Usage
  • 31 views
  • 120 downloads

Modeling zooplankton diel vertical migration patterns based on curve fitting and feature correlation analysis

  • Author / Creator
    Zhao, Shuang
  • The goal of this thesis is to study and model the Diel Vertical Migration (DVM) pattern using machine learning methods. We choose an Almost Periodic Function as the mathematical model and fit the monthly averaged migration data into a 5-term Fourier series whose coefficients and frequency are functions of time. The resulting function captures the general characteristics of the DVM pattern whose period is similar yet undergoes gradual changes over time. Further correlation analyses show that the monthly averaged distribution of zooplankton and various environmental factors are strongly correlated. Therefore, we adjust the function so that the coefficients and frequency are functions of environmental factors. Besides, we also examine the pattern on finer time scales using classification algorithms. We build classifiers which predict zooplankton existence at different depths based on a set of environmental measurements. Experiments demonstrate that both of the above methods are valid in modeling the DVM pattern.

  • Subjects / Keywords
  • Graduation date
    2010-06
  • Type of Item
    Thesis
  • Degree
    Master of Science
  • DOI
    https://doi.org/10.7939/R3FX2Z
  • License
    This thesis is made available by the University of Alberta Libraries with permission of the copyright owner solely for non-commercial purposes. This thesis, or any portion thereof, may not otherwise be copied or reproduced without the written consent of the copyright owner, except to the extent permitted by Canadian copyright law.
  • Language
    English
  • Institution
    University of Alberta
  • Degree level
    Master's
  • Department
    • Department of Computing Science
  • Supervisor / co-supervisor and their department(s)
    • Joerg Sander (Computing Science)
  • Examining committee members and their departments
    • Osmar R. Zaiane (Computing Science)
    • Sally Leys (Biological Sciences)