zero emergence rate and tf is the previously

defined end of the season. An increase in the mortality probability d increases the standard deviation

in the temperature-dependent ε(t) for a range of d, as will be demonstrated in Section 4.3, so an
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increase to d is analogous to an increase in σ in the Gaussian function. It should be noted that

the relationship between d and standard deviation in ε(t) is roughly parabolic, as will be later

demonstrated, but for simplicity, d in the results is restricted to values in which a positive relationship

between d and standard deviation exists.

The second benefit of the Gaussian emergence function, apart from its simplicity, is that the total

emergence A and the width of the emergence σ can be varied independently to consider independent

effects of each on egg production. The temperature-dependent emergence function is incapable

of easily separating such effects. For instance, when the mortality probability d is decreased, the

total emergence increases and the standard deviation decreases: these effects are simultaneous.

The Gaussian emergence function is thus more useful for considering independent effects, but the

use of the temperature-dependent function is more biologically realistic in the present study, as the

current objective is to determine effects of temperature-forcing on seasonal dynamics in P. smintheus.

Because the interest of the present study lies in the qualitative similarities in reproductive success

effects which occur when parameters in each emergence function are varied, no attempt is made to

fit the Gaussian function to the temperature-dependent function. The final section of the results

will discuss a potential mechanism by which spring and summer temperatures force these population

fluctuations.

4.2.2 Error propagation

Error in the total number of eggs produced in a given year propagates through the model from the

error in the individual parameters. This accumulated error, if large enough, can reduce the predic-

tive value of the model for reproductive success. If enough error accumulates from the individual

parameter uncertainty, the error in egg production in a given year may encompass the reproductive

success threshold (Eτ+1

Eτ
= 1), which indicates the model may falsely indicate reproductive success

or failure.

The method by which error is determined is similar to that presented in the previous chapter,

where total error in adult emergence probabilities was calculated using the individual errors of the

parameters in the temperature-dependent developmental model. In this case, the error is propagated

still further, as the adult emergence model is used as input to predict a temperature-dependent num-

ber of eggs produced in a seasonal breeding period. For a given parameter x, the error contributed

to Eτ+1 is
(
∂Eτ+1

∂x δx
)2

where δx is the error associated with the individual parameter x. The error

contributions of all the individual parameters are summed in quadrature (Taylor, 1997), so that

δEτ+1 =

√√√√ 6∑
i=1

(
∂Eτ+1

∂ai
δai

)2

+

(
∂Eτ+1

∂d
δd

)2

+

(
∂Eτ+1

∂β
δβ

)2

.

The errors associated with θM , θF , γM , γF , and c are unknown (pers. comm., Calabrese) so they

are neglected in this sum, though it should be noted that their absence makes the total error δEτ+1

smaller.

Derivatives in error terms ∂Eτ+1

∂x are computed numerically using a forward difference scheme.
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Figure 4.1: Sample adult emergence functions ε(t): a) Gaussian emergence function with A =
0.1, σ = 15, and t1 = 210. b) Temperature-dependent emergence function generated from 2009
temperature data, using parameter values in Table 4.1.
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4.3 Results

In the following section, the effects on egg production of varying parameters in both the Gaussian

emergence function and the temperature-dependent emergence function are presented. Egg produc-

tion in year τ is denoted by Eτ , and reproductive success from year τ to year τ +1 is denoted by the

ratio of eggs produced in these successive years, Eτ+1

Eτ
. The year τ is called reproductively successful

if Eτ+1

Eτ
> 1, so that more eggs are produced for the next year than existed at the beginning of the

year. The number of eggs Eτ+1 is generated by numerically solving the equations in (4.1) and thus

determining the number of eggs at the end of a season. As the initial number of eggs in a season

Eτ is unknown, the plots are generated to compare Eτ+1

Eτ
against Eτ with varying parameter values.

Such plots graphically indicate the initial number of eggs Eτ required to surpass the reproductive

success ratio, if such reproductive success is indeed possible. They may also indicate the presence

of an Allee effect at low initial numbers of eggs. Further, in the temperature-dependent case, the

errors associated with each parameter are propagated through the model to determine which param-

eter generates the most error in Eτ+1, and if within the given parameter ranges, any quantitative

predictions concerning year-to-year population dynamics can be made. All numerical calculations

were completed using the numerical solver dsolve in Maple12TM (Monagan et al., 2005). Associated

figures were also completed using Maple12TM.

4.3.1 Gaussian emergence function

Reproductive success ratios Eτ+1

Eτ
in year τ are calculated against initial number of eggs Eτ , for

varying A (Figure 4.2a) and σ (Figure 4.2b). For all fixed parameter values, reproductive success

ratios increase at low egg numbers before levelling off at higher egg numbers (a demographic Allee

effect). An increase in A increases the reproductive success ratio when other parameter values are

fixed, and in the case of standard deviation σ, the reproductive success ratio decreases with increasing

σ. For the values of both parameters, initial number of eggs Eτ is important: in the varying A case,

A = 0.07 is large enough that the population crosses the reproductive success threshold, except

where Eτ is very small. In the varying σ case, the initial Eτ required for the population to cross

the reproductive success threshold increases with increasing σ: for σ = 25 days, approximately

Eτ = 2400 eggs are required to cross the threshold, while for σ = 35 days, approximately Eτ = 7000

eggs are required. For σ = 45 days, reproductive failure results independent of the initial number

of eggs. The model therefore predicts that both low total emergence and high standard deviation

in adult emergence may aggravate an Allee effect, inducing reproductive failure at higher initial

numbers of eggs.

4.3.2 Temperature-dependent emergence function

In the temperature-dependent case, the error associated with each parameter value (when known) is

presented in Table 4.2, for each year of temperature data, given Eτ = 104. These errors
(
∂Eτ+1

∂x δx
)2

are presented as they contribute to the error in the total eggs produced in a given year, to indicate

the magnitude of the contribution with respect to other parameters. In each year, similar patterns

occur as to the magnitude of the errors associated with each parameter. Within each year, the errors

contributed by a1, a2 and a3 are very similar in magnitude, while the error contributed by a4 is the

smallest. The error contributed by a5 is the largest of that contributed by the ai parameters, and
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Figure 4.2: Reproductive success ratios in year τ with respect to initial number of eggs, using a
Gaussian emergence function. The reproductive success threshold is denoted by the dashed line.
a) Varying the total emergence A in the Gaussian emergence function demonstrates an increase
in reproductive success with increasing A. Sample reproductive success curves represent guaran-
teed reproductive failure (blue curve), reproductive success at a given threshold Eτ (green curve),
and guaranteed reproductive success at all but very low initial numbers of eggs (red curve), given
A = 0.06, 0.07, and 0.08, respectively. Other parameter values are fixed at t1 = 210 and σ = 20.
b) Varying standard deviation σ in the Gaussian emergence function demonstrates a decrease in
reproductive success with increasing σ. Sample reproductive success curves represent guaranteed
reproductive failure (red curve), reproductive success at a given threshold Eτ (green curve), and
guaranteed reproductive success except at very low initial egg numbers (blue curve). Other param-
eter values are fixed at t1 = 210 and A = 0.08.
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a6 falls between a1,2,3 and a5. The error contributed by d is at least a full order of magnitude larger

than any other contribution, and the error contributed by β is the second largest at a full order of

magnitude higher than that contributed by a5.

These results suggest that given the present magnitude of error in the system, no quantitative

predictions can be made from year-to-year, as the error range in the number of eggs includes the

reproductive success ratio in all years except 2005 (Figure 4.3). That is, if the model predicts an

increase in population size, a decrease in population size is within the bounds of the error on the

parameter values, and vice versa. Further, the error δEτ+1 > Eτ+1 in all years, suggesting that

the error is considerable enough that biologically unreasonable results may occur (where Eτ+1 < 0

within the error bounds).(
∂Eτ+1

∂x δx
)2

2001 2003 2004 2005

a1 3.014× 105 3.595× 105 2.779× 105 2.040× 105

a2 3.013× 105 3.596× 105 2.779× 105 2.042× 105

a3 3.015× 105 3.594× 105 2.778× 105 2.040× 105

a4 1.256× 105 1.606× 105 1.147× 105 8.043× 104

a5 5.368× 105 8.059× 105 4.745× 105 3.052× 105

a6 4.109× 105 6.383× 105 3.605× 105 2.282× 105

d 5.122× 107 1.080× 108 4.089× 107 2.348× 107

β 3.769× 106 7.852× 106 4.089× 106 1.525× 106

Eτ+1 7051 10419 6354 4660
δEτ+1 7547 10889 6750 5122(

∂Eτ+1

∂x δx
)2

2006 2007 2008 2009

a1 5.354× 105 4.416× 105 2.710× 105 2.593× 105

a2 5.357× 105 4.415× 105 2.711× 105 2.591× 105

a3 5.354× 105 4.414× 105 2.709× 105 2.590× 105

a4 2.350× 105 1.922× 105 1.090× 105 1.070× 105

a5 1.135× 106 8.925× 105 4.315× 105 4.474× 105

a6 8.926× 105 6.941× 105 3.252× 105 3.409× 105

d 1.211× 108 8.621× 107 3.381× 107 4.264× 107

β 1.042× 107 7.078× 106 2.477× 106 2.950× 106

Eτ+1 11996 9909 5819 6254
δEτ+1 11635 9818 6161 6875

Table 4.2: Error in total number of eggs produced in year τ , δEτ+1, as contributed by each parameter,
for τ = 2001, 2003, . . . 2009, given initial number of eggs Eτ = 104. Parameter values x and associated
error δx are as presented in Table 4.1. Larval mortality probability d and fecundity rate β contribute
the most error each year to the total error, denoted in bold in the table.

Next, the positive relationships between daytime temperature experienced by larvae (Tn) and

total adult emergence (
∫
t
ε(t)) and standard deviations are demonstrated. For the following simula-

tions, 2009 temperature data was used, though similar patterns hold for all years.

In the simulations presented in Figure 4.4, daily temperatures are varied within a 6◦C range

of the actual 2009 daytime temperatures, up to 3◦C above the daily temperature to 3◦C below

the daily temperature. Emergence functions are presented for the observed 2009 temperatures, as

well as the two extremes, in Figure 4.4a, while in Figure 4.4b, the positive relationship between

temperature and total emergence is demonstrated. The effect of temperature on standard deviation

is also positive, however (Figure 4.5a).
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Figure 4.3: Predicted number of eggs Eτ+1 (wide bars) each year given initial Eτ = 104, with
associated error δEτ+1 denoted by bars. Error values are taken from Table 4.2. Parameter values
used are as presented in Table 4.1. The reproductive success threshold is denoted by the dashed
line.

Increased temperatures, as previously discussed in Chapter 3, prompt earlier peak emergence

and higher overall survivorship. Similar dynamics to those in Figure 4.2a are thus expected, if the

increasing standard deviation does not negate the effects of higher total emergence. In the Gaussian

case, increasing total emergence and increasing standard deviation have opposite effects, but in the

temperature-dependent case, the temperature effects are stronger, as Figure 4.7a demonstrates a

positive relationship between temperature and reproductive success. An increase in temperature

also decreases the initial number of eggs necessary for reproductive success. In 2009, the model

predicts that the population will decrease in size (blue curve, Figure 4.7a), but an increase per day

of 2.0◦C would allow the population to surpass the reproductive success threshold at all but small

initial egg numbers (red curve, Figure 4.7a).

Next, the negative relationship between larval mortality probability (d) and total adult emer-

gence, as well as the positive relationship between d and standard deviation are demonstrated. In

the following simulations, the daily mortality probability d is varied from its estimated value of

d = 0.01981 between 0.009127 and 0.05425 (the lower and upper bounds of its confidence interval).

Figure 4.6a presents adult emergence functions using the estimated d = 0.01981 (green curve) as

well as d = 0.009127 and 0.05425, (red and blue curves, respectively). Figure 4.6b demonstrates the

negative relationship between d and total emergence.

Further, for small values of d, the standard deviation of ε(t) increases with d (Figure 4.5b). Higher

values which demonstrate the opposite relationship are not considered in subsequent simulations

because in this region, total adult emergence is negligible (Figure 4.6b).

The negative relationship of d with total emergence
∫
ε(t)dt (Figure 4.6b) and the positive rela-

tionship of d with the emergence function’s standard deviation (Figure 4.5b) lead to two conclusions.
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Figure 4.4: Effects of daily temperature change (experienced by larvae) on overall adult emergence,
using parameter values presented in Table 4.1. a) Adult emergence function ε(t) (green curve)
changes when 2009 daily temperature values are decreased and increased by 3◦C (blue and red
curves, respectively). b) The positive relationship between temperature and total adult emergence.
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Decreasing d will have a similar effect on reproductive success as increasing A or decreasing σ in

the Gaussian emergence function model. Figure 4.7b supports these conclusions, as decreasing d

increases the reproductive success ratio: similar qualitative effects were seen in increasing A (Figure

4.2a) and decreasing σ (Figure 4.2b). Decreasing temperature and increasing larval mortality also

aggravates the predicted demographic Allee effect.

4.3.3 Effects of temperature on multi-year population dynamics

Population size in P. smintheus has fluctuated considerably in the last ten years of mark-recapture

field experiments (pers. comm., Roland). Figure 4.8 illustrates the apparent instability in the pop-

ulation size. Examining the predicted effects of temperature on adult reproductive success (Figure

4.7a), the model indicates that the fluctuations in population size are driven by yearly climatic

variations, so that the population has no stable non-zero equilibrium size but instead is forced above

or below the reproductive success threshold by environmental conditions as experienced by larvae.

Figure 4.9 illustrates how year-to-year dynamics might play out in a temperature-forced system.

The “cooler” year temperature regime is taken from 2009 temperature data, and the “warmer”

regime shifts the mean daytime temperatures from 2009 up by 2◦C. In Year 1, an initial number of

eggs E1 = 104 is used, and supposing a cooler year, reproductive failure occurs, with a reproductive

success ratio of E2

E1
= 0.71. That is, only 71% of the initial number of eggs are produced in the

breeding season, which, neglecting overwinter mortality, gives E2 = 7100 at the beginning of Year

2, since

E2 = E1

(
E2

E1

)
= 10000(0.71) = 7100.

Supposing another cool year, reproductive failure again occurs, with E3

E2
= 0.70. Note that even

assuming an identical temperature regime, the lower initial number of eggs in Year 2 results in a

lower reproductive success ratio than in Year 1, indicating the importance of initial population size

to reproductive success. The initial number of eggs in Year 3 is therefore E3 = 4970. Supposing a

warm year, reproductive success occurs, with E4

E3
= 1.18, giving the initial number of eggs in Year 4

to be E4 = 5865, denoted by the star in Figure 4.9.

Using this simple example of year-to-year population dynamics, the egg population size in a

three year period generated in Figure 4.9 is qualitatively similar to the observed population size in

adults for 2001− 2004 as shown in Figure 4.8: a decrease, a decrease, and an increase in population

size. This simple example demonstrates how yearly temperature variability could cause fluctuating

population sizes similar to those observed for P. smintheus in the field.
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Figure 4.7: Reproductive success ratios in year τ with respect to the initial number of eggs, using
a temperature-dependent emergence function with 2009 temperature data as input. The repro-
ductive success threshold is denoted by the dashed line. a) Increasing daily temperature input to
the temperature-dependent emergence function demonstrates an increase in reproductive success.
The reproductive success model predicts reproductive failure in 2009 with the observed temperature
regime (blue curve), reproductive failure with a 1.0◦C degree increase in daily temperature (green
curve), and reproductive success at all but very low initial egg numbers with a 2.0◦C degree increase
in daily temperature (red curve). b) Decreasing larval mortality probability d increases reproduc-
tive success. The reproductive success model predicts reproductive failure in 2009 with maximum
likelihood estimate d̂ = 0.01981 (blue curve). Decreasing d = 0.01581 allows reproductive success
at a threshold Eτ (green curve), and d = 0.01181 allows guaranteed reproductive success at all but
very low initial egg numbers (red curve).
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4.4 Discussion

Reproductive success in adult P. smintheus butterflies is considered where adult emergence is

controlled by two different functions, an analytic Gaussian function and a numerically computed

temperature-dependent function. Simulations using each emergence function give qualitatively sim-

ilar behaviours. Reproductive success, measured by Eτ+1

Eτ
, increases when total emergence increases

(controlled directly by A for the Gaussian case and by an increase in temperature or a decrease in

larval mortality for the temperature-dependent case). Reproductive success decreases when stan-

dard deviation in the emergence function increases (controlled directly by σ in the Gaussian case

and by increased larval mortality in the temperature-dependent case). Further, an analysis of the

error contribution by each parameter in the temperature-dependent model leads to the conclusion

that in its present state, the model is not suitable for quantitative predictions using 2001 − 2009

mark-recapture data for validation, as the reproductive success threshold falls within the bounds

of the error in all years except 2005. Further experimental work is likely necessary to decrease the

confidence intervals on the component parameters of the model. Finally, a potential mechanism

for observed fluctuations in adult population size is proposed: yearly variability between spring

and summer temperatures may influence changes in egg production, where warmer years force egg

production over the reproductive success threshold and colder years fail to do so.

4.4.1 Comparing results of emergence functions

Both the Gaussian and temperature-dependent emergence functions yield qualitatively similar re-

sults when used as input in the reproductive success model. The Gaussian model is useful for

independently considering the effects of varying total emergence and standard deviation, as it is

difficult to decouple these parameters in the temperature dependent case. This is important in the

case of increasing temperatures: while increasing temperatures increase overall emergence in the

temperature-dependent emergence function (Figure 4.4b), they also increase the standard deviation

(Figure 4.5a). The Gaussian model shows opposing effects of increasing total emergence and increas-

ing standard deviation, as reproductive success increases with total emergence and decreases with

standard deviation. While these opposing effects may not be easily separated in the temperature-

dependent case, one may conclude that the effects of total emergence are stronger, as a positive re-

lationship between temperature and reproductive success is observed in the temperature-dependent

model (Figure 4.7a). Still, the effect of standard deviation is lost in the temperature-dependent

model but captured in the Gaussian model.

From a biological standpoint, a decreasing standard deviation means a briefer period of highly

synchronized emergence among individuals in a population (Calabrese and Fagan, 2004). Iwasa

and Levin (1995) and Post et al. (2001) proposed that asynchrony (higher standard deviations in

emergence) increases in cases of environmental perturbation, though their results are not specific to

insects. Further, Yurk and Powell (2009) suggested that developmental synchrony is temperature-

dependent and that insects lose synchrony outside a narrow range of temperatures. Thus it may

be reasonable to expect greater asynchrony in populations faced with warming temperatures, so an

increasing standard deviation in adult emergence at higher temperatures in the present model may

be biologically realistic. This argument, however, is sensitive to the functional form of temperature-

dependent larval development. While Yurk and Powell (2009) suggested a narrow range of tem-
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peratures at which emergence synchrony occurs, the assumed linear, increasing relationship of tem-

perature with larval transition success suggests that standard deviation in adult emergence will

increase strictly with temperature. That is, there is no cooler temperature regime, according to this

model, where synchronous emergence will shift towards asynchronous emergence. The increasing

relationship of temperature and standard deviation is illustrated in a 6◦C range in Figure 4.5a.

The effects of decreasing larval mortality on reproductive success are unsurprising, as decreasing

d is analogous to an increase in total emergence and a decrease in standard deviation.

Simple emergence functions such as stretched Beta distributions (Calabrese and Fagan, 2004)

and Gamma distributions (Calabrese et al., 2008) have previously been used in reproductive success

models. These were not chosen for biological reasons, unlike the temperature-dependent emergence

function as used in the present study. Ultimately, however, it is reassuring that both the simple

Gaussian and more complex temperature-dependent emergence functions demonstrate qualitatively

similar dynamics when considering reproductive success.

4.4.2 Toward quantitative predictions

The larval mortality parameter d is the most problematic to the reproductive success model as it

contributes the most error to the model output (egg production in a given year). Table 4.2 presents

the contributions of each parameter to δEτ+1, and the error associated with d is at least a full

order of magnitude larger than that of any other parameter. Furthermore, the reproductive success

model suggests that larval mortality may be overestimated in the current model, as in only 2003

and 2006 does the model presently predict increases in population size from year-to-year (Table

4.2) while the mark-recapture data suggests population size increases in 2003 through 2007 (Figure

4.8). Such unexpected decreases in the model predictions could also be due to an underestimated

fecundity rate β, which has the second highest contribution to error in egg production. However, as

previously discussed, error in predicted egg production is so high that in all years except for 2005,

the reproductive success threshold lies within the error range (Figure 4.3), so that predictions of

population increase or decrease are meaningless. It is evident that quantitative prediction requires

further experimental work to narrow the confidence intervals on the parameter values.

The current model presents what may be a valid framework for studying multi-year temperature-

forced reproductive success in P. smintheus, if error in the system can be controlled. The repro-

ductive success model allows iteration from year-to-year by the presence of some initial number of

eggs Eτ , taken in the present study directly from the previous year’s production Eτ−1. A quantita-

tive model for reproductive success would also require a better understanding of overwinter survival

of P. smintheus eggs, which may also be regulated by temperature and precipitation (pers. comm.,

Roland). Currently overwinter mortality is neglected, an obvious simplification which impedes quan-

titative prediction of population dynamics. However, this offers still further evidence that d may

be overestimated or β may be underestimated: in all years but 2003 and 2006, the model predicts

decreases in population size, and these predictions would only be exaggerated by further overwinter

mortality. Further discussion of overwinter mortality is presented in the next section.

One result of the experimental work conducted in Chapter 2 found no significant effect on larval

body size by temperatures under which larvae developed. This result greatly simplifies the biological

constraints on the present model, as no disadvantages are conferred by faster development and earlier

emergence times. Small body size in some insects is associated with lower adult mating success and
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lower fecundity (Atkinson, 1994), so if an effect of temperature on body size had been apparent, a

non-autonomous mating rate c(t) or a non-autonomous fecundity rate β(t) might have been more

appropriate than the constant parameters used in the present model. Further discussion of the

analysis of the non-autonomous reproductive success model, as well as a discussion of direct and

indirect effects of temperature on fecundity are presented in the next section.

Working toward a quantitative understanding of P. smintheus population dynamics is particu-

larly important due to the predicted demographic Allee effect at low initial egg numbers (Figures 4.2

and 4.7). Such an Allee effect could potentially be disastrous for P. smintheus population persistence,

as severe population crashes have been observed in the past (Figure 4.8). The model presented in

this chapter demonstrates this Allee effect from a mechanistic, biologically-motivated model, such as

the models presented in Veit and Lewis (1996); McCarthy (1997); Drake (2004); Molnár et al. (2008);

Jerde et al. (2009); Wittmann et al. (2010). These models all identify decreased reproductive success

at low population densities, similarly to the present model. Only Wittmann et al. (2010), however,

identified temperature explicitly as a potential driver of reproductive success, which suggests there

remains much to explore by way of modelling temperature-dependent reproductive success and the

potential for Allee effects.

4.4.3 Model extensions and future directions

The reproductive success model as presented in this chapter is a simple model in most respects, with

constant adult mortality rates, coupling rate, and fecundity rate. Calabrese et al. (2008) presented

multiple functional forms for coupling rate in P. smintheus, finding that inverse male density fit better

to data than a constant rate, so a similar analysis to that presented here with a more complicated

coupling function is a viable area for further research. Fecundity may also be more complicated

than a constant rate would indicate. In fact, temperature influences fecundity in P. smintheus

as egg production by mated females is partially dependent on resources available to larvae (Matter

et al., 2006). Effects of temperature on larval food source Sedum lanceolatum were briefly considered

in the previous two chapters, and adult fecundity represents another imperfectly understood area

on how thermally-affected food sources may indirectly influence population dynamics. Temperature

may also influence fecundity directly: increased temperatures have been linked to increased fecundity

rates in butterflies Pararge aegeria (Gibbs et al., 2010) and Bicyclus anynana (Steigenga and Fischer,

2007). At present, direct effects of temperature on P. smintheus fecundity are unknown.

Should a more complicated temperature-dependent fecundity function be introduced into the

model, it also introduces another non-autonomous element to the system. In the present model,

only emergence rates depend on time, but if fecundity rate was modelled as temperature-dependent,

it would also be implicitly time-dependent (i.e., the function could be constructed numerically from

a temperature time series in a similar manner to the emergence function). If so, the temporal depen-

dence of the emergence function could influence the adult dynamics via additional mechanisms. For

instance, at present, an increase in temperature influences the reproductive success model through

increasing total emergence and decreasing synchrony. However, increased temperatures in the larval

developmental model also lead to earlier emergence, an effect which is irrelevant in the adult repro-

ductive model because there is no explicit time-dependence outside the emergence function itself.

That is, if emergence shifts in time, it does not currently influence reproductive success. If fecundity

were to be modelled as time-dependent, however, then these shifts in emergence time would begin
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to influence adult mating dynamics.

As mentioned previously, overwinter mortality is at present neglected in the model, a simplifica-

tion which makes quantitative predictions about population dynamics difficult. A high correlation

exists between the Pacific Decadal Oscillation (PDO) and the winter temperatures and precipitation

levels of the Rocky Mountain foothills in Alberta where P. smintheus is found (pers. comm., Roland).

Current research for P. smintheus suggests that climate is an important factor in overwinter egg

survival, with higher mortality in colder, snowier winters (associated with negative PDO) and in

warmer, drier winters (associated with positive PDO). Further research is necessary to determine

the magnitude of influence of spring and summer temperatures (affecting larval growth and adult

reproductive success) compared to winter temperatures (affecting egg survival) on the persistence

of the population.

In this chapter, a model framework is presented for determining influences of temperature (as

experienced by larvae) on adult reproductive success in P. smintheus. Effects of temperature within

a season are considered using a reproductive success model, in which the parameters of the adult

emergence function are varied to determine effects on egg production. Though currently no quanti-

tative conclusions may be drawn for population dynamics or egg production, a potential mechanism

is presented by which temperature forcing may drive observed yearly fluctuations in the popula-

tion size. The model proposed in this chapter allows the qualitative study of both single season

reproductive success and multi-year reproductive success in P. smintheus under changing climatic

conditions.
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Chapter 5

General discussion and conclusions

In the course of this study, the following questions regarding climatic impacts on the alpine butterfly

Parnassius smintheus were addressed. Firstly, does temperature influence development time and

final larval body weight in P. smintheus larvae? Secondly, do such thermal effects influence adult

emergence, and can a mechanistic model be constructed that directly predicts such effects? Thirdly

and finally, do temperatures experienced by larvae impact adult reproductive success through adult

emergence, and can a reproductive success model framework be constructed which incorporates the

previous mechanistic adult emergence model?

The first question was addressed experimentally in Chapter 2. P. smintheus larvae were collected

from the field site at Jumpingpound and Lusk Ridges Kananaskis, Alberta, and placed in growth

chambers to mature. Three growth chambers were used, with three distinct temperature treatments

denoted “cooler”, “ambient”, and “warmer”. The ambient temperature regime was constructed

by averaging daytime and night time temperatures recorded over a ten year period from a nearby

weather station at Nakiska Ridgetop. The warmer and cooler regimes were constructed by shifting

the ambient regime daily temperatures up and down, respectively, by 2◦C. Larvae were fed their

primary host plant, Sedum lanceolatum, in abundant quantities, to avoid food influencing growth

rates. Instar transition, mortality, and weight were recorded daily for analysis.

To address the primary research questions of the chapter, Kruskal-Wallis Rank Sum Tests were

conducted on the fifth instar developmental times, pupal weights, and maximum weights in the three

temperature treatments. In fifth instar developmental times, the Kruskal-Wallis Rank Sum Test

indicated significant differences between the treatments, so Dunn’s test, a non-parametric multiple

comparison test was applied to isolate the differences between treatments. A significant difference

between fifth instar development times was detected in the warmer and ambient treatments, and

in the warmer and cooler treatments. No significant difference in fifth instar development times

was detected between the ambient and cooler treatment. With respect to body weight at pupation

and maximum body weight, the Kruskal-Wallis Rank Sum Test detected no significant difference

between the treatments.

Temperature significantly decreased developmental times in the warmer treatment with respect

to the ambient and cooler treatment, but the decrease in ambient developmental times with re-

spect to the cooler treatment was non-significant. One proposed explanation for these results was

that individuals with longer developmental times in the cooler treatment had a higher probability

of mortality prior to pupation. Even supposing that mortality is independent of temperature, a
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constant daily probability of death would imply individuals with longer development times have a

higher probability of dying before pupation. As only individuals which survived to pupation were

considered in the analysis, the longer development times arrested by death would be neglected. This

argument is supported by a higher variance in the ambient treatment’s developmental times and

the higher mortality in the lower temperature treatment. That is, low variance suggests that longer

developmental times have been excluded, and higher mortality suggests that these slower-developing

larvae died prior to pupation.

The lack of significance in body weight between the temperature treatments is interesting from an

ecological perspective. Current ecological theory posits the temperature-size rule, where individuals

mature faster at higher temperatures at the expense of body size (Atkinson, 1994). No evidence for

P. smintheus was seen to support this theory, and in fact, mean weights (both pupal and maximum)

were observed to increase, albeit non-significantly, as temperatures increased. Replication of the

experiment is required to determine if P. smintheus is an exception to the temperature-size rule.

However, from a modelling perspective, the lack of temperature-dependent body size in P. smintheus

simplifies the mathematical analysis. Body size in insects is associated with individual fitness,

influencing traits such as reproductive success and fecundity, and lifespan (Atkinson, 1994). If

temperature influenced body size, then temperature experienced by larvae would also impact mating

success rates, fecundity rates, and mortality rates in adults. This would lead to more complicated

functions, likely exhibiting explicit time dependence, governing these rates, which would result in a

more complex, non-autonomous reproductive success model.

The second question, considering how temperature effects on larval development and adult emer-

gence may be modelled, was addressed in Chapter 3. Motivated by the variable temperature data

collected in Chapter 2, a Bernoulli process model was constructed that considers effects of temper-

ature non-cumulatively, owing to the memoryless nature of the Bernoulli process. An individual’s

transitional success on a given day was modelled as a function of temperature on that given day,

so the temperature experienced by the individual on previous days was irrelevant to the current

transitional success or failure. This model framework allowed a broad use of the data of Chapter 2,

where transitional success or failure could be grouped with daytime temperature without regard to

previous temperatures in the experimental thermal regime.

Two Bernoulli process models were considered: the first was a simple model with constant

temperature-dependent transitional and mortality probabilities, dependent only on temperature

treatment. That is, distinct transitional and mortality probabilities for each instar were estimated

for each of the cooler, ambient, and warmer treatments. Parameter estimates were generated us-

ing maximum likelihood estimates. The advantages of the simple model included the existence of

closed form solutions for larval instar probability distributions. Distributions were derived for the

probability of an individual’s being present in a given instar in a given time step, and from there,

an adult emergence probability distribution (dependent on transitional and mortality probabilities)

was derived.

When parameterized for the different temperature treatments, the effects of temperature on

adult emergence were evident. Emergence in the warmer treatment was considerably earlier than

in the ambient and cooler treatments, which were very similar (comparable to the experimental

results of Chapter 2). Survivorship to adulthood was highest in the ambient model predictions, as

the cooler treatment saw higher larval mortality probabilities and the warmer treatment saw high
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pupal mortalities (possibly due to desiccation). The simple model produced results analogous to

those observed in Chapter 2, and demonstrates its utility for qualitative predictions of effects of

“warming” and “cooling” temperatures on adult emergence in P. smintheus.

The second model considered in Chapter 3 was a variable transition probability model, where

transitional success in a given instar was modelled as having a positive, linear relationship with

temperature. The slopes of the transitional success functions for each instar were estimated using

maximum likelihood on the transitional success data of Chapter 2. When the entire data set was

used for maximum likelihood estimation, slope estimates were underestimated, especially in the fifth

and sixth instar. The mean estimated slopes from 1000 trials on bootstrapped data (sampling the

same number of individuals in the cooler treatment as in the ambient and warmer) were instead

used as the parameter estimates. A potential reason for the disparity was that the original dataset

had a much larger sample size of individuals in the cooler treatment, which the estimation process

weighted too heavily (decreasing the slope in a linear relationship). It was therefore concluded that

the mean of estimates on bootstrapped data gave more appropriate estimates for use in simulation.

The parameterized variable transition probability model was then validated against observed

emergence distributions constructed from eight years of mark-recapture data. Model input for these

comparisons were temperature regimes for the appropriate years, taken from weather data recorded

at Nakiska Ridgetop. A Wilcoxon signed-rank test and a linear regression of observed on predicted

emergence were applied to determine whether the predicted and observed emergence distributions

were statistically distinguishable. The Wilcoxon signed-rank test failed to distinguish between the

distributions for all years except 2005, where an insufficient number of sampling days precluded the

use of the test. The linear regression of observed on predicted emergence failed to reject the linear

relationship when the two distributions were regressed in all years except 2009, when it rejected

the model’s validity. These tests presented some evidence towards the predictive capabilities of the

model. However, the smallness of the sample size compared in several of the years may call into

question the acceptance of the null hypothesis, or non-rejection of model validity. Early years of

mark recapture had low numbers of sampling days, such as 2005, which prevented the Wilcoxon

signed-rank test analysis. Later years of mark recapture data had more sampling days, which lends

more credence to the non-rejection of model validity. A field season in which a meadow were sampled

daily (or as weather permits) would be exceptionally useful to model validation.

This study did present evidence, however, that temperature-dependent adult emergence can be

predicted using a memoryless process which does not consider cumulative effects of temperature.

Further, a very simple temperature-transition probability relationship was considered, and more

data to parameterize more complicated and biologically-motivated functional forms might improve

the current model. Linear transition functions, while biologically reasonable within a temperature

range, do not consider heat stress and such adverse effects that occur at high temperatures.

The final research question, considering the effects of temperature-mediated P. smintheus adult

emergence on reproductive success, was presented in Chapter 4. The model derived in Chapter 3

was therefore incorporated into a larger model framework for reproductive success in Chapter 4. A

system of ordinary differential equations was constructed to model changes in population size within

a season for adult males, unmated females, reproducing females, and eggs. Two adult emergence

functions were used to provide input to the male and unmated female equations: a Gaussian func-

tion and the continuous-time analogue of the temperature-dependent adult emergence distribution
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derived in Chapter 3. The Gaussian function was used because, unlike the numerically calculated

temperature-dependent function, it had a closed form through which parameters controlling total

adult emergence and variance in adult emergence could be varied directly and independently. That is,

the Gaussian function was studied to ensure that varying parameters in the temperature-dependent

function (temperature, juvenile mortality) which affected total emergence and emergence variance

had similar qualitative effects to varying said parameters in the simpler Gaussian function. Further,

the Gaussian parameters could be varied independently, allowing the study of component effects of

varying each one, unlike the temperature-dependent model, where the parameters could not easily

be considered independently. Parameters in the reproductive success model were taken from the

literature (Calabrese et al., 2008; Matter et al., 2009), or estimated from experimental data (pers.

comm., Matter).

Increasing total emergence in the Gaussian adult emergence function unsurprisingly increased

adult reproductive success, though an Allee effect was observed for small initial population sizes

(the initial number of eggs in a year). Increasing the variance in the Gaussian emergence function

decreased reproductive success, as would be expected when a population exhibits a higher degree of

asynchrony in emergence (Calabrese and Fagan, 2004). Again, the model predicted an Allee effect

at low initial population sizes.

Using the temperature-dependent emergence function, increasing daytime temperature as ex-

perienced by larvae both increased total emergence and increased the variance of the emergence

function. These two effects might then be competitive, but reproductive success was predicted to

increase with temperature, suggesting that the increased survivorship to adulthood was sufficiently

high to offset the increased asynchrony in the emergence. A decrease in larval mortality probability

both increased total adult emergence and decreased variance in emergence, leading unsurprisingly

to increased reproductive success. The reproductive success model with the temperature-dependent

emergence distribution, like the Gaussian case, predicts an Allee effect at low initial population sizes.

The accumulated error in the reproductive success model was also considered, as error was

introduced through the adult emergence model parameters, as well as through the reproductive

success model parameters. It was concluded that the model, with its present parameterization,

could not be used for quantitative predictions of reproductive success because accumulated error

almost always overlapped the reproductive success threshold. That is, within the error bounds on

the model prediction, both reproductive success and failure within a year were possible. It was

concluded that quantitative predictions of reproductive success and resultant population dynamics

could not be made without further experimental work, so that additional data could narrow the

present confidence intervals on the parameters. Despite the lack of quantitative predictions, however,

a mechanism was proposed for observed yearly fluctuations in population size. The model predicted

that yearly variations in temperature force egg production in P. smintheus above the reproductive

success threshold in warmer years and below the threshold in cooler years, driving fluctuation in

population size.

In this study, advances were made in understanding the effects of temperature on the phenology of

the alpine butterfly P. smintheus. Using a combination of experimental and modelling approaches,

the effect of increasing temperatures was demonstrated to decrease larval developmental times,

prompt earlier and higher adult emergence, and increase adult reproductive success. Though the

larval development model assumed a simplistic relationship between temperature and transitional
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success, the present study suggests that P. smintheus is not presently near its thermal develop-

mental upper bound, where population persistence would be impossible. In fact, the reproductive

success model suggests that cooler years are in fact highly detrimental to population persistence,

as low temperatures decrease reproductive success ratios and aggravate Allee effects at low popula-

tion densities. This is again, however, potentially a product of the chosen monotonically increasing

relationship of temperature and transitional success in the larval development model. Further ex-

perimental work, with both a larger sample size, and a wider range of temperatures under study,

is needed to construct a more biologically realistic transitional success probability function, which

accurately models larval development near developmental thresholds. Furthermore, a more com-

plete understanding of overwinter survival of eggs is necessary to construct quantitatively useful

models of temperature-driven population dynamics over multiple years. Nonetheless, this work still

presents the important first steps in understanding the impacts of climate change on the phenology

and population dynamics of P. smintheus.

104



Bibliography

Atkinson, D. (1994). Temperature and organism size –A biological law for ectotherms? Advances
in Ecological Research 25, 1–58.

Calabrese, J. M. and W. F. Fagan (2004). Lost in time, lonely, and single: Reproductive asynchrony
and the Allee effect. The American Naturalist 164 (1), 25–37.

Calabrese, J. M., L. Ries, S. F. Matter, D. M. Debinski, J. N. Auckland, J. Roland, and W. F. Fagan
(2008). Reproductive asynchrony in natural butterfly populations and its consequences for female
matelessness. Journal of Animal Ecology 77, 146–156.

Matter, S. F., M. Ezzeddine, E. Duermit, J. Mashburn, R. Hamilton, T. Lucas, and J. Roland (2009).
Interactions between habitat quality and connectivity affect immigration but not abundance or
population growth of the butterfly Parnassius smintheus. Oikos 118, 1461–1470.

105



Appendix A

Dunn’s test calculation

Dunn’s test is a non-parametric analogue of a Tukey-type multiple comparison test to determine
where significant differences occur between multiple treatments, when sample sizes are not equal.
The method of determining statistical significance is taken from ?. Data is ranked from least to
greatest, with equal data sharing a mean rank. The sum of the ranks for the data corresponding
to each treatment is divided by the number of data points to obtain the mean rank Rj for each
treatment j. The standard error for data containing tied ranks is

SE =

√(
N(N + 1)

12
−

∑
T

12(N − 1)

)(
1

nb
+

1

na

)
where N is the total number of data points, na and nb are the number of data points in the two
treatments under comparison, and ∑

T =

m∑
i=1

(t3i − ti)

where m is the total number of groups having equal rank and ti is the number of data points in the
ith group of equal rank. Then the test statistic is

Q =
Rb −Ra
SE

.

The test is used here the determine the significance of differences in fifth instar developmental time in
the temperature treatments. The null hypothesis (H0) states that the fifth instar development time
is the same in the two temperature treatments under consideration, while the alternative hypothesis
states that development time is different. The critical value of this test for 95% confidence is taken
from ?. If the observed value of Q is greater than the critical value Q0.05,3, then the developmental
times in the two treatments are significantly different. The results are summarized in Table A.1.

Comparison Difference Standard Error Qobs Q0.05,3 (crit) Conclusion
(b vs a) (R̄b − R̄a)

ambient vs +2 15.39 5.835 2.638∗ 2.394 Reject H0

-2 vs ambient 0.24 5.075 0.047 2.394 Do not reject H0

-2 vs +2 15.63 4.353 3.591∗ 2.394 Reject H0

Table A.1: Results of Dunn’s test for significance of differences between fifth instar developmental
times in the temperature treatments, with critical values taken from Zar (2010).
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Appendix B

Probability distribution for
developmental time to adulthood

A sample calculation of (3.5) for r = 4 is verified here. The following equality must be demonstrated:

∞∑
k=3

µ1µ2µ3

k−3∑
m1=0

(1− µ1)k−3−m1

m1∑
m2=0

(1− µ2)m2(1− µ3)m1−m2 = 1.

Beginning with the rightmost sum,

m1∑
m2=0

(1− µ2)m2(1− µ3)m1−m2 = (1− µ3)m1

m1∑
m2=0

(
1− µ2

1− µ3

)m2

= (1− µ3)m1

1−
(

1−µ2

1−µ3

)m1+1

1−
(

1−µ2

1−µ3

)
 .

Now the next sum to the left gives

k−3∑
m1=0

(1− µ1)k−3−m1(1− µ3)m1

1−
(

1−µ2

1−µ3

)m1+1

1−
(

1−µ2

1−µ3

)


=
(1− µ1)k−3

1−
(

1−µ2

1−µ3

) k−3∑
m1=0

(
1− µ3

1− µ1

)m1
(

1−
(

1− µ2

1− µ3

)m1+1
)

=
(1− µ1)k−3

1−
(

1−µ2

1−µ3

) k−3∑
m1=0

(
1− µ3

1− µ1

)m1

−
(1− µ1)k−3

(
1−µ2

1−µ3

)
1−

(
1−µ2

1−µ3

) k−3∑
m1=0

(
1− µ2

1− µ1

)m1

=
(1− µ1)k−3

1−
(

1−µ2

1−µ3

)
1−

(
1−µ3

1−µ1

)k−2
1−

(
1−µ3

1−µ1

)
− (1− µ1)k−3

(
1−µ2

1−µ3

)
1−

(
1−µ2

1−µ3

)
1−

(
1−µ2

1−µ1

)k−2
1−

(
1−µ2

1−µ1

)
 .

Recalling the variant on the infinite geometric sum formula

∞∑
k=p

xk =
xp

1− x
, |x| < 1,

the final sum thus has the form
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∞∑
k=3

µ1µ2µ3

 (1− µ1)k−3

1−
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1−µ2
1−µ3

)
1−
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
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+
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= 1

after some algebraic manipulation.
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Appendix C

Verification of model solutions

It can be shown that for the system of difference equations

p1n+1 = [(1− µ1)(1− d1)] p1n

p2n+1 = [(1− µ2)(1− d2)] p2n + [µ1(1− d2)] p1n
...

pin+1 = [(1− µi)(1− di)] pin + [µi−1(1− di)] pi−1n

...

prn+1 = prn + µr−1 p
r−1
n ,

having initial conditions p10 = 1, pj0 = 0, j = 2 . . . , r, the set of solutions

p1n = ((1− µ1)(1− d1))n

pin =

i∏
k=2

[µk−1(1− dk)]

i∑
j=1


[(1− µj)(1− dj)]n∏

k 6=j
1≤k≤i

[(1− µj)(1− dj)− (1− µk)(1− dk)]



prn =
1

1− d1

r−1∏
k=1

[µk(1− dk)]


r−1∑
j=1


[(1− µj)(1− dj)]n

(−µj − dj + µjdj)
∏
k 6=j

1≤k≤r−1

[(1− µj)(1− dj)− (1− µk)(1− dk)]


+

+
(−1)r−1

r−1∏
k=1

(−µk − dk + µkdk)


holds where i = 2, . . . , r − 1.

The solution to the first instar equation holds since

(1− µ1)(1− d1)p1n = (1− µ1)(1− d1)(1− µ1)n(1− d1)n

= (1− µ1)n+1(1− d1)n+1

= p1n+1.

A proof by induction demonstrates the validity of the intermediate instar solution. The solution
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to the second instar equation holds since

p2n = µ1(1− d2)

(
(1− µ1)n(1− d1)n

(1− µ1)(1− d1)− (1− µ2)(1− d2)
+

(1− µ2)n(1− d2)n

(1− µ2)(1− d2)− (1− µ1)(1− d1)

)
and

(1− µ2)(1− d2)p2n = (1− µ2)(1− d2)

(
µ1(1− d2)(1− µ1)n(1− d1)n

(1− µ1)(1− d1)− (1− µ2)(1− d2)

+
µ1(1− d2)(1− µ2)n(1− d2)n

(1− µ2)(1− d2)− (1− µ1)(1− d1)

)
+ µ1(1− d2)(1− µ1)n(1− d1)n

=
µ1(1− µ2)(1− d2)2(1− µ1)n(1− d1)n − µ1(1− µ2)n+1(1− d2)n+2

(1− µ1)(1− d1)− (1− µ2)(1− d2)

+
µ1(1− d2)(1− µ1)n+1(1− d1)n+1 − µ1(1− d2)2(1− µ2)(1− µ1)n(1− d1)n

(1− µ1)(1− d1)− (1− µ2)(1− d2)

= µ1(1− d2)

(
(1− µ1)n+1(1− d1)n+1 − (1− µ2)n+1(1− d2)n+1

(1− µ1)(1− d1)− (1− µ2)(1− d2)

)
= µ1(1− d2)

(
(1− µ1)n+1(1− d1)n+1

(1− µ1)(1− d1)− (1− µ2)(1− d2)
+

(1− µ2)n+1(1− d2)n+1

(1− µ2)(1− d2)− (1− µ1)(1− d1)

)
= p2n+1.

To complete the basis of the proof, we show that the third instar equation holds. From the
intermediate solution equation for i = 3,

p3n = µ1µ2(1− d2)(1− d3)

(
(1− µ1)n(1− d1)n

[(1− µ1)(1− d1)− (1− µ2)(1− d2)][(1− µ1)(1− d1)− (1− µ3)(1− d3)]

+
(1− µ2)n(1− d2)n

[(1− µ2)(1− d2)− (1− µ1)(1− d1)][(1− µ2)(1− d2)− (1− µ3)(1− d3)]

+
(1− µ3)n(1− d3)n

[(1− µ3)(1− d3)− (1− µ1)(1− d1)][(1− µ3)(1− d3)− (1− µ2)(1− d2)]

)
we can see

(1− µ3)(1− d3)p3n

= µ1µ2(1− d2)(1− d3)2(1− µ3)

(
(1− µ1)n(1− d1)n

[(1− µ1)(1− d1)− (1− µ2)(1− d2)][(1− µ1)(1− d1)− (1− µ3)(1− d3)]

+
(1− µ2)n(1− d2)n

[(1− µ2)(1− d2)− (1− µ1)(1− d1)][(1− µ2)(1− d2)− (1− µ3)(1− d3)]

+
(1− µ3)n(1− d3)n

[(1− µ3)(1− d3)− (1− µ1)(1− d1)][(1− µ3)(1− d3)− (1− µ2)(1− d2)]

)
+ µ1µ2(1− d2)(1− d3)

(
(1− µ1)n(1− d1)n

(1− µ1)(1− d1)− (1− µ2)(1− d2)
+

(1− µ2)n(1− d2)n

(1− µ2)(1− d2)− (1− µ1)(1− d1)

)
= α

(
(1− µ3)n+1(1− d3)n+1(1− µ1)(1− d1)− (1− µ3)n+1(1− d3)n+1(1− µ2)(1− d2)

+ (1− µ1)n+1(1− d1)n+1(1− µ2)(1− d2)− (1− µ1)n+1(1− d1)n+1(1− µ3)(1− d3)

− (1− µ2)n+1(1− d2)n+1(1− µ1)(1− d1) + (1− µ2)n+1(1− d2)n+1(1− µ3)(1− d3)
)

where

α =
µ1µ2(1− d2)(1− d3)

[(1− µ1)(1− d1)− (1− µ2)(1− d2)][(1− µ1)(1− d1)− (1− µ3)(1− d3)][(1− µ2)(1− d2)− (1− µ3)(1− d3)]
.

So

(1− µ3)(1− d3)p3n

= µ1µ2(1− d2)(1− d3)

(
(1− µ1)n+1(1− d1)n+1

[(1− µ1)(1− d1)− (1− µ2)(1− d2)][(1− µ1)(1− d1)− (1− µ3)(1− d3)]

+
(1− µ2)n+1(1− d2)n+1

[(1− µ2)(1− d2)− (1− µ1)(1− d1)][(1− µ2)(1− d2)− (1− µ3)(1− d3)]

+
(1− µ3)n+1(1− d3)n+1

[(1− µ1)(1− d1)− (1− µ3)(1− d3)][(1− µ2)(1− d2)− (1− µ3)(1− d3)]

)
= p3n+1.
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This establishes the basis of the proof for the validity of the intermediate instar solution. Suppose
now that the equation

pin+1 = (1− µi)(1− di)pin + µi−1(1− di)pi−1n

holds for pin and pi−1n where these are intermediate instar solutions given above. Now it must be
shown that

pi+1
n+1 = (1− µi+1)(1− di+1)pi+1

n + µi)(1− di+1)pin

holds for pi+1
n and pin, where 2 ≤ i ≤ r − 1. This differs from the standard induction proof where

i ∈ N, as the intermediate instar equation only holds only between i = 2 and i = r − 1 (the cases
where i = 1 and i = r have different solutions). Substituting these solutions into the model equation,

(1− µi+1)(1− di+1)pi+1
n

= (1− µi+1)(1− di+1)

i+1∏
k=2

[µk−1(1− dk)]

i+1∑
j=1


(1− µj)n(1− dj)n∏

k 6=j
1≤k≤i+1

[(1− µj)(1− dj)− (1− µk)(1− dk)]



+ µi(1− di+1)

i∏
k=2

[µk−1(1− dk)]

i∑
j=1


(1− µj)n(1− dj)n∏

k 6=j
1≤k≤i

[(1− µj)(1− dj)− (1− µk)(1− dk)]



=

i+1∏
k=2

µk−1(1− dk)


i+1∑
j=1


(1− µj)n(1− dj)n(1− µi+1)(1− di+1)∏
k 6=j

1≤k≤i+1

[(1− µj)(1− dj)− (1− µk)(1− dk)]



+

i∑
j=1


(1− µj)n(1− dj)n[(1− µj)(1− dj)− (1− µi+1)(1− di+1)]∏

k 6=j
1≤k≤i+1

[(1− µj)(1− dj)− (1− µk)(1− dk)]



 .

Let βi,j =
∏
k 6=j

1≤k≤i

[(1− µj)(1− dj)− (1− µk)(1− dk)] and then the calculation may be continued:

(1− µi+1)(1− di+1)pi+1
n

=

i+1∏
k=2

µk−1(1− dk)

(
i+1∑
j=1

1

β i+1,j

(1− µj)n(1− dj)n(1− µi+1)(1− di+1)

−
i∑

j=1

1

β i+1,j

(1− µj)n(1− dj)n(1− µi+1)(1− di+1) +

i∑
j=1

1

β i+1,j

(1− µj)n+1(1− dj)n+1

)

=

i+1∏
k=2

µk−1(1− dk)

(
1

βi+1,i+1
(1− µi+1)n+1(1− di+1)n+1 +

i∑
j=1

1

βi+1,j
(1− µj)n+1(1− dj)n+1

)

=

i+1∏
k=2

µk−1(1− dk)

i+1∑
j=1

(1− µj)n+1(1− dj)n+1∏
k 6=j

1≤k≤i+1

[(1− µj)(1− dj)− (1− µk)(1− dk)]

= pi+1
n+1

so the intermediate solution holds for all 2 ≤ i ≤ r − 1.
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Direct substitution demonstrates that the final instar prn solution holds for

prn+1 = prn + µr−1p
r−1
n

where pr−1n is given by the intermediate instar solution where i = r − 1:

prn+1 =
1

1− d1

r−1∏
k=1

[µk(1− dk)]


r−1∑
j=1


[(1− µj)(1− dj)]n

(−µj − dj + µjdj)
∏
k 6=j

1≤k≤r−1

[(1− µj)(1− dj)− (1− µk)(1− dk)]



+
(−1)r−1

r−1∏
k=1

(−µk − dk + µkdk)

+ µr−1

r−1∏
k=2

µk−1(1− dk)

·
r−1∑
j=1

(1− µj)n(1− dj)n∏
k 6=j

1≤k≤r−1

[(1− µj)(1− dj)− (1− µk)(1− dk)]
.

Recall that βi,j =
∏
k 6=j

1≤k≤i

[(1− µj)(1− dj)− (1− µk)(1− dk)] and let

γi,j =
∏
k 6=j

1≤k≤i

(−µk − dk + µkdk).

Then

prn+1 =
1

1− d1

r−1∏
k=1

µk(1− dk)


r−1∑
j=1

γr−1,j(1− µj)n(1− dj)n

βr−1,j

r−1∏
k=1

(−µk − dk + µkdk)

+
(−1)r−1

r−1∏
k=1

(−µk − dk + µkdk)

+

r−1∑
k=1

(1− µj)n(1− dj)n
r−1∏
k=1

(−µk − dk + µkdk)

βr−1,j

r−1∏
k=1

(−µk − dk + µkdk)



=
1

1− d1

r−1∏
k=1

µk(1− dk)


r−1∑
j=1


(1− µj)n(1− dj)n

(
γr−1,j +

r−1∏
k=1

(−µk − dk + µkdk)

)

βr−1,j

r−1∏
k=1

(−µk − dk + µkdk)



+
(−1)r−1

r−1∏
k=1

(−µk − dk + µkdk)


where
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γr−1,j +

r−1∏
k=1

(−µk − dk + µkdk) =
∏
k 6=j

1≤k≤r−1

(−µk − dk + µkdk) +

r−1∏
k=1

(−µk − dk + µkdk)

=
∏
k 6=j

1≤k≤r−1

[(1− µk)(1− dk)− 1] +

r−1∏
k=1

[(1− µk)(1− dk)− 1]

= (1 + (1− µj)(1− dj)− 1)
∏
k 6=j

1≤k≤r−1

[(1− µk)(1− dk)− 1]

= (1− µj)(1− dj)
∏
k 6=j

1≤k≤r−1

[(1− µk)(1− dk)− 1]

so that

prn+1 =
1

1− d1

r−1∏
k=1

µk(1− dk)


r−1∑
j=1



(1− µj)n(1− dj)n(1− µj)(1− dj)
∏
k 6=j

1≤k≤r−1

[(1− µk)(1− dk)− 1]

βr−1,j

r−1∏
k=1

(−µk − dk + µkdk)



+
(−1)r−1

r−1∏
k=1

(−µk − dk + µkdk)



=
1

1− d1

r−1∏
k=1

[µk(1− dk)]


r−1∑
j=1


(1− µj)n+1(1− dj)n+1

(−µj − dj + µjdj)
∏
k 6=j

1≤k≤r−1

[(1− µj)(1− dj)− (1− µk)(1− dk)]



+
(−1)r−1

r−1∏
k=1

(−µk − dk + µkdk)


= prn+1.

Thus all solutions to the model equations hold.
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Appendix D

Model robustness to varying start
date

Figures D.1 and D.2 present graphical evidence that adult emergence predicted by the developmental
model is fairly robust to changes in start date. The temperature time series used reflect the input
of the model validation section.

Figure D.1: Predicted adult emergence under varying start dates, 2001, 2003-2005.

The daily probabilities of adult emergence generated from the latest egg hatching, May 27th
(purple curve in Figures D.1 and D.2) are regressed against the corresponding emergence probabilities
given the earliest egg hatching, April 15th (red curve in Figures D.1 and D.2). The linear regression
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Figure D.2: Predicted adult emergence under varying start dates, 2006-2009.
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is carried out according to the method described in Section 3.5.2. When compared against a critical
F value Fcrit = 3.78 (?), observed F statistics for 2001, and 2003− 2009 are F2001 = 0.072, F2003 =
0.021, F2004 = 0.112, F2005 = 0.043, F2006 = 0.015, F2007 = 0.032, F2008 = 0.067, F2009 = 0.111.
From the linear regression analysis, one may conclude that there is no significant difference between
the adult emergence in the earliest versus latest egg hatching.
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