This is a decommissioned version of ERA which is running to enable completion of migration processes. All new collections and items and all edits to existing items should go to our new ERA instance at https://ualberta.scholaris.ca - Please contact us at erahelp@ualberta.ca for assistance!
- 52 views
- 87 downloads
Multifractal Aspects of Software Development
-
- Author(s) / Creator(s)
-
Software development is difficult to model, particularly the noisy, non-stationary signals of changes per time unit, extracted from version control systems (VCSs). Currently researchers are utilizing timeseries analysis tools such as ARIMA to model these signals extracted from a project's VCS. Unfortunately current approaches are not very amenable to the underlying power-law distributions of this kind of signal. We propose modeling changes per time unit using multifractal analysis. This analysis can be used when a signal exhibits multi-scale self-similarity, as in the case of complex data drawn from power-law distributions. Specifically we utilize multifractal analysis to demonstrate that software development is multifractal, that is the signal is a fractal composed of multiple fractal dimensions along a range of Hurst exponents. Thus we show that software development has multi-scale self-similarity, that software development is multifractal. We also pose questions that we hope multifractal analysis can answer.
-
- Date created
- 2011
-
- Subjects / Keywords
-
- Type of Item
- Conference/Workshop Presentation
-
- License
- Attribution 4.0 International