Usage
  • 177 views
  • 241 downloads

Properties of concretes and wood composites using a phosphate-based binder

  • Author / Creator
    Hong, Luong Th
  • Magnesium potassium phosphate ceramics are from the family of phosphate-based cements which can be used as alternatives to Portland cements. In this study, concretes and wood composites were produced using magnesium potassium phosphate ceramic binders and supplementary materials including fly ash, sand, silica fume and sawdust. Bentonite, Delvo Stabilizer and baking soda were used as additives to increase the workability and the setting time of the fresh mixutres and decrease the density of the hardened products. The materials were then reinforced with chopped glass-fibers or textile glass-fabrics to increase their hardened properties. At 50% fly ash by total mass of the binder, the concretes had compressive strength and density of 33 MPa and 2170 kg/m3, respectively, after 90 days of simple curing. At 20% fly ash by total mass of the binder, the wood composites had compressive strength and density of 13 MPa and 1320 kg/m3, respectively, after 90 days. The flexural strengths were about 10% to 47% of the corresponding cylinder compressive strengths for these mixes. Increases in both compressive and flexural strengths for these mixes were observed with the addition of chopped glass-fibers or textile glass-fabrics.

  • Subjects / Keywords
  • Graduation date
    Fall 2013
  • Type of Item
    Thesis
  • Degree
    Master of Science
  • DOI
    https://doi.org/10.7939/R3DZ03802
  • License
    This thesis is made available by the University of Alberta Libraries with permission of the copyright owner solely for non-commercial purposes. This thesis, or any portion thereof, may not otherwise be copied or reproduced without the written consent of the copyright owner, except to the extent permitted by Canadian copyright law.