Usage
  • 37 views
  • 243 downloads

Design and Behaviour of Extended Shear Tabs under Combined Loads

  • Author / Creator
    Thomas, Kristin S
  • Current design procedures for extended shear tab connections tend to be conservative and often do not include considerations for axial load. To address these problems, an investigation into the behaviour of extended shear tabs was completed by testing 23 full-scale specimens. Both unstiffened and stiffened extended shear tab specimens were tested that varied in plate thickness, plate depth, and the number of horizontal bolt lines. The specimens were tested by rotating the beam to 0.03 radians, applying a horizontal load, and then applying vertical load until failure. The horizontal loads varied from 500 kN in compression to 200 kN in tension. Based on the test results, design recommendations were made for both unstiffened and stiffened extended shear tabs. The recommendations include strength equations for bolt group design and plate design, while connection ductility is addressed by ensuring the plate will fail prior to bolt or weld rupture.

  • Subjects / Keywords
  • Graduation date
    2014-06
  • Type of Item
    Thesis
  • Degree
    Master of Science
  • DOI
    https://doi.org/10.7939/R3599Z790
  • License
    This thesis is made available by the University of Alberta Libraries with permission of the copyright owner solely for non-commercial purposes. This thesis, or any portion thereof, may not otherwise be copied or reproduced without the written consent of the copyright owner, except to the extent permitted by Canadian copyright law.
  • Language
    English
  • Institution
    University of Alberta
  • Degree level
    Master's
  • Department
    • Department of Civil and Environmental Engineering
  • Specialization
    • Structural Engineering
  • Supervisor / co-supervisor and their department(s)
    • Driver, Robert (Civil and Environmental Engineering)
  • Examining committee members and their departments
    • Jar, Ben (Mechanical Engineering)
    • Driver, Robert (Civil and Environmental Engineering)
    • Callele, Logan (N/A)
    • Cheng, Roger (Civil and Environmental Engineering)