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Abstract

The goal of this thesis is to study and model the Diel Vertical Migration (DVM) pattern using

machine learning methods. We choose an Almost Periodic Function as the mathematical model and

fit the monthly averaged migration data into a 5-term Fourier series whose coefficients and frequency

are functions of time. The resulting function captures the general characteristics of the DVM pattern

whose period is similar yet undergoes gradual changes over time. Further correlation analyses show

that the monthly averaged distribution of zooplankton and various environmental factors are strongly

correlated. Therefore, we adjust the function so that the coefficients and frequency are functions of

environmental factors. Besides, we also examine the pattern on finer time scales using classification

algorithms. We build classifiers which predict zooplankton existence at different depths based on a

set of environmental measurements. Experiments demonstrate that both of the above methods are

valid in modeling the DVM pattern.
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Introduction
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Plankton are minute pelagic organisms that drift with the current in a sea or lake. The animal

components of the plankton are called zooplankton [35]. Many zooplankton are holoplanktonic,

spending their entire life cycles within the plankton, while others are meroplanktonic, spending only

part of their life cycles in the plankton, then either metamorphosing into the nekton or settling on

the sea floor [36].

Zooplankton feed on phytoplankton, which are the plant components of the plankton [45]. Be-

cause of their small sizes, zooplankton can respond relatively quickly to changes of phytoplankton

abundance. On the other hand, zooplankton themselves also serve as an important food source.

Herrings, for example, treat zooplankton as one of their major preys [42]. Because of their impor-

tant roles in the oceanic food web, studying the behaviour of zooplankton can serve as an essential

method for a more complete understanding of the functioning of marine ecosystems.

Many types of zooplankton are found to undertake a diel vertical migration (DVM) pattern.

They travel to the surface at night, and migrate down the water column during the daytime. Many

scientists have tried to explain zooplankton’s migration pattern. Among all different explanations,

the most famous ones are avoidance of predators, effect of availability of nutrients and response to

environmental changes (for example, light and oxygen) [41].

In this thesis, we use machine learning methods to study and model the DVM pattern of zoo-

plankton. The models we build reflect the regularities of the migration and can be used to make

predictions on zooplankton distribution in the future.

1.1 Problem Definition

The problem that we address in this thesis is the modeling and prediction of zooplankton diel vertical

migration (DVM) pattern in the water column given the dynamic changes of environmental factors

from various sources. We define “migration pattern modeling” as the task of predicting the positions

(depths) of zooplankton in the water column in a later time based on a set of attributes. The work

in this thesis takes into account the spatio-temporal aspect of the problem of modeling the DVM

pattern.

Modeling the DVM pattern can help domain experts understand the behaviour of zooplankton

in a systematic way. Although the advance of remote sensing techniques has made it much easier

for biologists to study the spatiotemporal distribution of zooplankton, the huge size of data still

makes it difficult and fallible to analyse the measured signals by direct visual observation. The work

presented in this thesis use machine learning algorithms to automatically process the collected data

and build migration models for different time granularities that can be viewed and understood much

more easily.

In this research study, we use machine learning methods to study and model the DVM pattern

of zooplankton based on data collected from 19 months. Using acoustic backscatter data measured

by a Zooplankton Acoustic Profiler, the monthly averaged migration path is modeled as an Almost
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Periodic Function, a function of time that shows periodicity with small variations. This mathematical

representation clearly shows that the pattern is periodic on the whole, while still changing gradually

with time.

Further correlation analyses reveal that various environmental and time features have important

impact on the coefficients of the model. In this research study, we collect 18 features from various

sources and examine their correlation with the coefficients of the almost periodic function both

analytically and quantitatively. After examining their relative importance, the features are used as

parameters in the functions of coefficients. The features change over time, so do the coefficients.

This change allows the DVM pattern change gradually over time while still keeping the basic shape.

With the help of the almost periodic model, we are able to examine and predict the general migration

path on a large time granularity.

Moreover, we also examine the DVM pattern on finer time granularities. The relative importance

of the features are analysed with various feature selection algorithms on 60-minute, 30-minute, 15-

minute and 5-minute averaged intensity signals. The feature selection results confirm that both time

and environmental factors have strong correlations with the DVM pattern.

In order to further quantify the vertical distribution of zooplankton on small time scales, we

build a set of classification models for each of the depths along the water column. Given a set of

environmental and time measurements as the features, the classifiers are able to predict whether or

not zooplankton will exist at this particular position and time stamp. Combining the predictions of

classifiers for all depths, we are able to predict the zooplankton distribution along the entire water

column.

Both the almost periodic function and the classifiers are useful for modeling and predicting the

DVM pattern. While the almost periodic function allows for an observation of the general shapes

and gradual changes of the pattern over a long period of time, the classifiers are more suitable for

finer time scale examinations. Both models provide auxiliary tools for domain experts to study the

DVM behaviour in relation to environmental factors.

1.2 Diel Vertical Migration

Many species of oceanic zooplankton undertake a diel vertical migration (DVM) pattern. Migration

is typically nocturnal. The zooplankton ascend to the water surface during the night, and move down

in the water column during the day. The diel migration occurs during twilight hours [41].

DVM draws much attention in the biology study area because it serves as clues for predator-prey

interactions and population dynamics. Also, it makes contributions to biogeochemical processes,

such as transport of dissolved inorganic carbon and nitrogen to deep water [41].

There are many hypotheses regarding the reason for DVM. Predator evasion is one of the most

favoured ones. According to this hypothesis, zooplankton migrate to the surface because of the

abundance of food resources (phytoplankton) but have to move down the water column during the

3



daylight in order to avoid their predators [41].

Besides the DVM pattern, other zooplankton migration patterns are also reported. Twilight

migration, where zooplankton migrate to the surface for both dusk and dawn twilight hours, moving

down between dusk and dawn can be identified on occasion [41]. Some zooplankton, for example,

copepods, conduct a seasonal migration pattern, drifting on the surface during winter times and

descending deep in the water when weather gets warmer [30]. Moreover, not all zooplankton have a

migration pattern. Some non-migration types are also found [43]. However, this thesis only focuses

on the DVM pattern, because of its importance and constancy.

Because of the importance of the DVM pattern, many biologists are interested in long-time ob-

servation of zooplankton in the water column. Direct observation of the spatio-temporal distribution

of zooplankton, however, is limited by the effort needed for sampling and subsequent analyses.

Thus, many instruments using remote sensing techniques are designed to capture the dynamics of

zooplankton distribution [34].

The Zooplankton Acoustic Profiler (ZAP) is used to monitor the presence and location of zoo-

plankton in the water column. Figure 1.1 shows the ZAP transducer and pressure case. Deployed

either on a floating buoy on the water surface or deep on the waterbed, ZAP eco-sounder transmits

high frequency pulses of sound into the water column. If the signal encounters a target (zooplankton,

fish schools, bubbles, etc), part of it is reflect back. By measuring the acoustic backscatter returned,

ZAP can detect the presence of zooplankton and other objects [2]. The technical specification is

included in Table 1.1.

Figure 1.1: The ZAP transducer and pressure case [2]
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Table 1.1: Technical specifications of ZAP [2]

Frequency(kHz) 200
Range(m) 200
Beam width(degrees) 8
Sample rate(Hz) 1
Units counts(converted to dB)

Figure 1.2 is the plot of ZAP intensity signals for one day. The ZAP is deployed on the seabed

in Saanich Inlet, BC.The depth shows the distance from the instrument. Intensity values of the

measured signals are illustrated in different colors. The intensity range for the zooplankton is ap-

proximately between 5 and 15 db. The DVM pattern can be clearly seen from the plot. Besides, fish

signals (in red) are also visible during the daytime.

Figure 1.2: Daily 30 second averaged plot of Acoustic Backscatter Intensity. The intensity range for
the zooplankton is approximately between 5 to 15 db [2]

Acoustic Doppler Current Profiler (ADCP) is an instrument that measures water column ve-

locities. The ADCP can provide an estimate of current velocities for three directions: U (east), V

(north) and W (upwards). With a high enough concentration of migrating zooplankton in the water

column, the measured velocities (especially W) can be used as the estimation of the velocities of

zooplankton. Figure 1.3 shows an ADCP prior to deployment.

Figure 1.4 shows the plots of velocities of three directions (U, V and W) measured by an ADCP

together with the backscatter values. The DVM pattern can be seen from the vertical velocity plot.

1.3 Scope of the Thesis

This thesis presents a study of zooplankton diel vertical migration pattern modeling. The main

results consist of various models that make predictions on the presence or absence of zooplankton

5



Figure 1.3: ADCP prior to deployment [2]

Figure 1.4: Example of an ADCP profiler, April 2006, Saanich Inlet [2]
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in the water column for different time granularities. The work helps unveil the characteristics of the

DVM pattern and the impact of environmental factors on it.

However, reasons for the DVM behaviour and the environmental impact are outside the scope of

this research as these require further biological study.

1.4 Thesis Outline

The rest of the thesis is organized as follows: Chapter 2 outlines current work about zooplankton

migration analyses in the biology research field and provides an overview of techniques we use in

this research study. Chapter 3 describes the modeling of DVM pattern using an Almost Periodic

Function on monthly averaged data. Chapter 4 presents correlation analyses and classification on

finer time scales. We conclude our results in Chapter 5.
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Related Work and Methods
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In this chapter, we describe the state-of-the-art research advance about zooplankton diel vertical

migration (DVM) pattern in the biological research world as well as models and techniques from

the research area of computing science that we apply to build our own DVM models. Section 2.1

describes current methods of DVM modeling. Section 2.2 discusses current research results on

correlations between the DVM pattern and various environmental factors for different lakes and

oceans around the world. Section 2.3 describes clustering methods from the area of data mining that

are tried to exact migration paths in the data pre-processing stage. Section 2.4 explains techniques of

curve fitting which are used to find the mathematical representation of the DVM paths for monthly

averaged data. Section 2.5 describes the concept of an Almost Periodic Function, which is used as

our model in the curve fitting process. Section 2.6 illustrates the techniques of feature selection,

which we use to find correlations between various environmental factors and the DVM pattern.

Section 2.7 gives a short review of supervised learning, which we use to model the DVM pattern on

finer time granularities.

2.1 Quantifying the Migration of Zooplankton

There are several techniques found in the literature for modeling the DVM pattern, each suited to a

different purpose using various measuring instruments. Rippeth and Simpson [43] use current ve-

locities measured by an Acoustic Doppler Current Profiler (ADCP) to estimate the migration paths

by zooplankton. The ADCP can measure current velocities of three dimensions (east, north and up-

wards), when the concentration of zooplankton in the water column is high, the measured upwards

velocity can be used as an estimation of the velocity of zooplankton. In their work, a particle is

assumed to move with the measured vertical velocity from the seabed to the surface and descend

back to the seabed. Its moving path is used as an estimation of zooplankton migration path. In our

research study, we can not directly apply this work because the data we use are collected by a differ-

ent instrument (Zooplankton Acoustic Profiler, ZAP). ZAP measures only the intensity of reflected

sound signals, no velocity information is recorded. There are some techniques for estimating the

current velocities from intensity data [41]. However, these techniques relies on an intermediate con-

version from backscatter intensity to equivalent zooplankton biomass or some measure of abundance

which itself is still an active research area and may require net sampling and many subsequence ef-

fectors [18] [47] [6]. Moreover, in the presence of fish and other targets, the estimated velocity is

a combination of velocities of zooplankton, fish and other moving objects at that depth. It may not

always reflect the true velocity of zooplankton and the path estimated from this velocity may not

always reflect the true migration path. It is also possible that the zooplankton align themselves in a

certain orientation for vertical swimming that weakens the signals detected by the ADCP. For these

reasons, we do not apply the particle tracking model in our research study.

Carin et al.[6] research the behaviour of zooplankton both horizontally and vertically. Hori-

zontal research is used to confirm the impact of wind. It also shows that the DVM pattern can be
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observed continuously across a 1000 km transect of the Arabian Sea. For vertical research, the

biomass medians (i.e. the depth that divides the biomass in half) are generated from raw data and

calibrated by net-samplings. The medians are then used to represent the DVM pattern. For each

day, a cosine function is generated from the biomass medians to represent the general pattern. The

root mean squared error is calculated to validate the coherence of the biomass median path to the

cosine function. The paper finds out that when DVM occurs (March-April), the sinusoidal curve can

closely track the biomass median. But when DVM is weak or absent (June-July), there is a big devi-

ation between the cosine curve and the actual biomass median. The paper does not provide further

analysis on the cosine curves (for example, comparing cosine curves from two consecutive days).

It simply fits biomass median data into a series of cosine curves. In this research study, however,

we not only want to generate functions for each day, we also want to organize these functions and

generate a more compact model that shows the general behaviour of zooplankton over a long period

of time. Since the DVM pattern occurs throughout the year in our dataset, the model should be able

to capture the general shape of the DVM path, as well as the subtle changes at different times of

the year. Moreover, besides time, we also consider a set of environmental factors by including them

as parameters into the model. Because we have no calibration by net-sampling results, we can not

generate the biomass median information. Instead, we use the upper bound, lower bound and middle

depth of the DVM pattern generated from a semi-automatic process to build the models. Combining

all of the three models, we are able to capture the temporal changes of zooplankton migration, as

well as its spatial (vertical) distribution.

Besides migration path, timings of migration are also of interest. Lorke et al. [34] and Record

et al. [41] estimate the ascent and descent times from backscatter intensity values. When the zoo-

plankton move fast along the water column, the backscatter intensities at that depth also change

rapidly. For a fixed depth, the time series of intensity values is collected and the temporal derivative

is taken. The positive and negative peaks of the derivative are used as the estimations of timings

of vertical migration. Figure 2.1 shows one example of this approach. The upper panel shows the

temporal derivative of acoustic backscatter data. The lower panel is the time series of the acoustic

backscatter. The peaks in the derivative correspond to the migration times. Ashjian etc [6] use peak

velocity times as the migration times. These methods can calculate the estimated ascent and descent

times of zooplankton for each depth, thus unveiling the whole migration path. We tried to follow

this approach to generate the migration path in our work. However, in the presence of lots of noise

signals and lack of net samples to calibrate with, the peaks of the derivative do not always reflect the

correct migration times.

There is also some work trying to relate the acoustic backscatter intensities to meaningful bio-

logical parameters of zooplankton [6] [44]. They provide different models to characterize the size,

shape, abundance, orientation and classification of zooplankton. However, the instrument we use is

a single frequency ZAP. With only one frequency available, it is not possible to distinguish differ-
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Figure 2.1: Temporal derivative of acoustic backscatter at 5m depth (upper panel) and time series of
acoustic backscatter strength in Lake Hallwil from 26 June to 2 July 2001 at 5 and 35m depth (lower
panel) [34]
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ent species and sizes [43] [30] [34]. Moreover, the goal of our research study is to reveal the diel

vertical migration paths of zooplankton, not to distinguish different types. For our purpose, the data

recorded by the single-frequency ZAP is sufficient.

2.2 Environmental Factors Related to the DVM Pattern

Sunrise and sunset times have been observed to have a strong impact on zooplankton’s migration

times [41] [43] [30] [34] [6]. For each day, zooplankton ascend from the seabed around sunset time

and move downwards to the seabed again around sunrise time. Since sunrise and sunset times vary

around the year, zooplankton’s migration times also change accordingly. In winter when the night is

longer than the day, the zooplankton are found to spend more time on the water surface, whereas in

summer, when the day length is greater, zooplankton spend much less time on the surface. Figure 2.2

shows zooplankton migration times with regard to sunrise and sunset times. The black line indicates

sunset and the red line indicates sunrise. The experiment is conducted at two depths in Patricia Bay

between March 22 and April 5, 2006. It clearly reveals the strong correlation between migration

times and the local times of sunrise and sunset.

Besides sunrise/sunset times, many environmental factors are also believed to have impact on

the DVM pattern. Record et al. [41] show that light and temperature affect the migration. In their

work, cloud opacity data from a land based weather observation system is used as a measurement

of light intensity. They test zooplankton’s reaction to light by comparing migration times between

clear days and overcast days. Each day is labelled either “clear” or “overcast” according to the

cloudy opacity information. Migration times are calculated by taking the maximum and minimum

temporal derivatives of intensity signals for each day. Results of t-test show that ascent/descent

times on clear days are significantly different from those on overcast days. On overcast days, the

zooplankton spend more time on the surface. They [41] also conducted coherence analysis between

biomass median depth and temperature stratification (0 ◦c, -0.5 ◦c and -0.8 ◦c isotherms) for both

daytime and nighttime hours. High correlations were found.

Lorke et al. [34] show in their work that water temperature, light transmissivity in water and wa-

ter oxygen are correlated with zooplankton abundance. Figure 2.3 shows zooplankton distribution

with respect to various environmental factors. According to the figure, the maximum abundance

of zooplankton during night times occurs round depth 5m, right above the depth where light trans-

missivity shows a minimum and oxygen reaches the highest value. During daytimes, the highest

concentration of zooplankton happens at depth 35m, above the depth where oxygen concentration

drops.

Rippeth et al. [43] also mention in their work that the concentration of zooplankton is affected

by the water temperature through similar analysis. Moreover, they also explain that not all species

of zooplankton response to the changes of light. The Copepod Calanus helgolandicus, for example,

is not sensitive to light changes caused by overcast weather.
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Figure 2.2: Acoustic backscatter at the deep and shallow sites in Patricia Bay together with the
sunrise and sunset times. Time is UTC. The black line indicates sunset and the red line indicates
sunrise [2]
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Figure 2.3: Zooplankton abundance and changes of various environmental factors for a typical day
in Lake Hallwil [34]
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Although the above papers have proven that environmental factors can impact zooplankton mi-

gration/distribution, none of them indicate relative importance of each of the factors. Moreover, a

function describing the DVM pattern should be helpful for domain experts to do further analysis.

The goal of this research study is to use machine learning methods to generate DVM models and

find the quantitative correlations between environmental factors (including times) and the pattern.

2.3 Clustering

Due to the fast advance in sensor technologies and database systems, large amounts of data have

been collected and stored in various media. Along with the growing availability of data is the

growing demand for effective and efficient analyses of information implicitly contained in the data.

As an answer to this demand, Data Mining has been an active research area for decades. The

term “Data Mining” refers to the process of extracting useful information from large amount of

data. It is an essential step in the process of Knowledge Discovery from Data (KDD). Besides Data

Mining, the whole process of KDD also includes: data cleaning, data integration, data selection,

data transformation, pattern evaluation and knowledge presentation. In practice, data mining and

knowledge discovery are becoming synonyms [23].

Clustering is one important technique of data mining. It’s the process of grouping objects into

classes or clusters, so that objects from the same cluster have very high similarity whereas objects

from different clusters have very low similarity. The major clustering methods can be classified

into the following categories: partitioning methods, hierarchical methods, density-based methods,

grid-based methods and model-based methods [23]. In our study, we conduct the empirical study

based on several typical clustering methods: K-means, DBSCAN and STING. K-means [24] is well

known as a partitioned-based clustering algorithm. Given the number of clusters k, it aims to divide

a given dataset into k clusters in which each object belongs to the cluster with the nearest centroid.

Ester et al. [17] proposed a density based clustering algorithm (DBSCAN) for large datasets. Two

parameters Eps and MinPts are used in the algorithm to control the density of clusters. DBSCAN

is able to separate data noise from clusters of objects where data noise consists of objects in low

density regions. DBSCAN can be used to detect clusters of any shape. However, the complexity of

DBSCAN is relatively high and it requires a human participant to determine the global parameter

Eps. STING [46] is a grid-based clustering method in which the data space is divided into a number

of rectangular cells. Several levels of such rectangular cells are generated corresponding to different

levels of resolution. These cells constitute a hierarchical structure, in which each cell at a high level

can be divided into a few of cells at the next lower level. Statistical information regarding the data

in each grid cell is computed and stored in advance for answering queries.

In this research study, we try to extract zooplankton migration path from raw data using cluster-

ing algorithms. An ideal result should group zooplankton and non-zooplankton signals into different

clusters. After extensive experiments, however, we find that in lack of domain knowledge, it is quite
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difficult to choose the best values of the parameters. The clustering results require further post-

processing and the use of clustering does not make extracting migration paths easier. Therefore, in

later experiments, we use other methods to extract the migration path instead.

2.4 Curve Fitting

We use Curve Fitting to build models for the DVM pattern on the monthly averaged data. The curve

fitting problem involves making predictions of a dependent variable from independent ones by fit-

ting curves to the data. The best fitting curve is determined by some statistical criterion [7]. Curve

fitting includes parametric fitting and non-parametric fitting. Parametric fitting involves finding a set

of parameters for one or more models that fit the data. The data is assumed to have two components:

a deterministic component and a random component.

data = deterministic component + random component

The deterministic component is generated from a parametric model and the random component

is caused by errors. Given a parametric model, the task of parametric fitting is to find the best set of

parameters of the model that mostly fits the data.

Non-parametric curve fitting estimates values between known data points (interpolation) or cre-

ates a smooth curve through observed data (smoothing). Since the goal of this research study is to

find the mathematical function of migration pattern, parametric curve fitting is used.

One famous method of parametric fitting is least squares fitting. Given a parametric model, this

method tries to find the set of parameter values that minimizes the summation of squared residuals.

The residual ri for the ith data point is the difference between the observed response value yi and

the fitted response value ŷi from the model.

ri = yi − ŷi (2.1)

The summed square of residuals for n data points is given by:

S =
n∑

i=1

r2
i =

n∑

i=1

(yi − ŷi)2 (2.2)

The goodness of fit of the model can be measured by the following statistics:

Sum of Squares Due to Error: this statistic measures the total deviation from the fitted values to

the corresponding observed values.

SSE =
n∑

i=1

wi(yi − ŷi)2 (2.3)

wi in the above equation are the weights. The weights determine how much influence each

response value has on the final parameter estimates. The weight of a high quality response value
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should be higher than that of a poor quality response value. yi and ŷi are the observed and fitted

values respectively. The closer SSE is to 0, the smaller the random error the model has, and the

better the fit is.

R-Square: this statistic measures the correlation between fitted response values and observed

response values. It is the ratio of the sum of squares of the regression (SSR) and the total sum of

squares (SST).

SSR =
n∑

i=1

wi(ŷi − y)2 (2.4)

SST =
n∑

i=1

wi(yi − y)2 (2.5)

R− square =
SSR

SST
= 1− SSE

SST
(2.6)

y in the above function is the mean of the observed data. An R-square value close to 1 indicates

that a large proportion of variance is accounted for by the model.

Root Mean Squared Error: this statistic measures the standard deviation of the random compo-

nent in the data.

RMSE =
√

MSE (2.7)

MSE =
SSE

v
(2.8)

v in the above function is the degree of freedom defined as the number of data points minus the

number of coefficients. An MSE value closer to 0 indicate a fit this is more useful for prediction.

The above statistics measure how much variability in the data is explained by the fit, and how

useful a fit will be for prediction. Besides these measures, a “good fit” should also be the one that

the data could reasonably have come from and the parameters are estimated with little uncertainty.

Also, the model should be easy for humans to interpret.

Besides the statistics, visual exploration of the fitted curve is also helpful for determining the

goodness of fit. By examining the residuals, we can check the deviation from the fitted values to the

observed values. For a good fit, the residuals should approximate the random components and thus

should appear to behave randomly. If the residuals behave in a systematic pattern, it indicates that

the fitted model is not a good one.

The confidence bound for the fitted parameters (coefficients) is another important indication.

The confidence bound defines the lower and upper values of the coefficients and is calculated by the

following function:

C = b± t
√

S (2.9)

Where b is the estimated coefficient value, t depends on the confidence level, and is computed

using the inverse of Student’s t cumulative distribution function, and S is a vector of the diagonal
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elements from the estimated covariance matrix of the coefficient estimates. The width of the interval

of confidence bounds (difference between upper bound and lower bound) indicates the uncertainty

of the fitted coefficient. The wider the confidence bound is, the more uncertain the fitted coefficient

is.

2.5 Almost Periodic Function

Observation of the DVM path inspires the idea of using a periodic function as the model in curve

fitting. In mathematics, a periodic function with period T satisfies:

x(t) = x(t + T ) (2.10)

or

|x(t)− x(t + T )| = 0 (2.11)

for all t.

A periodic function can be represented by a Fourier series.The Fourier series is used to decom-

pose a periodic function into a sum of sines and cosines, first introduced by Joseph Fourier [12].

The Fourier series representation of a periodic function is:

x(t) =
1
2
a0 +

∞∑
n=1

[an cos(2πnf0t)− bn sin(2πnf0t)] (2.12)

where f0 = 1
T is the fundamental frequency. an and bn are Fourier coefficients:

an = rn cos(ϕn) =
2
T

∫ t0+T

t0

x(t) cos(2πnf0t)dt (2.13)

bn = rn sin(ϕn) = − 2
T

∫ t0+T

t0

x(t) sin(2πnf0t)dt (2.14)

where t0 can be any time: −∞ < t0 < +∞ and the fundamental frequency f0, the Fourier

coefficients an, bn, rn, ϕn are constant.

The use of a periodic function can capture the general shape of the migration path. We can

use the Fourier series representation of the function to produce a mathematical model for the DVM

behaviour. If a periodic function is used, however, the resulting periods of the migration path should

be perfectly identical, which fails to capture the subtle changes of the migration from day to day.

An Almost Periodic Function is a better model for our purpose. Almost Periodic Functions are

functions of a real number that are periodic up to a small error, first studied by Harald Bohr. Almost

Periodic Functions have many different forms in different application scenarios. We adopt the def-

inition in signal processing, where almost periodic signals are also called quasi-periodic signals. A

quasi-periodic signal is defined to satisfy:

x(t) ≈ x(t + T (t)) (2.15)
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or

|x(t)− x(t + T (t))| < ε (2.16)

where

0 < ε ¿‖ x ‖=
√

lim
τ→∞

1
τ

∫ τ/2

−τ/2

x2(t)dt (2.17)

T in the above function is the period and is a function of time as well.

Same as a perfectly periodic function, an Almost Periodic Function can also be represented by

Fourier series:

x(t) =
1
2
a0(t) +

∞∑
n=1

[an(t) cos(2πn

∫ t

0

f0(τ)dτ)− bn(t)sin(2πn

∫ t

0

f0(τ)dτ)] (2.18)

an(t) and bn(t) in the above function are Fourier coefficients. f0(t) is the frequency [25].

Different from those of a perfectly periodic function, the frequency and Fourier coefficients in

the above function are no long constant, but are also functions of time. Because of the slow variations

of the coefficients and frequency, the periods of an almost periodic function look similar, while keep

themselves a little different from neighbouring periods through small changes. An almost periodic

function is a more proper model to use.

2.6 Feature Selection

We use feature selection to measure the importance of feature subsets. Feature selection is an im-

portant data pre-processing step for data mining and machine learning. It refers to the process of

selecting a subset of features from original data in order to remove irrelevant, redundant or noise

data [33]. The goal of feature selection is to select a minimum set of features so that the resulting

probability distribution of the data classes is as close as possible to the original distribution when

all features are used [23]. The process of feature selection is able to: (1) reduce the hypothesis

search space, speeding up the follow-up algorithms (2) improve predictive accuracy (3) generate

more understandable results (4) help humans have a better understanding about the data by telling

them which subset of features are more important and how they are correlated (5) and in some cases,

reduce storage requirement [33] [5].

The process of feature selection includes: subset generation, subset evaluation, stopping criterion

verification and result validation [33]. Figure 2.4 shows the key steps.

In subset generation, a search method is used to generate a candidate feature subset. For N

features, there exist 2N candidate subsets in total. Figure 2.5 illustrates the whole search space

for four features. Checking all candidate subsets is time consuming and often impractical for large

numbers of N. Therefore, various strategies have been developed to reduce the search space. These

search strategies can be broadly categorized into: complete search [15] [37], sequential search [31]

19



Figure 2.4: Key steps in feature selection [33]

and random search [15] [10]. Complete search guarantees to find the optimal subset. Although

many methods are proposed to reduce the 2N search space, the runtime of complete search can still

be very slow. Sequential search adds (or removes) one feature at a time and evaluates the resulting

feature subset until convergence. It can not guarantee to find the optimal subset, but it is quite fast

(usually O(N2)) [33]. Random search starts with a randomly selected feature subset and proceeds

either following the sequential search or generating completely random subsets. It helps to escape

from local optima but still can not guarantee to select the globally optimal subset.

Depending on the search direction, the search methods can also be divided into: forward search,

backward search and random search. Forward search [29] begins with an empty feature set, and

on each iteration, it adds a feature to the set on a trial basis. In detail, forward search first puts

a candidate feature into the set and measures the performance of the resulting learning model by

calculating its classification accuracy. The feature whose involvement most improves the accuracy

is permanently added to the set. This procedure is repeatedly executed until addition of any available

feature will result in reduced accuracy. Although backward search [19] is similar to forward search,

it starts with a set containing all features and attempts to remove from the set the feature whose

disappearance results in the highest accuracy gain. Random search [32] walks through the space of

feature subsets by chance. If no start set is supplied, random search starts from a random point and

reports the best subset found. If a start set is supplied, it will haphazardly search for subsets that are

as good or better than the start point with the same or fewer features. In this research study, various

search methods are used and their results are compared.

In subset evaluation, an evaluation criterion is used to measure the goodness of selected feature

subsets. Subset evaluation methods can be broadly categorized into two groups: filters and wrappers

[5]. Filters [14] [22] [32] [49] evaluate features one by one according to the intrinsic characteristics.

Some of the characteristics include: separability of classes, information gain, dependency (corre-

lation) with classes and consistency [33]. Filters evaluate feature subsets without using a mining

method and are much faster than wrappers [5]. For wrappers [11] [16] [26] [28], a pre-determined

mining algorithm is used to evaluate the feature subset. It gives superior performance when the
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Figure 2.5: Whole search space [9], n=4

same algorithm is used for the actual mining task using the selected optimal (or near optimal) fea-

ture subset. But they are usually slower compared with filters. There are also hybrid models that try

to combine filters and wrappers [13] [38] [48]. This research study includes both filters and wrapper

for the evaluation process. We use filters to rank features in order to find their relative importance.

This process helps us understand the features and their relationships with the intensity data bet-

ter. Moreover, wrappers are used to find the feature subset that results in the highest classification

accuracy.

The process of subset generation and subset evaluation repeats until a stopping criterion is met.

Some stopping criteria are: (1) search is complete (2) a given bound is reached (3) subsequent

subsets do not provide better evaluation results and (4) a sufficiently good subset is selected [33].

The selected best subset usually needs to be validated by either domain knowledge or tests of

real datasets.

2.7 Supervised Learning

Machine learning is concerned with the design of algorithms that allow computers to learn models

based on data. Once the model is learnt, it can be used to make decisions on new datasets or present

the hidden pattern of the data for better understanding. Machine learning has broad applications

including natural language processing, computer vision, bioinformatics, medical diagnosis, etc.

Supervised learning is one of the major categories of machine learning algorithms. In supervised

learning, the whole dataset is first divided into training set and test set. Each instance of the dataset

is composed of a set of features and a class label. A model is first learnt from the training set. Once

the model is learnt, it is used to make predictions of class membership of the test set. The predicted
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labels are compared with the true labels to measure the goodness of the model. If the model is not

good enough, the learning process is repeated with some modifications (with a different learning

algorithm, adding more training data, etc). If a satisfactory model is built, it is used to predict the

class membership for new, unlabeled instances [8]. In our experiment, we select three machine

learning algorithms to construct learning models. Decision tree [40] is well known as a typical

learning model for classification accuracy. It can be used to visually represent a decision making

process. In a decision tree, each interior node corresponds to one of the input features and its

edges to children denote the possible values of that input feature. Each leaf represents a class given

the values of the input features represented by the path from the root to the leaf. An unlabeled

instance is categorized into a class if it falls into the leaf corresponding to this class. Naive Bayes

Tree (NBTree) [27] uses decision tree as the general structure and deploys naive Bayes at leaves.

The intuition behind it is that naive Bayes work better than decision tree when the sample dataset

is small. Therefore, after several attribute splits when constructing a decision tree, it is better to

use naive Bayes at the leaves than to continue splitting the attributes. A Bayesian Network [39]

consists of a directed acyclic graph that encodes conditional independence among a set of attribute

nodes and a class node, and a set that represents local distributions of nodes. A local distribution is

typically specified by a conditional probability table. In a Bayesian Network, each attribute node is

independent of its non-descendants in the graph given the state of its parents.

In this thesis, the prediction task is about finding out whether or not the zooplankton will present

at a certain depth for a certain time. To perform this prediction task, we first learn models from a

large number of labeled data instances. The features of data instances are obtained from different

sources. Each instance represents the environmental conditions at a particular depth in the water

column at a certain time. For each depth, a model is built to represent the dynamics at this particular

depth. After the learning and testing process, the learnt models are used to make predictions on

unlabeled data instances. Each unlabeled instance is given a class membership (label) according to

its features (environmental factors). The labels indicate whether or not the zooplankton will present

at that depth, for that time slice.

The selection of an appropriate set of features is crucial to the learning and prediction tasks. A

good set of features can build a model that has the highest prediction accuracy. Moreover, since the

ultimate goal of this research is to help biologists understand behaviour of the zooplankton better,

the good set of features should also be useful for explaining the hidden dynamics of the zooplankton

and can be explained and understood easily by the biologists.
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Chapter 3

Modeling Zooplankton Diel Vertical
Migration Pattern on a Large Time
Granularity

23



Many types of zooplankton exercise a diel vertical migration (DVM) pattern. Around sunset

times, zooplankton ascend along the water column, and spend the night on the surface. When

sunrise times arrive, zooplankton descend down into the water column, and spend the daytime near

the seabed. There are many hypotheses regarding the reason of the DVM pattern. One of the most

famous one is that the DVM pattern of zooplankton is the result of a balance between hunting for

food and avoidance of visual predators. While the sunrise and sunset times have been proven to

have a strong impact on the DVM pattern, many environmental factors are also proposed to have

influence on certain types of zooplankton.

The DVM pattern of zooplankton can be captured with the help of a Zooplankton Acoustic Pro-

filer (ZAP). Mounted on the seabed, the instrument sends out high frequency sound signals into the

water column, from the seabed to the surface. When the sound signal encounters an object, part of

the signal is reflected back. By measuring the intensities of reflected signals, the behaviour of many

marine animals, including zooplankton, can be captured. Figure 3.1 shows plots of ZAP intensities

with respect to time in January 9th, April 1st, July 1st and October 10th of 2008 respectively. The

measuring area is in Saanich Inlet of British Columbia, Canada.

Each of the above pictures illustrates the migration of zooplankton for one day (24 hours). The

time used in the pictures is UTC time, 8 hours before the local time (PST time). Therefore, 03:00 on

April 1st of UTC time in the picture is 19:00 on March 31st of the local time, the time around sunset.

Similarly, 15:00 on April 1st of UTC time is 07:00 on April 1st of the local time, which is also the

time around sunrise. The plots show the measured intensity signals for different depth at different

times of the day. They clearly illustrate the DVM pattern which goes up and down periodically.

From the pictures, we can see that zooplankton migrate around local sunrise and sunset times

throughout the year. Although they migrate daily, spending night on the surface and daylight times

on the seabed, their migration behaviour for each day is not exactly the same. The shape of the

migration path changes gradually from day to day. Overall speaking, zooplankton spend more time

on the surface in winter times and spend less time when summer comes, so the curves shown in the

pictures are wider in colder times (as shown for the month of October and January) than in warmer

times (as shown for the month of April and July).

Although much research has been done on the analysis of the DVM behaviour, little is done for

quantitative modeling of the DVM path. The goal of this research study is to quantitatively model

the DVM pattern, providing a mathematical function for the behaviour of zooplankton migration.

3.1 Data Pre-processing

In order to model the DVM pattern, we need to generate the hidden path from the ZAP (Zooplankton

Acoustic Profiler) signals first. In this research study, acoustic intensity signals measured by a ZAP

between 00:00:00 of January 1st, 2008 and 23:59:59 of July 31st, 2009 in Saanich Inlet are down-

loaded from the VENUS website [2]. The original data is sampled every second before September
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(a) January 9th (b) April 1st

(c) July 1st (d) October 10th

Figure 3.1: Plots of ZAP intensities in Saanich Inlet, British Columbia. Each picture illustrates the
migration of zooplankton for one day. The time used is UTC time, 8 hours before the local time
(PST time)
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2008 and every two seconds after September 2008. The whole water column is divided into 800

bins. For each time stamp, the intensity value for each bin is measured and recorded.

We compress the data by taking a 60 second averages. In order to reduce the effect of noise,

medians are used instead of averages. For each day, the data is first divided along the time axis into

60 second blocks. Then for each depth in each block, a median is calculated as the representative

intensity value for that particular depth during that time interval. This pre-processing step allows us

to compress the data size without jeopardizing the pattern hidden inside the data.

The ZAP measures intensity backscatter as intensity values from 1 to 255. These values are

converted to decibel (db) using the following formula:

converted value = 10*log10(intensity)

The converted data have a range from 0 to 25 db. The nature of db units is that they are log-

arithm relative intensity scale. This conversion further helps to reduce noise included during the

measurement while still preserve the DVM pattern.

With the help of great advice offered by biologists from the VENUS project [2], we know that the

intensity values of zooplankton are approximately in the 5-15db range, while the intensity values of

fish are often larger, in the 15-25db range. This categorization can only be used as a coarse guidance,

because the actual intensity distribution is much more complex. High concentration of zooplankton,

for example, can cause very high intensity values (even over 20db).

Once getting the 60-second averaged decibel values, the next step is to get the migration path for

each day. This work proves to be quite challenging, because the data depicts a marine world that is

much more complicated than we expected and the single-frequency instrument can not distinguish

migrating zooplankton from the non-migrating ones.

Several clustering algorithms including DBSCAN, OPTICS, KMeans and STING are applied on

the data set. For each algorithm, a large set of parameter values are used and the resulting clusters are

carefully compared. An ideal clustering result should group migrating zooplankton signals into one

cluster, separating them from the fish and water signals. After a large set of experiments, however,

we can not decide which set of parameter values gives the best result. Moreover, the migration path

can not easily be extracted from the clustering results.

Figure 3.2 and 3.3 show the plot of intensity values for April 23rd, 2008 and the corresponding

clustering results using DBSCAN. Observing the raw data plot, we can see a non-migrating layer

floating in the middle depth. The non-migrating objects have similar intensity values with migrating

zooplankton and they overlap for short periods of time. A desirable clustering algorithm should

be able to find the migrating path without including any non-migrating objects into it. Figure3.3

illustrates the DBSCAN results. We keep only intensities between 5 and 15 db, all other values are

considered background and are ignored by the program. Each cluster is shown using a unique color.
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The bounding boxes show the boundaries of the clusters. DBSCAN finds 571 clusters, most of which

are small. The biggest cluster includes almost all light-blue points in the raw data plot. Both the

migrating zooplankton and the non-migrating objects are considered to belong to the same cluster.

The problem with DBSCAN lies in the fact that the algorithm only considers nearby neighbours

without taking the “big picture” into account. When it encounters an object from the non-migrating

layer, the algorithm should be able to consider the big trend (the pattern goes up first, stays on surface

for some time, then moves down) and do not include this object even if its intensity is very similar

to the migrating zooplankton. Unfortunately, DBSCAN can not do that. It groups all neighbouring

points together if they have similar intensity values. Given the clustering result, it does not make

finding the path easier. A series of post processing is required if we want to exact migrating path

from the clusters. We further try a vast combination of the parameter values on data from different

months. Although changing the parameters values can decrease the number of clusters, it does not

change the major trend. Both migrating and non-migrating objects are grouped together.

Figure 3.2: Raw data plot of April 23,2008

When fish schools are present, as are shown in Figures 3.4 and 3.5, the situation becomes even

more complex. The algorithm groups fish school values into migrating cluster or breaks down the

migrating objects into several clusters.

Since the presence of fish and non-migrating objects are quite common in summer months, we

can’t simply ignore this problem.

We also tried OPTICS, KMeans and STING with different parameter settings. All of them have

the same problem as DBSCAN. The clustering algorithms treat the data as a real picture. In an

actual picture, nearby similar points often belong to the same object (cluster). However, the data

is not a real picture. It shows the spatial-temporal distribution of zooplankton. Although migrating
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Figure 3.3: Clustering result.Epsilon=5,minObj=8,Manhattan distance

Figure 3.4: Raw data plot of Jul01,2008
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Figure 3.5: Clustering result.Epsilon=5,minObj=8,Manhattan distance

objects are often near each other and have similar intensities, the reverse is not true. Points should

not be clustered only based on their distance, the trend, which goes up first, stays on surface for a

while and moves down, also matters. The algorithm should only be interested in points belonging

to this trend. Though it is relatively simple for visual observations, it is not easy for an algorithm

to do that without learning the trend first. Clustering does not seem to be a correct solution to our

problem.

In this research study, zooplankton migration path is generated using a semi-automatic way. For

each month between January 2008 and July 2009, one day in that month is randomly selected. The

migration depth for every 30 minutes of that day is manually generated (some of the zooplankton

signals are above 20db. Using visual observations, we add them to the dataset although they are

not within the 5-15db range). If the zooplankton spread along a depth interval for a particular time

stamp, the middle depth of that depth interval is used as the migration depth at that time. This

manually sample process is repeated for selected days.

After the manual sample process, a program is used to generate the migration path for each day

using the manually sampled data as the guidance. For each time stamp in each day, depth intervals

that contain intensity values between 5-15db are selected and the middle depth for each selected

depth interval is calculated. The program compares each of the calculated middle depths with the

one manually generated at the same time stamp in the same month. The closest middle depth is

selected as the final migration depth at that time stamp. The migration path for each month is further

averaged (using medians) to produce a representative path for each month. Figure 3.6 shows raw

data plot of November 16, 2008 together with the manually generated migration path (the black
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curve). Using this migration path, we are able to automatically generate migration path for other

days in November 2008. Figure 3.7 shows the automatically generated migration path for November

10, 2008.

Figure 3.6: Manually labeled migration path, November 16, 2008

The whole dataset is divided into two parts. We use data from January 1st, 2008 to January 31st,

2009 as the training set and data from February 1st, 2009 to July 31st, 2009 as the test set. We want

to build a migration model based on the training set and use the test set to evaluate it. Figure 3.8 is

the plot of migration paths. The blue curve is used as the training set, while the pink curve is used as

the test set. The time series clearly shows the DVM pattern which periodically occurs. Interestingly,

the occurrences of the pattern do not have exactly the same shape. All periods of the migration paths

look similar, but they also gradually change over time. A good model should be able to capture the

general shape of the DVM pattern, while preserving the general changes along the time. We also

include the dataset in Figure 1 in the Appendix.

There may be ways of automatically extracting the migration path from the ZAP data. However,

due to the lack of ground truth in data and domain knowledge, we do not have a good method to

evaluate the results and we are not sure whether the results are trustworthy. The semi-automatic

process is the best way we can think of to generate reliable migration paths out of the data.

Besides the middle depth, we deploy the same semi-automatic process to generate the upper

and lower bounds of the migration paths as well. Besides modeling the general shape of the DVM

pattern, given the upper and lower bounds, we are also able to model the vertical distribution of

zooplankton. The upper bound and the lower bound of the DVM time series are plotted in Figure 3.9.

The red and green curves are the training and test data for the upper bound. The blue and black
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Figure 3.7: Automatically generated migration path, November 10, 2008

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul
Time

Figure 3.8: The middle depth of zooplankton migration path from January 2008 to July 2009. The
blue curve is used as the training set. The pink curve is used as the test set.
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curves are the training and test data for the lower bound. Both upper and lower bounds show the

same trend as the middle depth. Figure 2 and Figure 3 in the Appendix show the datasets of upper

and lower bounds respectively.

Figure 3.9: The upper and lower bounds of zooplankton migration path from January 2008 to July
2009. The red and blue curves are training set for upper and lower bounds respectively. The green
and black curves are test set for upper and lower bounds respectively.

3.2 Diel Vertical Migration Path Modeling

We use an Almost Periodic Function as our model and fit the migration paths into the model. Once

given a model, we need to find best values for its coefficients so that the model reflects the trend

of the data as accurately as possible. The values of the coefficients of an Almost Periodic Function

are learnt from zooplankton migration paths which are generated in the semi-automatic way from

raw ZAP data. We apply regression in order to find the best values for the coefficients. The whole

migration path is divided into two parts. We use paths from January 2008 to January 2009 as the

training set to find coefficient values. The paths from February 2009 to July 2009 are used as test

set to evaluate the fit of the resulting model.

Direct curve fitting for an almost periodic function is difficult, because not only does the curve

change over time, all its coefficients are also functions of time. In order to finish the curve fitting

more easily, we try to solve the problem using another method, with a new perspective of the periodic

behaviour.

If the migration pattern is perfectly periodic, all its periods should look exactly the same. We

can use the Fourier series representation of a periodic function as the target model, use the collected

data to fit the model, and get estimations of all Fourier coefficients. According to the definition of a
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periodic function, the resulting coefficients should all be constant.

Similarly, if we treat each period in the time series as one period from a perfectly periodic

function, we can get a Fourier series representation of the periodic function by simply applying curve

fitting on the data of each period. The resulting coefficients are constant. If we treat all periods in the

time series this way, and try to find the Fourier series representation of each of them respectively,

we will get a set of Fourier series, each of which has a set of fitted constant coefficients. Figure

3.10 illustrates this process. The red, blue and green curves are three periods from the original time

series. We treat each of them as one period from a perfectly periodic function and use Fourier series

to fit each of them. The table in the figure shows the fitted Fourier coefficients for the three curves.

Figure 3.10: Use Fourier series to fit each period individually

Since the periods in the time series have similar behaviour (go up, stay on the surface for a while,

then go down), the Fourier series representations are similar too. The slight difference between two

consecutive periods lies in the slight difference of the values of the fitted Fourier coefficients. The

shapes of the periods change gradually. If we treat each period in the time series as a “snapshot”

of the almost periodic function, we will get the values of its coefficients at that particular time.

After examining all snapshots, we will get a set of values for each of the coefficients. If we find

mathematical functions to represent the changing mechanisms over time for each of the coefficients,

we can use these functions as the functions of time the coefficients are generated from. Then we can
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use these functions in our almost periodic model.

We apply the above idea on time series of the middle depth using Matlab’s Curve Fitting tool.

With the curve fitting tool, we can visually explore the dataset, fit it to different mathematical models

and evaluate the goodness of fit both graphically and statistically. We use Fourier series as our model.

For each period in the time series, we treat it as one period from a perfectly periodic function and

try to fit the data using different terms of Fourier series (we tried Fourier series from 1 term to 8

terms). The different termed Fourier series are carefully compared and the best one is selected. The

goodness of fit is measured by three statistics: (1) sum of squares due to error (SSE), (2) R-square

and (3) root mean squared error (RMSE). Besides, we also examine the fit by visual observation and

choose the one that is smooth with random residual and narrow uncertainty bounds.

The candidate fits are measured by SSE, R-square and RMSE. The best fit should have a SSE

closest to 0, an R-square closest to 1 and a RMSE closest to 0. From the experiments, we find out

that Fourier series with more terms tend to have better statistical measures and narrower uncertainty

bounds on the training set. Figure 4 in the Appendix shows the fitted coefficients values if we choose

the 8-term Fourier series as our model. The values are considered as snapshot values for the time

varying coefficients and frequency.

A closer look at the table reveals a periodicity of the values of the coefficients (e.g. values in

January 2009 and January 2008 are similar). This periodicity is consistent with what we expected,

because the migration paths of January 2008 and January 2009 look almost identical. Obviously

the coefficients and frequency change with time. Many research studies have also confirmed that

zooplankton exercise the diel vertical migration around sunrise/sunset times. Because the times of

sunrise and sunset vary throughout the year, the migration path of zooplankton also varies accord-

ingly, shrinking in summer times and stretching in winter times.

Besides the effect of time, however, other research studies also explore the effect of environ-

mental factors (light, temperature, etc.) to zooplankton’s DVM pattern [41][34][43]. Some research

studies have already proven that certain types of zooplankton can respond to certain environmental

changes, although quantitative studies are not present. The almost periodicity of DVM pattern can

be explained to be caused by the change of time (sunrise and sunset times), or a combination of

various factors (time and environment). If the latter is true, the coefficients of the almost periodic

function may be affected by both time factors and environmental factors. In order to explore the

impact of various factors on DVM pattern, we collect 15 environmental measurements in the same

study area of the same study period. The following data are collected from the VENUS website

[2]: conductivity (s/m), temperature (◦c), pressure (decibar), salinity (psu), density (kg/m3), oxygen

(ml/l) and transmission (%). The data are sampled every 60 seconds and recorded using UTC time.

We name them water features. Besides water conditions, we also collect information of land con-

ditions from the Weather Office of Environment Canada [3]. The weather information is measured

by an on-land station near Victoria International Airport in Victoria, BC. The weather information
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includes: temperature (◦c), dew point temperature (◦c), relative humidity (%), wind direction (10’s

deg), wind speed (km/h), visibility (km) and station pressure (kPa). The weather information is sam-

pled every 60 minutes and is measured at local times. We call them land features. We also collect

sunrise and sunset times from the National Research Council Canada [1]. The sunrise and sunset

times are recorded in local times. We use these two times to calculate the night time for each day

(the difference between sunrise and sunset times). All times are converted to UTC times. Figure 5

in the Appendix shows the monthly averaged data we collect.

In order to find the potential impact these factors have on zooplankton DVM pattern, we apply

correlation analysis between each measurement and each coefficient. Correlation analysis is a com-

mon technique for finding the strength and direction of relationship between two random variables.

Figure 6 in the Appendix shows the result of linear correlation analysis. Strong correlations (p-

value < 0.005) are shown in bold. The correlation measurement we use here is Pearson’s correlation

function [49]:

ρX,Y =
cov(X,Y )

σXσY
=

E((X − µX)(Y − µY ))
σXσY

(3.1)

The correlation is 1 in the case of an increasing linear relationship, -1 in the case of a decreasing

linear relationship, and some value in between in all other cases, indicating the degree of linear

dependence between the variables. The closer the coefficient is to either -1 or 1, the stronger the

correlation between the variables.

In order to measure the significance of the correlation, we also calculate the p-values for each

correlation coefficient. The p-value represents the probability that the data would yield the obtained

results if the null hypothesis is true. Smaller p-values indicate stronger evidence against the null

hypothesis, and therefore stronger correlation.

From Figure 6 in the Appendix, we can see that night time, which is the difference between

sunset and sunrise times, has strong correlations with many coefficients. This finding is consistent

with our expectation that times have strong impact on zooplankton DVM pattern. Moreover, besides

night time, several other factors, including both water and land measurements, also have strong

correlations with the coefficients. These strong correlations suggest that, besides sunrise/sunset

times, other factors may have impact on the DVM pattern as well.

We also calculate information gain to further confirm our findings. The entropy of a variable X

is defined as:

H(X) = −ΣiP (xi) log2(P (xi)) (3.2)

The entropy of X given values of another variable Y is:

H(X|Y ) = −
∑

j

P (yj)
∑

i

P (xi|yj) log2(P (xi|yj)) (3.3)

Information gain is defined as:

IG(X|Y ) = H(X)−H(X|Y ) (3.4)
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Information gain reflects additional information about X provided by Y. If information gain is

high, it means that the amount of information of X provided by Y is big. In other words, X and Y

are highly correlated [23].

We calculate information gain between each coefficient and each environmental measurement.

Figure 7 in the Appendix illustrates the calculated information gain. Larger value of information gain

indicates stronger correlation. After ranking the features according to the information gain, we find

that night time, land temperature, water oxygen and water transmission have the highest rankings

for almost all coefficients. On the other hand, land visibility, land wind speed and land dew point

temperature almost always have the lowest ranking. According to this figure, night time, land tem-

perature, water oxygen and water transmission have high correlations with almost all coefficients.

Comparing results from linear correlation analysis, we find that night time and land temperature are

highly correlated in both cases, while other land/water measurements (water oxygen, land visibility,

etc) also have strong linear or non-linear correlations.

The above correlation analysis inspires us to add environmental factors into functions of coef-

ficients. We use regression techniques to construct a linear function with environmental factors as

parameters for each of the coefficients. The values of environmental factors change with time, so

do the coefficients. We try the following algorithms in Weka [4]: (1) Isotonic Regression (2) Linear

Regression (3) Simple Linear Regression (4) Least Median Squared Linear Regression (5) Support

Vector Machine for Regression. We choose to use Support Vector Machine for Regression as the

regression algorithm because it gives the smallest root mean squared error. Part D. in the Appendix

shows the detailed functions for the middle depth coefficients. We also use the same technique to

generate functions for upper bound and lower bound coefficients. The results are also included in

Part. D.

For the almost periodic function, we try Fourier series with different terms (from 1-term to 8-

term). From the experiments, we find that including more terms into the model almost always result

in better statistical measurements on the training set, however, as we include more terms into the

model, the resulting fitted curves have more oscillations. The almost periodicity of the curve is

already given by a 2-term Fourier series, adding higher terms helps balance the amplitude to the

0-800 range. Figures 3.11 - 3.14 illustrate the fitted curve modeled by different termed Fourier

series for the upper bounds (the lower bound and middle depth have similar trends). The red curve

is the plot of the training data which is used to generated the model. The green curve is the plot

of the test set. The blue curve is the plot of the predicted paths we generate from our model. The

curve is learnt from data from January 2008 to January 2009 and is used to make predictions for

February-July, 2009.

In order to choose the best model to use, we calculate the root mean squared error of the test set.

Table 3.1 shows these errors.

The 5-term Fourier series is the best model among all that we have tried. Although it does not
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Figure 3.11: 1-term Fourier series

Figure 3.12: 2-term Fourier series

Table 3.1: Root mean squared errors for upper bound, lower bound and the middle depth of the
migration path using different Fourier series models

Term 8 7 6 5 4 3 2
Upper Bound Error 93.48 92.13 87.52 86.73 86.72 90.89 97.87
Lower Bound Error 97.44 95.97 95.56 93 95.75 96.92 100.15
Middle Depth 86.93 86.61 83.89 82.44 84.74 85.85 95.08
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Figure 3.13: 4-term Fourier series

Figure 3.14: 8-term Fourier series
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have the smallest statistical measurement on the training set, we still choose to use it in order to

avoid data over-fitting. Figures 3.15 - 3.17 are plots of the 5-term model for upper bound, lower

bound and middle depth.

Figure 3.15: Upper bound

For the upper curve, errors occur mostly in top peaks, for the middle and lower curves, errors

occur mostly in bottom perks. Using a 2-term model, we already get the basic shape of the curve,

higher terms are mainly used to balance the amplitude of the curve (to make it range from 0 to

800). The errors at the perks are introduced by 3 or higher terms, as a by-product of balancing the

amplitude.

Comparing prediction with the test set, we find that the fitted curve generally captures the al-

most periodicity of the data. All periods look similar, while each of them is a little different from

neighbouring ones. The periods are wider in the winter and get narrower in the summer.

3.3 Final models for zooplankton DVM pattern

The Fourier series representation of an almost periodic function is:

x(t) =
1
2
a0(t) +

∞∑
n=1

[an(t) cos(2πn

∫ t

0

f0(τ)dτ)− bn(t) sin(2πn

∫ t

0

f0(τ)dτ)] (3.5)

Using w(t) = 2πf0(t), the function can also be written as:

x(t) =
1
2
a0(t) +

∞∑
n=1

[an(t) cos(n
∫ t

0

ω(τ)dτ)− bn(t) sin(n
∫ t

0

ω(τ)dτ)] (3.6)
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Figure 3.16: Lower bound

Figure 3.17: Middle depth
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Because we choose to use a model with 5 terms, the Fourier function is changed to:

x(t) =
1
2
a0(t) +

5∑
n=1

[an(t) cos(n
∫ t

0

ω(τ)dτ)− bn(t) sin(n
∫ t

0

ω(τ)dτ)] (3.7)

All coefficients and the frequency in the above function take the following form:

f(x(t)) =
∑

i

wi ∗ feature
(t)
i (3.8)

Since the time scale of the above study is quite large (throughout 19 months), the environmental

factors many go through very big changes during this long period of time. Their strong correla-

tions with DVM pattern can be explained as a real correlation between the two, or a by-product of

times changes. On this large time scale, it is hard to say whether or not the correlation between

environmental factors and coefficients are caused by the change of time. In order to make further

confirmations about the correlation between the two, we need to change to a smaller time scale,

where time is not considered as a major changing factor. In the next chapter, we will explore the

potential correlations using various machine learning algorithms on finer time scales.
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Chapter 4

Modeling Zooplankton Diel Vertical
Migration Pattern on Finer Time
Granularities
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The use of an Almost Periodic Function in Chapter 3 helps us model the DVM pattern in a

systematic way. The function shows that the DVM pattern has similar periods on a daily base, while

it gradually changes over time. The shapes of the periods in the winter are wider than those in the

summer, which means zooplankton spend more time near the surface in the winter. The purpose of

the almost periodic model is providing a mathematical way of predicting the DVM pattern over a

long period of time.

Besides examining the DVM pattern over a long period of time, modeling the pattern on finer

time scales is also desirable. Using finer time scale modeling, we are able to answer questions like

“where will the zooplankton be in 15 minutes?” Though the almost periodic model is able to answer

this question, since the function is more tuned for large scale modeling, the prediction it provides

may be not accurate enough for finer time scale analyses.

In this chapter, we follow the typical supervised learning process to build classification models

on finer time granularities. We organize the data into tuples (examples). Each of the tuples contains a

set of environmental factors (features) and a class label indicating whether it represents zooplankton,

fish or others. We first fix our study to a single depth, constructing models to learn zooplankton

migration pattern only at this particular depth. Once the model is successfully built, we can apply

the same technique on the whole water column, constructing a set of models to learn the migration

pattern along the entire water column. We initially choose the depth 42m as our target depth. The

study area of this depth is approximately in the middle of the water column (the whole column is

96m). The reason for choosing the middle depth is that the zooplankton migration path is the clearest

to observe at this depth, with very little disturbing signals from fish, water currents, etc. Therefore,

we can label the class memberships as accurately as possible.

The features of the tuples include both environmental measurements and time measurements.

After extensive experiments with various feature selection algorithms on different time scales (60

minutes, 30 minutes, 15 minutes and 5 minutes), we find that a set of features, both environmental

and time, are highly correlated with the distribution of zooplankton. This result further confirms our

findings in the previous chapter, and provides valid reasons for using these measurements as features

in the supervised learning process.

4.1 Data Pre-processing

In order to explore the correlations between environmental factors and migration path for different

seasons, we use acoustic backscatter signals of seven months (January, April, July and October of

2008, January, April and July of 2009) and 18 features to conduct further correlation analyses. A

new categorical land feature, weather, is added to the feature set. Using the absolute sunrise and

sunset times, we calculate the relative times to sunrise and sunset for each tuple. We name the

relative times and the night time as time features in our dataset. Because the absolute sunrise/sunset

times are not meaningful to the zooplankton, they are not included in the dataset. Table 4.1 lists all

43



Table 4.1: Features and sources

Category Features
Water features [2] conductivity (s/m), temperature (◦c), pressure (decibar),salinity (psu),

density (kg/m3), oxygen (ml/l), transmission (%)
Land features [3] temperature (◦c), dew point temperature (◦c), relative humidity (%),

wind direction (10’s deg), wind speed (km/h), visibility (km)
pressure (kPa), weather

Time features [1] night time,relative sunrise time, relative sunset time

features we include in the dataset and their sources.

We begin our study by a fixed depth (depth 42m) analysis on the intensity signals and later

expand it to the entire water column. At this depth, we average the data at finer time scales (60min,

30min, 15min and 5min) then use two parameters (5 and 15db) to group the intensity signals into

three classes: (1) below 5db (class 0) (2) between 5 and 15 db (class 1, zooplankton class) (3) above

15 db (class 2, fish class). Figure 8 in the Appendix illustrates part of the data we collect. Each row

represents data collected for one time interval. We call each row an example. Each example has 7

water features (in yellow), 8 land features (in blue), 3 time features (in red) and one class label (in

green). If a measurement is missing, it is represented by “?”. The classification algorithms we use

are able to build models in the presence of missing data.

We want to build a classification model that captures the relationship between environmental and

time factors (features) and the intensity distribution (class labels). The model can be used to make

predictions on zooplankton distribution for the depth (42m). Similarly, we can build classification

models for other depths. Using these models all together, we are able to predict the zooplankton

distribution throughout the entire water column. We can plot the results of prediction as a picture

and this picture gives us complete information of the predicted zooplankton DVM pattern for the

given time period.

In order to evaluate the validity of the classifiers, we divide the entire dataset into two parts.

Data from January, April, July and October of 2008 and January of 2009 are used as the training

set to build classification models and data from April and July of 2009 are used as the test set for

evaluation purpose. The classifiers we build should be able to predict the zooplankton distribution

for the test set according to models they learn from the training set.

Before doing classification on the training dataset, however, we first use feature selection tech-

niques to select the best feature subset to be used for classification. The reasons for doing feature

selection are:

1. We want to further confirm our results from the previous chapter. The correlation analyses on

monthly averaged data show that besides time, the DVM pattern is also correlated with various

environmental measurements. We want to confirm this correlation on finer time granularities.

2. We want to know which features are relevant (have correlations) to the class label. Irrelevant
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Table 4.2: Search methods

Search method name Description
1 Greedy Stepwise Perform a hill climbing search. The search stops when

add/deleting a feature results in decreased evaluation result
2 Best First Search Combination of hill climbing and backtracking. The subset with the

highest evaluation is chosen to expand (or reduce). If the
expanding does not result in improvement, the search goes back
to the next best unexpanded subset and continues from there

3 Linear Forward Selection [21] Extension of Best First Search. Restrict the number of attributes
being examined.

4 Subset Size Forward Extension of Linear Forward Selection
Selection [21]

5 Exhaustive Search Search the whole feature space starting from an empty set. The
optimal subset is chosen

6 Genetic Search [20] Use a genetic algorithm for the search
7 Random Search [32] Hill climbing starting with a randomly selected subset
8 Rank Search Rank the features using an evaluator first. Starting from the top of

the list, subsets of increasing size are evaluated, the best set is
reported.

9 Ranker Rank features according to the individual evaluations

features may confuse the classifier (model) and reduce the classification accuracy.

3. We want to know correlations between features. If two features are strongly correlated, using

only one of them should have the same effect as using two (they provide similar information).

Introducing redundant features makes the classification process slower without increasing the

accuracy.

4. Besides increasing accuracy, the classification process also helps us have a deeper understand-

ing of our dataset. A classification model shows us how the features are correlated and their

relationship with the class. Fewer features make it easier for us to interpret and analyze the

structure of these relationships. We can use the built models together with feature selection

results to find the most relevant environmental factors for zooplankton DVM pattern.

For the purpose of feature selection, we conduct both feature ranking and feature subset selection

in Weka [4]. For feature ranking, we use four statistics to rank features. For feature subset selection,

we use various search algorithms and evaluation criteria. In order to do feature selection, a search

method is used to generate a candidate feature subset from the entire dataset. An evaluation method

is then used to evaluate the goodness of the candidate set through various kinds of measurements.

The search/evaluate process repeats until the stopping condition is met.

Table 4.2 lists search methods we use in the experiments. Except for ranker, all search methods

in the above table are used together with a subset evaluation method. Exhaustive search guarantees

to find the optimal subset, but it usually takes a long time to finish. All the other methods are

generally faster than exhaustive search, but they can not guarantee that the optimal subset is found.
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Table 4.3: Evaluation methods

Evaluation method name Description
1 CFS Subset Eval [5] Correlation based heuristic to determine the goodness of subsets.

Subsets whose features are highly correlated with the class and
have very low level of inter-correlation are chosen

2 Chi Square Attribute Eval Evaluate the goodness of individual feature by computing the chi-
squared statistic with respect to the class

3 Info Gain Attribute Eval Evaluate by computing the information gain with respect to the
class.

4 Gain Ratio Attribute Eval Evaluate by computing the gain ratio with respect to the class
5 Symmetrical Uncert Evaluate by computing the symmetrical uncertainty with respect

Attribute Eval to the class
6 One Rattribute Eval Evaluate by using OneR classifier
7 Consistency Subset Eval [32] Evaluate the usefulness of subsets by the level of consistency.
8 Symmetrical Uncert Evaluate by computing the symmetrical uncertainty with respect

Attribute Set Eval [49] to another set of attributes
9 Classifier Subset Eval Evaluate the goodness of subset by a user defined classifier

Usually the locally best subset is reported. Ranker is used together with a feature ranking method

to rank all features according to a measured statistic (for example, chi-squared test). The ranking

method calculates statistics for features one by one, and the ranker ranks features solely according

to the statistics. No inter-feature correlation is considered. No feature subset is reported.

Table 4.3 lists evaluation methods we use in the experiments. Among the various evaluators,

Chi Square Attribute Eval, Info Gain Attribute Eval, Gain Ratio Attribute Eval, Symmetrical Uncert

Attribute Eval and OneR Attribute Eval are used together with Ranker search to evaluate the features

individually, without considering the correlations among them. In spite of their limitations, we still

use these individual feature evaluators in our experiments. Because these measurements are very

fast and they can provide an insight of relative importance among features. All the other evaluators

are used to evaluate feature subsets. They generally take longer time to finish but inter-feature

correlations can be considered. Classifier Subset Eval in particular, almost always selects a subset

that results in the highest accuracy in the classification process if the same learning algorithm is used

for both feature selection and training step.

4.2 Feature Selection and Classification on 60min Averaged Data

We conduct feature selection using various combinations of the above search and evaluation methods

on 60 minutes averaged data. The results are shown in Figure 9 and Figure 10 of the Appendix.

Each row in the figure represents one feature selection experiment using a particular combina-

tion of search and evaluation methods. The selected features are indicated by “x”. After the best

feature subset is chosen, a machine learning algorithm is used to learn a model based on the se-

lected features. The classification accuracies of the built models are also included in the table as a

measurement for the goodness of the selected subset for each search/evaluation method.
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Table 4.4: Top 10 features for 60 minutes averaged data

ChiSquare GainRatio InfoGain OneR SymmetricalUn
cert

1 nightTime nightTime nightTime nightTime nightTime
2 waterConductiv waterConductiv waterConductiv waterConductiv waterConductiv

ity ity ity ity ity
3 waterTemperat waterTemperat waterTemperat waterTemperat waterTemperat

ure ure ure ure ure
4 waterOxygen waterTransmiss waterOxygen relativeSunrise waterOxygen

ion
5 waterTransmiss waterSalinity waterTransmiss relativeSunset waterTransmiss

ion ion ion
6 waterSalinity waterOxygen waterSalinity waterTransmiss waterSalinity

ion
7 relativeSunrise relativeSunset relativeSunrise waterOxygen relativeSunset
8 relativeSunset relativeSunrise relativeSunset weather relativeSunrise
9 landTemperatur landTemperatur landTemperatur waterSalinity landTemperatur

e e e e
10 waterDensity landPressure landPressure landTemperatur landPressure

e

We first examine the results of individual evaluators. From individual evaluators, top 10 impor-

tant features are listed in Table 4.4.

According to Table 4.4, all individual evaluator have similar rankings. Especially, night time,

water conductivity and water temperature are ranked the top 3 features by all evaluators. Water

oxygen, water transmission, water salinity, land temperature, land pressure, two relative times also

have high rankings. Water density has high ranking for a certain evaluator. All these evaluators do

the evaluation one feature at a time. They only consider correlation between one feature and the

class. No correlation between features is considered. Therefore, the above result can only indicate

that the above mentioned features are important to the class. There is a possibility that certain

feature also has correlation with other features. If a correlation exists between two features, one of

the feature is considered redundant, and should not be selected for the classification process.

Since CFS considers both class-feature correlation and feature-feature inter-correlation, its re-

sult filters out redundant feature. We use CFS test with various search method and find out that all

search methods choose relative times and night time. Water conductivity, water temperature and wa-

ter transmission are also chosen by certain search methods. No land features are chosen. Comparing

results with individual feature evaluator, CFS test confirms that sunrise/sunset times and night time

are the most important and non-redundant features. It confirms that time is important. Water con-

ductivity, water temperature and water transmission are also important. This finding confirms that

besides time, environmental factors also have impact on the DVM pattern. Moreover, land features

are less relevant to the intensity values compared with water features. The average classification

accuracy (using BayesNet) is 86.74%.
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Unlike individual evaluators, the subset evaluators can select the best (or locally best) feature

subset. We tried three subset evaluators in our experiments: (1) Classifier Subset Evaluator (2) Con-

sistency Subset Evaluator (3) Symmetrical Uncert Attribute Set Evaluator. For each evaluator, we

also tried a set of search methods. The selected feature subsets and corresponding classification ac-

curacies are shown in Figure 10 of the Appendix. The figure shows that both water features and land

features are correlated with the class label. By comparing the classification accuracies, we find that

the average accuracies for the three evaluators are 88.05%, 84.09% and 86.76% respectively. Fea-

tures selected by classification subset evaluators generally result in higher classification accuracies.

When decision tree is used as the learning algorithm, the accuracy reaches 89.92%, the highest of

our experiments. The selected features by decision tree are: water oxygen, water conductivity, wa-

ter salinity, water temperature, water transmission, land temperature, hour relative to sunrise, hour

relative to sunset and night time.

We further examine the examples where the classifier makes mistakes. After closer analysis, we

find that some of the mistakes are made because of the presence of fish school at certain period of

time. Figure 4.1 is the plot of intensity values on July 2nd, 2008. Shortly after sunrise (at around

800), fish schools appear in the middle depth (the depth we are interested in). Some of the intensity

values of the fish school are similar to those of zooplanktons (5-15db). The presence of fish school

decreases the classification accuracy.

Figure 4.2 is the plot of intensity values at depth 42m. Depth 350 in the picture means depth

index of 350 (the whole depth is divided into 800 bins).

When 60 minutes averages are taken, Figure 4.3 shows the plot.

Figure 4.4 shows the plot of true class labels produced from the averaged data. The black part

represents class 0 and the white part represents class 1 (zooplankton class). No class 2 examples

exist. The picture shows three separate white parts. The first two happen approximately between

sunset and sunrise times, which correctly reflects the fact that zooplankton pass by this depth during

their migration around sunrise/sunset times. The third white part is very suspicious. Comparing

with the original plot of data, we find that these signals are mainly caused by fish schools. Since the

intensities of the fish schools also fall into the zooplankton class range (5-15db), we label them as

zooplankton signals but in fact, they should belong to the fish class.

Figure 4.5 shows the prediction of a classifier. We use ClassifierSubsetEval as the evaluator

and BestFirst as the search method. BayesNet is used as the learning algorithm. The accuracy is

measured 87.15% by 10 fold cross validation. The classifier labels examples between sunrise and

sunset as the zooplankton class, and other examples as the non-zooplankton class. Because the

classifier fails to predict the zooplankton-like fish school, its accuracy is reduced when comparing

with the true class label although the prediction correctly reflects the true zooplankton distribution.

The fish schools appear frequently for data from the month of July. Their presence introduces

errors to the true class labels but the classifier is still able to make correct prediction. Similar
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Figure 4.1: Raw data plot for July 2nd, 2008

Figure 4.2: Plot of intensity values at depth 42m

Figure 4.3: Plot of 60 minutes averaged intensity values at depth 42m
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Figure 4.4: True labels at depth 42m

Figure 4.5: Predicted labels at depth 42m

situations happen in the month of April, when objects with the same intensity range (5-15db) stay in

the middle depth of the water column for long periods of time. Figure 4.6 is one example of the case

in April. Due to a lack of domain knowledge, we do not know the cause of these signals. They can

be caused by other floating objects, or by different types of zooplankton. Since these objects stay in

the same depth all day long without diel vertical migration, we are not interested in them and simply

treat them as noise data. The noise data confuse our labeling process and reduce the classification

accuracy.

Moreover, since we average the data every 60 minutes, short periods of zooplankton signals may

not be correctly recorded in the labels. Figure 4.7 shows plot of intensity values on Jan 17, 2008.

The plot of intensity values for depth 42m is illustrated in Figure 4.8.

When we average the signals for every 60 minutes and do the labelling, all examples belong to

class 0 (0-5db).

Figure 4.9 shows the prediction of a classifier.

According to the class labels, all examples in the white parts are considered wrong. In fact,

however, most of these examples make good predictions.

Because of the presence of noise data, and the fact that we take a 60min average on the data, the

class labels we create for training data may not accurately reflect the true distribution of zooplank-

ton in the water column. If we could have an accurate dataset, we expect our accuracy would be

significantly higher.

One the other hand, however, the classifier built for 60min averaged data is of limited usefulness

because it can only predict the average situation in each hour. Observing the intensity plot, we find

that zooplankton usually spend several minutes in this depth and then move up or down. When an

average signal is taken for each hour, the short zooplankton signals can be lost. We can capture the
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Figure 4.6: Raw data plot for April 9th, 2008
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Figure 4.7: Raw data plot for January 17th, 2008

Figure 4.8: Plot of intensity values for depth 42m

Figure 4.9: Plot of intensity values for depth 42m
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Table 4.5: Top 10 features for 15 minutes averaged data

ChiSquare GainRatio InfoGain OneR SymmetricalUn
cert

1 nightTime nightTime nightTime nightTime nightTime
2 waterConductiv waterConductiv waterConductiv waterConductiv waterConductiv

ity ity ity ity ity
3 waterTemperat waterTemperat waterTemperat waterTemperat waterTemperat

ure ure ure ure ure
4 waterOxygen waterSalinity waterOxygen relativeSunrise waterSalinity
5 waterSalinity relativeSunrise relativeSunset waterTransmiss waterOxygen

ion
6 waterTransmiss waterTransmiss waterSalinity waterSalinity relativeSunrise

ion ion
7 relativeSunset waterOxygen relativeSunrise waterOxygen waterTransmiss

ion
8 relativeSunrise relativeSunset waterTransmiss relativeSunset relativeSunset

ion
9 waterDensity waterDensity waterDensity waterPressure waterDensity
10 waterPressure waterPressure waterPressure waterDensity waterPressure

presence of zooplankton only if the feature selection and classification process is conducted on finer

time scales (5min, 15min, etc).

4.3 Feature Selection and Classification on Finer Time Scales

Figure 11 and Figure 12 in the Appendix show the selected feature subsets and the classification

accuracies for 15 minutes averaged dataset (Since the land features we can get are sampled every 60

minutes, we do not include them in our later experiments).

Table 4.5 shows feature rankings by various feature evaluators.

Comparing with feature ranking for 60 minutes averaged data, the rankings don’t change too

much. Night time, water conductivity and water temperature are still the most important features.

In order to verify the usefulness of various features, we also produce a random feature from

uniform distribution and add it to the dataset. We rank all features using various measures. If a

feature is ranked after the random feature, it is not useful and should be discarded. We use the

following statistics to rank the features: Chi Squared, Gain Ratio and Symmetrical Uncert.

Table 4.6 illustrates the rankings.

According to the table, the random feature ranks as the last one for all statistics, which means all

other features have stronger correlations with the class labels. The relative rankings among features

do not change.

CFS tests also show similar results, marking night time, relative times and water conductivity

the most important features. The average classification accuracy (using BayesNet) is 85.2%.

For feature subset selection, various classification algorithms are tried as the evaluator. The

average accuracies for Classifier Subset Evaluator, Consistency Subset Evaluator and Symmetrical

53



Table 4.6: Feature rankings after a random feature is added

Ranking ChiSquare GainRatio SymmetricalUncert
1 nightTime nightTime nightTime
2 waterConductivity waterConductivity waterConductivity
3 waterTemperature waterTemperature waterTemperature
4 waterOxygen waterSalinity waterSalinity
5 waterSalinity relativeSunrise waterOxygen
6 waterTransmission waterTransmission relativeSunrise
7 relativeSunset waterOxygen waterTransmission
8 relativeSunrise relativeSunset relativeSunset
9 waterDensity waterDensity waterDensity
10 waterPressure waterPressure waterPressure
11 random random random

Table 4.7: Top 10 features for 5 minutes averaged data

ChiSquare GainRatio InfoGain OneR SymmetricalUn
cert

1 nightTime nightTime nightTime nightTime nightTime
2 waterConductiv waterConductiv waterConductiv waterTemperat waterConductiv

ity ity ity ure ity
3 waterTemperat waterTemperat waterTemperat waterConductiv waterTemperat

ure ure ure ity ure
4 waterOxygen waterOxygen waterOxygen waterTransmiss waterOxygen

ion
5 waterSalinity relativeSunrise relativeSunset relativeSunrise relativeSunrise
6 relativeSunset relativeSunset waterSalinity waterSalinity relativeSunset
7 relativeSunrise waterSalinity relativeSunrise relativeSunset waterSalinity
8 waterTransmiss waterTransmiss waterTransmiss waterPressure waterTransmiss

ion ion ion ion
9 waterDensity waterDensity waterDensity waterOxygen waterDensity
10 waterPressure waterPressure waterPressure waterDensity waterPressure

Uncert Attribute Set Evaluator are 88.01%, 83.03% and 84.54% respectively. Classifier Subset

Evaluator together with J48 as the mining algorithm still gives the highest accuracy (90.68%) and is

fairly fast.

We also conduct feature selection on 5 minutes (Figure 13 in the Appendix) and 30 minutes

(Figure 14 in the Appendix) averaged data. Similar results are found.

Table 4.7 shows feature rankings for 5 minute averaged data.

The feature rankings for 30 minutes averaged data are shown in Table 4.8.

Comparing feature rankings for different time scales, we find that rankings from Chi Squared

test, information gain ratio, information gain and symmetrical uncertainty stay almost unchanged.

The most important features are: night time, water conductivity, water temperature. Water density

and water pressure are less important.

The inter-feature correlations can be found by the results of the CFS evaluator. CFS tests of

all the three scales (5 minutes, 15 minutes and 30 minutes) choose times relative to sunrise/sunset
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Table 4.8: Top 10 features for 30 minutes averaged data

ChiSquare GainRatio InfoGain OneR SymmetricalUn
cert

1 nightTime nightTime nightTime nightTime nightTime
2 waterTemperat waterConductiv waterConductiv waterConductiv waterConductiv

ure ity ity ure ity
3 waterConductiv waterTemperat waterTemperat waterTemperat waterTemperat

ity ure ure ure ure
4 waterOxygen relativeSunset waterOxygen relativeSunrise relativeSunset
5 waterSalinity waterSalinity waterSalinity waterSalinity waterOxygen
6 waterTransmiss relativeSunrise waterTransmiss waterOxygen waterSalinity

ion ion
7 relativeSunrise waterOxygen relativeSunset waterTransmiss relativeSunrise

ion
8 relativeSunset waterTransmiss relativeSunrise relativeSunset waterTransmiss

ion ion
9 waterDensity waterDensity waterDensity waterDensity waterDensity
10 waterPressure waterPressure waterPressure waterPressure waterPressure

and night time, confirming that times are important factors for zooplankton migration pattern. For

15 minutes data, water conductivity is also chosen. By checking correlations between water con-

ductivity and other features, we find that water conductivity is highly correlated with the following

features: water oxygen, water salinity and water temperature. This correlation explains the fact that

water conductivity is chosen, but water oxygen and water temperature are not, even if the latter two

factors are proven to have impact on zooplankton’s migration [34].

For 5 minutes averaged data, the average accuracies for Classifier Subset Evaluator, Consistency

Subset Evaluator and Symmetrical Uncert Attribute Set Evaluator are 87.76%, 83.91% and 86.91%

respectively. The highest accuracy is 90.32%, which is achieved by the Classifier Subset Evaluator

with J48 as the mining algorithm.

For 30 minutes avaraged data, the average accuracies for Classifier Subset Evaluator, Consis-

tency Subset Evaluator and Symmetrical Uncert Attribute Set Evaluator are 87.11%, 84.85% and

84.29%. The highest accuracy is 89.39%, which is also achieved by the Classifier Subset Evalua-

tor with J48 as the mining algorithm. Figure 4.10 shows part of the decision tree. By visualizing

the deduced tree, we find that the tree has a very complex structure. Each branch of the tree uses

a different set of features to make decisions. On the other hand, relative times and night time are

almost always placed in higher levels of the tree. These features are used to make the initial deci-

sions. Water features are placed in lower levels of the tree. We choose to use J48 as the classification

algorithm for further experiments.

The above results confirm that environmental factors have strong correlations with the migration

of zooplankton. The strong correlations we find for monthly averaged data are caused by both time

and environmental measurements. Among all factors, water oxygen, water temperature, relative

sunrise/sunset times and night time are the most relevant. Water conductivity is also important

55



Figure 4.10: Part of the decision tree for 30min averaged data
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Table 4.9: Feature rankings at depth 66m (depth index 550)

ChiSquare GainRatio InfoGain OneR SymmetricalUn
cert

1 nightTime relativeSunset nightTime relativeSunrise relativeSunset
2 relativeSunset nightTime relativeSunset relativeSunset nightTime
3 relativeSunrise relativeSunrise relativeSunrise nightTime relativeSunrise
4 waterConductiv waterConductiv waterTemperat waterTemperat waterConductiv

ity ity ure ure ity
5 waterTemperat waterTemperat waterConductiv waterConductiv waterTemperat

ure ure ity ity ure
6 waterOxygen waterOxygen waterOxygen waterDensity waterOxygen
7 waterDensity waterDensity waterDensity waterPressure waterDensity
8 waterPressure waterPressure waterPressure waterTransmiss waterPressure

ion
9 waterSalinity waterSalinity waterSalinity waterOxygen waterSalinity
10 waterTransmiss waterTransmiss waterTransmiss waterSalinity waterTransmiss

ion ion ion ion

because it is correlated to temperature and oxygen. The relevant importance of these factors is

shown in both feature rankings and the deducted decision tree.

4.4 Feature selection on other depths

In order to further confirm our findings, we also conduct feature selection on 15 minutes averaged

data for the following depths: 66m (depth index is 550 out of 800, near surface), 54m (depth index:

450) and 30m (depth index: 250, near seabed). Results are shown in Figure 11 and Figure 12 of the

Appendix.

Table 4.9 - 4.11 show the feature rankings for various depths.

Comparing results from different depths, we find:

1. At higher levels (depth 550 and 450, near surface), times have higher rankings. At lower

level (depth 350 and 250, near seabed), water features are more important. These rankings

are consistent with what we expected, because the instrument is located on the seabed. The

measured water feature values should represent the situations deep in the sea better than those

near the surface.

2. Time features, water conductivity, temperature and oxygen always have higher rankings. The

relative rankings among the water features are almost unchanged. Conductivity, tempera-

ture and oxygen almost always have higher rankings than other water features. These results

further confirm these features are the most important among all features we collect.

3. Results of CFS tests also confirm that times are more important than water conditions at higher

level (near surface). Time features are selected at all depth, they are always important.
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Table 4.10: Feature rankings for depth 54m (depth index 450)

ChiSquare GainRatio InfoGain OneR SymmetricalUn
cert

1 nightTime relativeSunset nightTime nightTime relativeSunset
2 relativeSunrise relativeSunrise relativeSunset waterPressure relativeSunrise
3 relativeSunset nightTime relativeSunrise waterTransmiss nightTime

ion
4 waterConductiv waterConductiv waterConductiv relativeSunrise waterConductiv

ity ity ity ity
5 waterDensity waterTemperat waterTemperat waterSalinity waterTemperat

ure ure ure
6 waterOxygen waterOxygen waterDensity waterConductiv waterOxygen

ity
7 waterTemperat waterDensity waterOxygen relativeSunset waterDensity

ure
8 waterSalinity waterSalinity waterSalinity waterTemperat waterSalinity

ure
9 waterPressure waterPressure waterPressure waterDensity waterPressure
10 waterTransmiss waterTransmiss waterTransmiss waterOxygen waterTransmiss

ion ion ion ion

Table 4.11: Feature rankings for depth 30m (depth index 250)

ChiSquare GainRatio InfoGain OneR SymmetricalUn
cert

1 nightTime nightTime nightTime nightTime nightTime
2 waterConductiv waterConductiv waterConductiv waterConductiv waterConductiv

ity ity ity ity ity
3 waterTemperat waterTemperat waterTemperat relativeSunrise waterTemperat

ure ure ure ure
4 relativeSunrise waterOxygen relativeSunrise waterTemperat waterOxygen

ure
5 waterOxygen relativeSunrise waterOxygen waterSalinity relativeSunrise
6 relativeSunset waterSalinity relativeSunset waterOxygen relativeSunset
7 waterSalinity relativeSunset waterSalinity waterTransmiss waterSalinity

ion
8 waterTransmiss waterTransmiss waterTransmiss relativeSunset waterTransmiss

ion ion ion ion
9 waterDensity waterDensity waterDensity waterPressure waterDensity
10 waterPressure waterPressure waterPressure waterDensity waterPressure
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4. At lower levels, water transmission and water salinity have higher rankings compared with

higher levels. At lower levels, water density has lower rankings compared with higher levels.

One possible way to explain would be water transmission and water salinity change more

rapidly along the water column. Therefore, the real water transmission at depth 550, for

example, is very different from that at depth 250 (which is much closer to the instrument).

Because of the limitation of the instrument, we don’t have a way to confirm this hypothesis.

5. The deduced decision trees have similar structures. Comparing trees for different depths, we

find that although the trees are not exactly the same, relative times and night time are almost

always placed in higher levels. These features are used to make the initial decisions. Water

features are placed in lower levels of the trees.

4.5 Predicting zooplankton migration pictures

We apply the above learning process to all depths along the water column for the training set. For

each depth, water features and time features are collected, the time series is divided into 15-minute

time intervals and the class labels are given using the same parameters (5 and 15db). We use the

training set to build a classifier for each of the depths along the water column. J48, a typical imple-

mentation of decision tree learning algorithm [4], is used as our classification model. We evaluate

this model in terms of classification accuracy via performing ten-fold cross validation ten times. In

each time, the data set is divided into ten subsets, in which one of the ten subsets is used as the test

set and the other nine subsets are put together to form a training set. Then the average classification

accuracy across all ten trials is computed. The advantage of this method is that every instance gets to

be in a test set exactly once, and gets to be in a training set nine times. The variance of the resulting

estimate is reduced as the number of folds is increased. When classifiers are built, we use them to

make predictions on the test set and plot the predicted class memberships as a picture. Figures 4.11

shows the predicted picture and the corresponding true picture for July 26, 2009. We include more

pictures in Appendix Part G.

Comparing predictions with the true plots, we can see that the predictions are very similar to the

true situations. Though sharing similar shapes, the migration path of each day is a little different

from those of neighbouring days. For early April, the zooplankton signals are not very intense, so do

the predictions; for middle April, the signals become more intense, and the predictions reflect this

change. For late April, the signals become less intense again, and the predictions change accordingly.

For July, the signals become more and more intense from early July to late July, the predictions also

follow this trend. Overall speaking, the predicted pictures are very similar to the true plots. The

zooplankton DVM pattern can be clearly seen from the predicted picture.
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(a) Prediction. The predicted existence of zooplankton is shown in
green

(b) True label

Figure 4.11: Plots of predicted and true class labels for July 26, 2009

4.6 Comparing Classification Pictures with Almost Periodic Curves

In this research study, two methods are used to model the zooplankton distribution along the water

column based on the same dataset collected in the same study areas. The almost periodic curves

provide a high level description of the dynamics of zooplankton distribution through a long period

of time. The classification pictures, on the other hand, provide much more detailed predictions on

finer time scales. Although served for different purposes, both methods are able to make predictions

based on a set of related features. We want to compare these two methods in regard to accuracy and

usefulness.

Each period of the almost periodic curve depicts the averaged situation for a month. On the other

hand, when using classifier to make predictions, they are able to make predictions for each day. In

order to compare the two methods, we first calculate a monthly averaged classification picture by

taking the median values for predictions of a month. Figure 4.12 illustrates the predicted picture

(averaged) together with the predicted upper and lower bounds for April 2009.

In Figure 4.12, the black curve represents the predicted upper bound and the blue curve rep-

resents the lower bound. The predicted existence of zooplankton is illustrated in green. From the

picture, we can see that the path depicted by the curve deviates in some places from the predicted

picture. In order to decide which prediction is closer to the true situation, we also compare the two

types of predictions with the ground truth in the following pictures.

Figure 4.13 shows the upper and lower bounds together with the true data plot.

Figure 4.14 shows the difference between predicted class membership and the true situation.

The pink dots illustrate the difference/errors.

From Figures 4.13 and 4.14, we can see that the classification picture is much closer to the true

situation. The general shape of the migration path is correctly predicted, with most of the errors
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Figure 4.12: The predicted picture and the predicted upper and lower bounds for April, 2009. The
black curve represents the predicted upper bound and the blue curve represents the lower bound.
The predicted existence of zooplankton is illustrated in green

10 20 30 40 50 60 70 80 90

100

200

300

400

500

600

700

800

Figure 4.13: Predicted upper and lower bounds and the true data
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Figure 4.14: Classification results together with the true data. The pink dots illustrate the errors

occurring at the seabed and surface. The almost periodic curve, on the other hand, has relatively

larger deviations.

We further conduct comparison in July. The experiments we conduct confirm that classification

pictures are closer to the ground truth than the almost periodic curve. Figures 4.15 - 4.17 show the

predictions and their comparison with the truth in July.

Although the almost periodic curve has more variances than the classification pictures, we still

think it is a useful method for modeling the migration path. The almost periodic curve is mainly

used to show the general graduations of the migration paths for a long period of time. It allows us

to get a general idea of the “whole picture” and get a sense of how the curve changes over time.

The classification pictures, on the other hand, are more suitable for finer time scale explorations,

with detailed predictions for each day. They are useful for cases when an accurate, fine scale explo-

ration is desired. The two methods serve for different purposes and both have values in modeling

zooplankton distribution.
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Figure 4.15: Plots of predicted class labels and the predicted curves. The black curve represents the
predicted upper bound and the blue curve represents the lower bound. The predicted existence of
zooplankton is illustrated in green
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Figure 4.16: Plots of true class labels and the predicted curves

63



Figure 4.17: Difference between the predicted and true labels. The pink dots illustrate errors
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Chapter 5

Conclusion
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5.1 Contribution

Zooplankton play an important role in the oceanic food web. Studying the behaviour of zooplankton

helps us understand the functioning of marine ecosystem better. In this research study, we use ma-

chine learning methods to model and predict zooplankton diel vertical migration patterns at different

time granularities.

We first use an Almost Periodic Function to model the DVM pattern on a large time granular-

ity. Acoustic backscatter data of 19 months are used to generate a monthly averaged migration path

through a semi-automatic process. We use curve fitting methods to fit the migration data to the

mathematical model. The almost periodic model allows us to model the DVM pattern into a gener-

alized Fourier series whose coefficients are not constant, but functions of time. A further correlation

analysis between 15 environmental measurements and the Fourier coefficients reveals that the co-

efficients are correlated with not only time, but environmental measurements as well. Therefore,

we use environmental measurements as parameters in the functions of coefficients. The values of

the environmental factors change over time, so do the coefficients. The functions of coefficients are

later included into the Fourier series representation of the DVM pattern. We compare Fourier series

with different terms (1 term to 8 terms) and find that the 5-term Fourier series gives the smallest

error. These mathematical models clearly show the almost periodicity of the DVM pattern and can

be used to predict further DVM behaviours on large time scales.

Besides modeling the general DVM pattern using monthly averaged data, we also model the pat-

tern on finer time scales using supervised learning algorithms. Before the learning process, we first

use feature selection algorithms to examine the correlation between the DVM pattern and various

features on finer time granularities (60 minutes, 30 minutes, 15 minutes and 5 minutes) and various

depths (near surface, middle depth and near seabed). We use acoustic backscatter data of seven

months and 18 environmental measurements to conduct correlation analyses. 5 individual feature

evaluators are used and the results are compared. The feature rankings produced by the evaluators

are very similar. Night time, water conductivity and water temperature are ranked the top 3 fea-

tures by all evaluators. For feature subset evaluation, we use 3 evaluators and 8 search methods to

conduct experiments. The results show that besides time, both water and land measurements have

impact on the DVM pattern. The relative importance of the measurements is shown in both feature

rankings and feature subset selection results. Among all measurements, sunrise/sunset times, water

temperature, water oxygen and water conductivity are the most important factors. This result further

confirms our findings on monthly averaged data, and provides valid reasons for using environmental

measurements as features in the learning process. For the learning process, we use decision tree

as the classification algorithm and build a classifier for each depth along the water column on 15

minutes averaged data. The classifiers are able to predict the existence of zooplankton in the future.

Combining predictions from all classifiers, we get a predicted migration picture. The prediction is

very close to the true zooplankton distribution and clearly shows the DVM pattern on finer time
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scales.

Both the almost periodic function and the classifiers are useful tools for modeling and predicting

the DVM pattern. The almost periodic function is more suitable for modeling the general behaviour

of the DVM pattern on a large time scale. The model allows us to explore the DVM pattern in a

systematic way and make predictions on large time granularities. The classifiers, on the other hand,

are more suitable for finer scale analyses. They provide a way of accurately predict the DVM pattern

on small time granularities. Combining both tools, domain experts may be able to study the DVM

pattern in an easier and more systematic way.

5.2 Future work

5.2.1 Calibration

The ZAP intensity data we use have not been calibrated. Calibration requires net samplings and

further processes to correct what the instrument measures. The calibrated data will be closer to

the real situation and we can use the calibration information to generate the biomass medians of

zooplankton. The biomass medians should be a better representation of the migration path than the

current paths we use from the semi-automatic process. The models learnt from the biomass medians

should also represent the real situation better.

5.2.2 Integrating migration path models

In this research study, we use almost periodic functions to model the upper bound, median depth

and lower bound of the DVM pattern. Using all of the models, we are able to explore the pattern

both temporally and spatially. If the models are integrated into one model, it will allow examining

the pattern in more compact way. Moreover, the compact model may provide additional information

through the parameters.

5.2.3 Interaction between fish schools and zooplankton

In this research study, we mainly focus on the DVM behaviour of zooplankton. From the intensity

plots, we can also see fish schools clearly. The zooplankton seem to avoid fish schools by descending

to the seabed and during daytime, fish schools also seem to follow the zooplankton for certain

months. The interaction between fish schools and zooplankton may be an interesting topic that

worth further exploration.

5.2.4 Reasoning the environmental impact

This research study finds that several environmental and time measurements have strong correlations

with the distribution of zooplankton. The reasons for these correlations are out of the scope of this

thesis but may be interesting to domain experts.
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Part A.

Figure 1 shows the generated middle-depth migration path from January 2008 to July 2009. Data

from January 2008 to January 2009 is used as the training set, the remaining data is used as the test

set.

Figure 2 shows the generated upper bound of the migration path.

Figure 3 shows the generated lower bound of the migration path.

Figure 4 shows the fitted coefficient and frequency values if an 8-term Fourier series is used as

the model. The table also shows the mean and standard deviation of each coefficient and the calcu-

lated statistical measurements for each fit.

Part B.

Figure 5 shows the monthly averaged environmental measurements we collect.

Part C.

Figure 6 shows results of linear correlation analysis using Pearson’s correlation function. Strong

correlations (p-values < 0.005) are shown in bold.

Figure 7 shows results of information gain between environmental factors and coefficients.

Larger values in the table indicate stronger correlation.

Part D.

Each coefficient is modeled as a function of various measurements (features).

Here are the detailed functions for the middle depth. an(t) and bn(t) are coefficients of a 5-term

Fourier series.

a0 = 0.4982 * nightTime + 0.1409 * waterOxygen+ 0.0193 * waterConductivity-0.8838 * waterPressure-

0.087 * waterDensity -0.0541 * waterSalinity+0.3196 * waterTemperature+0.9509 * waterTrans-

mission+1.1561 * landTemperature+0.4385 * landDewPointTemperature+0.0855 * landVisibility-

0.9938 * landHumidity+0.9897 * landWindDirection+2.3959 * landWindspd-0.0639 * landPres-

sure+160.0701

a1 = -0.2953 * nightTime-1.1173 * waterOxygen+0.071 * waterConductivity+1.8055 * water-

Pressure+0.3435 * waterDensity+0.4814 * waterSalinity+0.247 * waterTemperature+0.1143 * wa-

terTransmission+0.3027 * landTemperature-0.6223 * landDewPointTemperature-4.9539 * landVisibility-

0.8234 * landHumidity-0.4848 * landWindDirection-1.2882 * landWindspd+0.8744 * landPressure-

343.4623
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Figure 1: Middle-depth migration path from January 2008 to July 2009
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Figure 2: Upper bound of the migration path from January 2008 to July 2009
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Figure 3: Lower bound of the migration path from January 2008 to July 2009
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Figure 4: Fitted coefficient and frequency values if an 8-term Fourier series is used as the model
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Figure 5: Monthly averaged environmental measurements
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Figure 6: Linear correlation analysis using Pearson’s correlation function
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Figure 7: Information gain between environmental factors and coefficients
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b1 = -0.0935 * nightTime-0.4951 * waterOxygen+0.0239 * waterConductivity+0.0053 * water-

Pressure+0.1078 * waterDensity+0.158 * waterSalinity+0.0246 * waterTemperature-0.288 * waterTransmission-

0.3807 * landTemperature+0.9448 * landDewPointTemperature+0.659 * landVisibility+3.2365 *

landHumidity+4.1754 * landWindDirection-1.9758 * landWindspd-0.662 * landPressure+13.8303

a2 = 0.501 * nightTime-2.0522 * waterOxygen+0.0822 * waterConductivity+1.6243 * water-

Pressure+0.3771 * waterDensity+0.576 * waterSalinity+0.3864 * waterTemperature-0.093 * water-

Transmission+3.1644 * landTemperature+0.1958 * landDewPointTemperature-0.6634 * landVisibility-

4.5997 * landHumidity+1.4665 * landWindDirection-0.1954 * landWindspd+1.0791 * landPressure-

670.0255

b2 = 0.706 * nightTime-0.1777 * waterOxygen+0.0355 * waterConductivity-0.7691 * waterPressure-

0.0517 * waterDensity+0.0144 * waterSalinity+0.4321 * waterTemperature+1.8953 * waterTrans-

mission+1.5292 * landTemperature+0.6438 * landDewPointTemperature+1.4229 * landVisibility-

0.0394 * landHumidity+0.0491 * landWindDirection+2.1191 * landWindspd-0.0776 * landPressure-

583.8126

a3 = -0.1776 * nightTime+0.6255 * waterOxygen+0.0134 * waterConductivity+0.6893 * wa-

terPressure+0.1117 * waterDensity+0.1058 * waterSalinity+0.0153 * waterTemperature+0.3509 *

waterTransmission-0.7259 * landTemperature+0.0795 * landDewPointTemperature-3.3063 * land-

Visibility+0.1871 * landHumidity-6.1455 * landWindDirection+0.962 * landWindspd+0.7699 *

landPressure+9.6869

b3 = -0.1413 * nightTime-1.3491 * waterOxygen+0.0809 * waterConductivity+1.8065 * water-

Pressure+0.3568 * waterDensity+0.5191 * waterSalinity+0.3281 * waterTemperature+0.1088 * wa-

terTransmission+1.0387 * landTemperature+ 0.0269 * landDewPointTemperature-3.6598 * landVisibility-

1.1395 * landHumidity+0.9288 * landWindDirection-1.3527 * landWindspd+0.8765 * landPressure-

326.1203

a4 = -0.1071 * nightTime-0.7382 * waterOxygen+0.0135 * waterConductivity+0.3436 * water-

Pressure+0.055 * waterDensity+0.0978 * waterSalinity+ 0.0338 * waterTemperature-0.242 * water-

Transmission+1.6711 * landTemperature+1.9307 * landDewPointTemperature+0.3363 * landVisibility-

2.7006 * landHumidity+3.0144 * landWindDirection-0.9342 * landWindspd-0.6222 * landPres-

sure+205.1355

b4 = 0.434 * nightTime-1.8624 * waterOxygen+0.0707 * waterConductivity+2.1488 * water-

Pressure+0.3912 * waterDensity+0.5609 * waterSalinity+0.2759 * waterTemperature+1.1893 * wa-

terTransmission+2.2907 * landTemperature-0.931 * landDewPointTemperature-0.8797 * landVisibility-

3.2716 * landHumidity-0.1713 * landWindDirection-1.1017 * landWindspd+1.78 * landPressure-

881.9389

a5 = -0.1689 * nightTime+1.2983 * waterOxygen-0.0351 * waterConductivity-0.1697 * waterPressure-

0.1531 * waterDensity-0.2519 * waterSalinity-0.1547 * waterTemperature+0.3781 * waterTransmission-

1.9722 * landTemperature-0.7956 * landDewPointTemperature-0.0776 * landVisibility+1.982 * landHumidity-
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1.8861 * landWindDirection+0.5724 * landWindspd+0.3696 * landPressure+137.3678

b5=-0.2544 * nightTime-0.3726 * waterOxygen+0.0393 * waterConductivity+1.3349 * wa-

terPressure+0.2281 * waterDensity+0.3024 * waterSalinity+0.0668 * waterTemperature+0.5045 *

waterTransmission-1.5544 * landTemperature-1.826 * landDewPointTemperature-4.0919 * land-

Visibility+0.5924 * landHumidity-5.3874 * landWindDirection+0.6228 * landWindspd+0.1175 *

landPressure+2.8581

w = 0.004383

The following are detailed functions for the upper bound:

a0=0.4472 * nightTime+0.2111 * waterOxygen+0.0332 * waterConductivity-1.4024 * waterPressure-

0.1704 * waterDensity-0.1205 * waterSalinity+0.4887 * waterTemperature+1.9171 * waterTransmission-

0.0681 * landTemperature-0.4011 * landDewPointTemperature+0.097 * landVisibility-0.7425 * land-

Humidity+0.5895 * landWindDirection+3.7556 * landWindspd-1.1132 * landPressure+396.1964

a1=-0.0567 * nightTime-0.8661 * waterOxygen+0.0248 * waterConductivity+0.1224 * water-

Pressure+0.185 * waterDensity+0.2098 * waterSalinity-0.0108 * waterTemperature-0.2329 * waterTransmission-

0.9047 * landTemperature-1.0927 * landDewPointTemperature-1.3668 * landVisibility+0.5773 *

landHumidity+0.5769 * landWindDirection-3.9719 * landWindspd+0.4798 * landPressure-378.3218

b1=-0.0436 * nightTime-0.2503 * waterOxygen-0.0112 * waterConductivity+1.4382 * water-

Pressure+0.2101 * waterDensity+0.1705 * waterSalinity-0.3598 * waterTemperature+0.0248 * waterTransmission-

1.054 * landTemperature-0.5195 * landDewPointTemperature-0.3026 * landVisibility-0.4059 * land-

Humidity+3.2878 * landWindDirection-4.6634 * landWindspd+1.6506 * landPressure-115.7891

a2=0.249 * nightTime-1.0391 * waterOxygen+0.0368 * waterConductivity+1.7081 * waterPres-

sure+0.2849 * waterDensity+0.3977 * waterSalinity+0.0293 * waterTemperature-0.2499 * water-

Transmission+1.1798 * landTemperature-0.0609 * landDewPointTemperature-0.7131 * landVisibility-

0.6643 * landHumidity+0.5431 * landWindDirection-0.1051 * landWindspd+0.6642 * landPressure-

624.2422

b2=0.7439 * nightTime-0.1035 * waterOxygen+0.0413 * waterConductivity+0.1149 * waterPressure-

0.0554 * waterDensity+0.0208 * waterSalinity+0.4532 * waterTemperature+0.9941 * waterTrans-

mission+0.5993 * landTemperature+0.0156 * landDewPointTemperature+1.1545 * landVisibility+0.1736

* landHumidity-2.5601 * landWindDirection+2.4246 * landWindspd-0.2507 * landPressure-583.8455

a3=-0.1752 * nightTime-0.1387 * waterOxygen-0.0025 * waterConductivity+1.6052 * water-

Pressure+0.1481 * waterDensity+0.1479 * waterSalinity-0.1451 * waterTemperature+0.6922 * waterTransmission-

1.0657 * landTemperature-2.9787 * landDewPointTemperature-4.0006 * landVisibility-0.2708 *

landHumidity-6.773 * landWindDirection-0.3837 * landWindspd+1.4164 * landPressure-96.3242

b3=-0.0531 * nightTime-0.9217 * waterOxygen+0.0104 * waterConductivity+1.1755 * water-

Pressure+0.2688 * waterDensity+0.2786 * waterSalinity-0.192 * waterTemperature+0.4362 * wa-

terTransmission+0.1862 * landTemperature-0.5931 * landDewPointTemperature-2.8729 * landVisibility-
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0.4418 * landHumidity+0.413 * landWindDirection-5.0014 * landWindspd+1.5398 * landPressure-

346.6738

a4=-0.3448 * nightTime-0.3158 * waterOxygen-0.0042 * waterConductivity+0.4372 * water-

Pressure+0.0659 * waterDensity+0.0633 * waterSalinity-0.1587 * waterTemperature-0.204 * wa-

terTransmission+0.3043 * landTemperature+1.2292 * landDewPointTemperature-1.8616 * landVis-

ibility+0.0726 * landHumidity+2.2855 * landWindDirection-2.2032 * landWindspd-0.3842 * land-

Pressure+250.5848

b4=0.2518 * nightTime-1.4486 * waterOxygen+0.0563 * waterConductivity+2.2734 * water-

Pressure+0.2971 * waterDensity+0.4396 * waterSalinity+0.2356 * waterTemperature+0.1625 * wa-

terTransmission+1.8328 * landTemperature-0.9759 * landDewPointTemperature-1.8936 * landVisibility-

1.7241 * landHumidity-1.6949 * landWindDirection-0.877 * landWindspd+1.4936 * landPressure-

633.9387

a5=-0.1796 * nightTime-0.501 * waterOxygen+0.0525 * waterConductivity+0.0128 * waterPressure-

0.0598 * waterDensity+0.0428 * waterSalinity+0.5022 * waterTemperature+0.0698 * waterTransmission-

1.7361 * landTemperature-3.0451 * landDewPointTemperature+1.0209 * landVisibility+2.5793 *

landHumidity-2.661 * landWindDirection+1.8332 * landWindspd-0.7988 * landPressure+66.9651

b5=-0.1174 * nightTime-0.3054 * waterOxygen-0.0129 * waterConductivity+1.5915 * water-

Pressure+0.1946 * waterDensity+0.1731 * waterSalinity-0.3293 * waterTemperature+0.3179 * waterTransmission-

1.4789 * landTemperature-2.5118 * landDewPointTemperature-3.2267 * landVisibility-1.0163 *

landHumidity-7.2031 * landWindDirection-1.4513 * landWindspd+0.9261 * landPressure+1.816

w = 0.004383

The following are detailed functions for the lower bound:

a0= 0.4315 * nightTime+0.2446 * waterOxygen+0.0112 * waterConductivity-0.8882 * waterPressure-

0.0955 * waterDensity-0.0774 * waterSalinity+0.2516 * waterTemperature-0.2148 * waterTrans-

mission+0.68 * landTemperature-0.0416 * landDewPointTemperature+0.6638 * landVisibility-1.3062

* landHumidity+1.2558 * landWindDirection+2.4605 * landWindspd+0.0194 * landPressure+218.6285

a1= 0.1894 * nightTime+0.0696 * waterOxygen-0.0184 * waterConductivity+1.1165 * water-

Pressure+0.1543 * waterDensity+0.0977 * waterSalinity-0.3467 * waterTemperature-1.6708 * wa-

terTransmission+0.1222 * landTemperature+1.1128 * landDewPointTemperature-1.5306 * landVisibility-

3.2983 * landHumidity+4.1561 * landWindDirection-3.4908 * landWindspd+1.4583 * landPressure-

363.2282

b1= 0.5104 * nightTime-1.2715 * waterOxygen+0.0637 * waterConductivity+0.2249 * water-

Pressure+0.115 * waterDensity+0.2288 * waterSalinity+0.4441 * waterTemperature-1.5668 * wa-

terTransmission+2.7203 * landTemperature+2.2383 * landDewPointTemperature-1.7465 * landVisibility-

6.8352 * landHumidity+1.3435 * landWindDirection-0.3598 * landWindspd-0.4839 * landPres-

sure+510.392
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a2= 0.1379 * nightTime+1.0047 * waterOxygen-0.0426 * waterConductivity-0.1157 * waterPressure-

0.0074 * waterDensity-0.0815 * waterSalinity-0.3465 * waterTemperature-0.1839 * waterTransmission-

0.6506 * landTemperature-0.1118 * landDewPointTemperature-0.9243 * landVisibility+1.0168 *

landHumidity-1.1512 * landWindDirection+1.6889 * landWindspd+0.469 * landPressure-138.0867

b2= 0.6115 * nightTime+0.3088 * waterOxygen+0.0012 * waterConductivity-0.5501 * waterPressure-

0.0861 * waterDensity-0.0839 * waterSalinity+0.1592 * waterTemperature+0.4953 * waterTrans-

mission+0.1547 * landTemperature-0.8544 * landDewPointTemperature+2.8437 * landVisibility-

1.5319 * landHumidity+0.3979 * landWindDirection+2.6427 * landWindspd+0.4066 * landPressure-

413.7512

a3= -0.2935 * nightTime-0.2575 * waterOxygen+0.0139 * waterConductivity+0.5475 * waterPressure-

0.0923 * waterDensity-0.0245 * waterSalinity+0.2154 * waterTemperature-0.8197 * waterTransmission-

0.1061 * landTemperature-1.4205 * landDewPointTemperature-0.1367 * landVisibility+2.3777 *

landHumidity-1.6842 * landWindDirection+2.1908 * landWindspd-0.8058 * landPressure+148.1451

b3= -0.0871 * nightTime-0.6463 * waterOxygen+0.0219 * waterConductivity+1.3869 * water-

Pressure+0.2179 * waterDensity+0.239 * waterSalinity-0.0659 * waterTemperature+1.0372 * wa-

terTransmission+0.42 * landTemperature+0.73 * landDewPointTemperature-5.2464 * landVisibility-

0.8266 * landHumidity+0.1009 * landWindDirection-4.195 * landWindspd+0.8839 * landPressure-

144.077

a4= -0.3453 * nightTime-0.0725 * waterOxygen+0.017 * waterConductivity-0.3179 * water-

Pressure+0.058 * waterDensity+0.0865 * waterSalinity+0.0269 * waterTemperature-0.5913 * waterTransmission-

0.2047 * landTemperature+1.434 * landDewPointTemperature-1.2171 * landVisibility+1.4339 *

landHumidity+2.3589 * landWindDirection-0.3975 * landWindspd-0.9352 * landPressure+259.4941

b4= 0.0599 * nightTime+0.9212 * waterOxygen-0.0317 * waterConductivity-0.8872 * waterPressure-

0.1573 * waterDensity-0.2084 * waterSalinity-0.098 * waterTemperature+1.0918 * waterTransmission-

1.023 * landTemperature-1.0651 * landDewPointTemperature-0.907 * landVisibility+1.5208 * landHumidity-

2.3067 * landWindDirection+3.3332 * landWindspd-0.6412 * landPressure+161.5931

a5= -0.0047 * nightTime-0.1912 * waterOxygen+0.0465 * waterConductivity-1.2555 * waterPressure-

0.1449 * waterDensity-0.061 * waterSalinity+0.5647 * waterTemperature-0.2008 * waterTransmission-

0.7892 * landTemperature-1.5181 * landDewPointTemperature+3.295 * landVisibility+0.8515 *

landHumidity-1.0804 * landWindDirection+3.4273 * landWindspd-1.2535 * landPressure+195.5641

b5= -0.2546 * nightTime-0.0621 * waterOxygen+0.0016 * waterConductivity+0.9516 * wa-

terPressure+0.1455 * waterDensity+0.1215 * waterSalinity-0.1861 * waterTemperature+1.0537 *

waterTransmission-1.3518 * landTemperature-0.4805 * landDewPointTemperature-2.9956 * land-

Visibility+0.3997 * landHumidity-2.9756 * landWindDirection-2.6749 * landWindspd+0.489 * landPressure-

1.2517

w = 0.004383
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The values of environmental factors change with time and the values of coefficients change ac-

cordingly.

Part E. Feature selection dataset

Figure 8 shows part of the dataset for feature selection. Each row represents one example. Each

example has 7 water features (in yellow), 8 land features (in blue), 3 time features (in red) and one

class label (in green).

Figures 9 and 10 illustrate results of feature selection on 60 minutes averaged data.

Part F.

Figures 11 and 12 illustrate results of feature selection on 15 minutes averaged data. The depth

in the table is denotes by the index (the whole water column is divided into 800 bins).

Figure 13 illustrates results of feature selection on 5 minutes averaged data.

Figure 14 illustrates results of feature selection on 30 minutes averaged data.

Part G.

Figures 15 - 19 show the predicted class labels and the corresponding true class labels, both

plotted as pictures. Overall speaking, the predictions are coherent with the true situation and are

able to capture the subtle changes from day to day.
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Figure 8: Part of the dataset for feature selection
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Figure 9: Feature selection on 60 minutes averaged data
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Figure 10: Feature selection on 60 minutes averaged data (continued)
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Figure 11: Feature selection on 15 minutes averaged data
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Figure 12: Feature selection on 15 minutes averaged data (continued)
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Figure 13: Feature selection on 5 minutes averaged data
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Figure 14: Feature selection on 30 minutes averaged data

(a) Prediction (b) True label

Figure 15: Predicted and true labels for April 2, 2009
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(a) Prediction (b) True label

Figure 16: Predicted and true labels for April 22, 2009

(a) Prediction (b) True label

Figure 17: Predicted and true labels for April 30, 2009

(a) Prediction (b) True label

Figure 18: Predicted and true labels for July 8, 2009
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(a) Prediction (b) True label

Figure 19: Predicted and true labels for July 30, 2009
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