
Multifractal Aspects of Software Development (NIER Track)

Abram Hindle
Department of Computer

Science
University of California, Davis

Davis, California, USA
ahindle@softwareprocess.es

Michael W. Godfrey
David Cheriton School of

Computer Science
University of Waterloo

Waterloo, Ontario, CANADA
migod@uwaterloo.ca

Richard C. Holt
David Cheriton School of

Computer Science
University of Waterloo

Waterloo, Ontario, CANADA
holt@uwaterloo.ca

ABSTRACT
Software development is difficult to model, particularly the
noisy, non-stationary signals of changes per time unit, ex-
tracted from version control systems (VCSs). Currently
researchers are utilizing timeseries analysis tools such as
ARIMA to model these signals extracted from a project’s
VCS. Unfortunately current approaches are not very amenable
to the underlying power-law distributions of this kind of sig-
nal. We propose modeling changes per time unit using mul-
tifractal analysis. This analysis can be used when a signal
exhibits multiscale self-similarity, as in the case of complex
data drawn from power-law distributions. Specifically we
utilize multifractal analysis to demonstrate that software
development is multifractal, that is the signal is a fractal
composed of multiple fractal dimensions along a range of
Hurst exponents. Thus we show that software development
has multi-scale self-similarity, that software development is
multifractal. We also pose questions that we hope multi-
fractal analysis can answer.

Categories and Subject Descriptors
D.2.9 [Software Engineering]: Management—Lifecycle

General Terms
Measurement

Keywords
multifractal, fractal, version control, wavelets, power-law

1. INTRODUCTION
In this paper we argue and demonstrate that changes per

time-unit signals, extracted from a software project’s version
control system, are often generated from complex stochastic
processes that are not easily modeled via commonly used
time-series analysis techniques. We demonstrate this fact
via evidence that shows that changes per time-unit signals
extracted from version control have multifractal properties
such as fractional dimensionality and self-similarity.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’11, May 21–28, 2011, Waikiki, Honolulu, HI, USA
Copyright 2011 ACM 978-1-4503-0445-0/11/05 ...$10.00.

Various signals in software engineering have been studied
using time-series analysis [5]. These signals include bugs per
time unit, mailing-list messages per time unit and version
control revisions per time unit. A common feature that these
signals share is that they often are drawn from power-law [8],
exponential, log-normal or Pareto [6] distributions.

Jingwei et al. [8] observed that many software engineering
related signals like changes per day exhibit power-law-like
tendencies. This power-law behaviour indicates that there
are multiple scales to the signal, and that the signal is po-
tentially self-similar at different scales. This means that
zoomed in views of the signal will look similar to zoomed
out views of the signal.

Because of this observation we know that other mod-
els popular in time-series analysis such as the Box-Jenkins
ARIMA model [1, 5] are potentially inappropriate due to
their assumptions about the data they analyze. Some of
these assumptions are that the data presents homoscedas-
ticity (constant variance), it is stationary (constant mean
and variance), and has normally distributed errors.

This is relevant to software development because self-simil-
arity is inherent to how we as a community have mod-
eled modern software development. Software development
is composed of repeating patterns of iterations. These it-
erations are broken in to phases, disciplines and activities.
These different scales of process are interesting because they
suggest multi-scale similarity might exist at those scales.
Thus it seems that software development is seemingly com-
posed of repetitions at different granularities. Therefore
software development has its own intentional elements of
self-similarity.

Why must we bother with this technique? We must ad-
dress the complexity of software development activities if
we want to model them. Modeling these activities allows
for multiple uses such as improved predictions and estima-
tions about change, and a better understanding about devel-
opment processes that emerge from prescribed and ad-hoc
processes. Furthermore we need models to handle the noise
within these signals, as it is the noise which defines these
signals.

One intriguing aspect of this analysis is if the dimension-
ality of a signal can give us indicators of the health or the
stability of a system and its development. One of the com-
pelling examples of multifractal analysis is the application
of multifractal analysis to electrocardiograms. P.Ch. Ivanov
et al. [7] found that the range of dimensionality of electro-
cardiograms was an indicator of the health of a human heart
(see Figure 1). Can this kind of discovery be applied to soft-

ware development? What if the dimensionality of a project’s
development signals collapse near release time or due to an
increasing system complexity?

We wish to investigate if various software development sig-
nals are multifractal. Although in this paper we investigate
and demonstrate that a single software engineering relevant
signal, changes per time unit, is often multifractal. We then
conclude with various suggestions for future directions and
future work that utilize this kind of analysis.

Our contributions in this paper include:

• We demonstrate that many software development be-
haviours exhibit multifractal properties.

• We provide a software engineering relevant introduc-
tion using multifractal analysis to the software engi-
neering research community.

• We confirm that changes per time unit signals ex-
tracted from version control exhibits fractal properties
beyond just being a power-law.

1.1 Previous Work
With respect to software engineering research Jing Wei

Wu [8] described software development processes as fractal
because many explicitly matched power-laws. Power-law-
like signals are not necessarily multifractal but are definitely
fractal and exhibit fractal scaling.

Marco D’Ambros created a“fractal visualization”that uti-
lized scaling techniques to create zoomable scaling views [3].

1.2 Self-similarity and Fractal Behaviour
Multi-scale self-similarity is the similarity of a signal to

itself at multiple scales. That is if you normalize for scale,
data at one scale will look similar to data at another scale.
An example from nature of this phenomena is that small
streams and creeks often mimic the shapes that larger rivers
have but at much grander scales. Fern leaves have fronds
which scale from the very small to the very large while main-
taining a similar overall shape. If you normalized either of
these, rivers and streams or fern leaves, you would find that
the entities are similar once normalized, thus these similar-
ities exist at multiple scales. These similarities are more
dramatically depicted in Mandelbrot fractals (see Figure 2)
where the large shape of the fractal often appears at smaller
scales.

Self-similarity is often considered to be inherent to fractal
behaviour. Mandelbrot adapted fractals to timeseries anal-
ysis, eventually he discovered that some signals were com-
posed of more than one fractal or a range of fractals, thus
creating multifractals. To address this kind of signal, multi-
fractal analysis was created. This is a kind of analysis that
attempts to determine if a signal is multifractal and what
kind of self-similarity occurs.

In Figure 1 we can see the plot of the dimensionality of the
electrocardiogram of a healthy heartbeat (the large lump)
and an unhealthy heart beat (the small lump). The D(h)
plot, explained in Section 1.3, indicates the range of fractal
dimensionality of a signal [7] over its range of Hurst ex-
ponents. The smaller the range and domain of D(h) the
less likely that the signal exhibits multifractal behaviour.
This example might have an analogue within software devel-
opment. Perhaps when the dimensionality of development
collapses an externally motivated or catastrophic event is
occurring.

0.0 0.1 0.2 0.3 0.4
h

0.4

0.6

0.8

1.0

1.2

D
(h
)

Healthy
Heart Failure

Figure 1: D(h), fractal dimensionality of heartbeat
intervals of a healthy heart (large) and an unhealthy
heart (small) taken from P.Ch. Ivanov et al. [7]

Figure 2: An example of a Mandelbrot fractal,
zoomed-in, showing self-similarity at multiple scales.

1.3 Wavelets and Multifractals
We rely on Gauss derivative-based wavelets to detect mul-

tifractals [2]. This technique uses wavelets to find regions
that are self-similar, it is used to determine important func-
tions such as τ(q) and D(h) that are explained below.

Wavelets are similar to Fourier transforms. The first dif-
ference is that wavelets use a wide variety of functions, such
as derivatives of the Gauss function, to compose signals
while the Fourier transform tends to focus on sine-waves.
The second important difference is that the Fourier trans-
form splits the frequency space into equal sized bins. This
means that more bins are allocated to high frequencies than
low frequencies. Essentially low frequencies are not given
the same amount of representation that medium to high fre-
quencies are given because there are fewer low frequency
bins. Wavelets attempt to address this issue by analyzing
the spectrum at multiple resolutions and multiple bin sizes.
To analyze low frequencies the wavelet transform uses more
of the signal per each low frequency bin, while for high fre-

-6

-5

-4

-3

-2

-1

 0

-6 -4 -2 0 2 4 6

ta
u
(q

)

q

FreeBSD tau(q)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1 1.2

D
(h

)

h

FreeBSD D(h)

Figure 3: τ(q), D(h) and Wavelet spectrogram of
changes per time unit over the entire lifetime of
FreeBSD.

quencies the wavelet transform can use shorter segments of
signals. For examples of wavelets see the bottom of Figure
3 and Figure 4.

The next result of this analysis is the partition function.
The partition function provides signal partitions at different
scales. These partitions divide the signal into self-similar
parts at different frequencies. From these partitions, these
maxima lines, we can derive the q and τ(q) values that are
related to the scaling and partitions of a signal. The plot
of τ(q) versus q allows us to determine if signal is multi-
fractal. A multifractal signal’s τ(q) function will not have a
constant slope, and will not be linear, it will be lumpy with
concavities [7].

The next output is D(h), the fractal dimensionality, which
demonstrates the distribution of the signal’s dimensional-
ity. The h specifically refers to the Hurst exponent, H.
Monofractals have one value of h while multifractals have
a range of Hurst exponents. The wider the domain and
range of the D(h) function the more likely that the signal is
multifractal.

In particular in this paper when we refer to dimensionality
we mean the fractal dimensionality (D(h)). This is a kind
of dimensionality representation that includes fractional di-
mensions. That is dimensionality can be fractional.

2. MULTIFRACTALS IN SOFTWARE DE-
VELOPMENT

In this section we will demonstrate that the changes per

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

 0

-6 -4 -2 0 2 4 6

ta
u
(q

)

q

PostgreSQL tau(q)

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

D
(h

)

h

PostgreSQL D(h)

Figure 4: τ(q), D(h) and Wavelet spectrogram of
changes per time unit over the entire lifetime of
PostgreSQL.

time unit signal of many software projects exhibit multi-
fractal behaviour. This means that change events over time
of a software project are self-similar at multiple scales but
also that the signals themselves are quite complex and not
necessarily captured by many kinds of timeseries analysis.

In order to demonstrate that many software system ex-
hibit this multifractal behaviour we took a selection of Free/-
Libre Open Source Software (FLOSS) projects hosted by
SourceForge, which we had mirrored as of January 22nd
2007, that were part of either the top 250 most popular or
most active projects. This resulted in 283 projects with CVS
repositories. We also included newer version of Apache 1.3,
Boost, Evolution, Firebird, FreeBSD, Gnumeric, Postgre-
SQL, Samba and SQLite as examples of successful and mod-
ern FLOSS projects. In total we had 292 projects.

For this experiment, testing for multifractal properties, we
have 3 parameters: the projects, the number of bins (a func-
tion of time-unit size), and the N th derivative of the Gauss
function, which is the kernel used by our wavelet analysis.
The range of Gauss derivatives were from the 0th to the 7th

derivative. In terms of bins we take the lifetime of a project
and we aggregate it to 1024, 4096 and 8192 bins without
smoothing. We found we needed to use a minimum of 1024
bins for the wavelet analysis as we ported the multifractal
tool from PhysioNet [4, 2].

For all of our parameters, 292 projects, 3 bin sizes and 8
Gauss derivatives, we had a total of 7008 experiments (24
experiments per project) to determine if a project with said
parameters was multifractal.

For each experiment, to determine if the signal is con-
sidered multifractal or not, we calculate the wavelet spec-
trogram with the specified Gauss derivative kernel, we then
plot the τ(q) of the project and determine if it is a straight
line or if it has concavity. We also plot the D(H) to deter-
mine the range of dimensionality h of the signal. Essentially
we threshold the range of the dimensionality of the signal as
well as the curvature of the τ(q) line.

To automate the test of if a signal is multifractal we rely
on two sub-tests. Our first sub-test of multifractility is to get
the bounding box of D(H) versus h and then we determine
the length of the hypotenuse. If this length is greater than
0.1 then the signal might be multifractal. The second sub-
test is to measure the maximum second derivative of the
τ(q) versus q, if |max τ ′′(q)| > 0.01 then we consider that
the signal might be multifractal. If a signal passes either of
these sub-tests, we assume that the signal is multifractal.

2.1 Results
We found that with our liberal definition of multifractal

properties that for 75% of the projects evaluated, 87% of
their 24 tests reported positive multifractal properties. The
bottom quarter of projects had ranges of dimensionality (h)
less than 0.6137 thus if we rely on the stricter interpretation
of multifractal properties extracted from other work [7], we
find that the majority of all projects are still multifractal
under conservative guidelines.

In terms of the range of Hurst exponents H, 1/4 of all
projects had a range of 0.61 or less. 1/2 of all projects had
a range of less than 0.97, 3/4 of the projects had ranges less
than 1.28 where as the top 1/4 of ranges were between 1.28
and 2.15. This shows that the signals being analyzed have
a wide and healthy range of Hurst exponents and fractal
dimensionality.

Often the Gauss function (the 0th derivative) would pro-
duce negative results as 45% of these tests were negative for
multifractal properties. Where as for the 1st to 7th deriva-
tives only 8% (6th) to 12% (1st) of the tests were negative
for multifractal properties.

The relationship between the median range of Hurst ex-
ponents of the tests run and the number of commits in a
project was not linearly correlated (Pearson 0.04) but had a
medium rank-based correlation (Spearman 0.50).

2.2 Discussion
Thus we have shown that many FLOSS projects exhibit

multifractal development behaviours in terms of changes per
time unit. This implies that these change signals are quite
complicated and not necessarily easily modeled by time-
series analysis techniques that assume or require certain be-
haviours from the data they analyze.

What these results also confirm is that software develop-
ment is an inherently self-similar stochastic process. Our
current models of agile and iterative development have al-
ready recognized the ebb and flow of development via re-
peating behaviours at many scales from full iterations, to
phases, to even story-card implementation. Although this
method is not necessarily observing these higher level be-
haviours we wonder if this is a component of the multi-scale
self similarity that is being exhibited by these processes.

2.3 Future of Multifractals in Software Engi-
neering

We plan to take this research further and investigate pe-
riods of development when the dimensionality of a signal
collapses. This is analogous to the heartbeat modeling re-
search [7] where they found that the heartbeat intervals of
healthy and dying hearts looked very similar from a time-
series perspective but when multifractal analysis was applied
it was noticed that the dimensionality of an dying heart
had collapsed, to a smaller range than the healthy heart.
Currently we are building a case study to explain why the
dimensionality of a changes per time unit signal collapses
during certain periods.

We are also investigating the multifractility of call depth
and stack depth during testing. Preliminary investigation
reveals that some dynamic traces exhibit multifractal be-
haviours while others do not. We seek to investigate the
significance of this behaviour. One use of multifractal anal-
ysis is that we can partition development by self-similarity
at different scales.

3. CONCLUSIONS
In this paper we have demonstrated some initial results.

We showed that the changes over time in many of the 292
FLOSS projects’ development history exhibit multifractal
properties of self-similarity and multiple fractal dimensions.
We demonstrated their change per time unit behaviour is
multifractal.

Multifractal properties are important because these ex-
plain the complexity of a signal, and why many models, such
as ARIMA, fall short. Essentially, development behaviour
resembles physiological behaviour.

4. REFERENCES
[1] NIST/SEMATECH e-Handbook of Statistical Methods,

2008. http://www.itl.nist.gov/div898/handbook/.

[2] Y. Ashkenazy. Software for analysis of multifractal time
series.
http://www.physionet.org/physiotools/multifractal/,
November 2004.

[3] M. D’Ambros, M. Lanza, and H. Gall. Fractal figures:
Visualizing development effort for cvs entities. In
VISSOFT, pages 46–51. IEEE Computer Society, 2005.

[4] A. L. Goldberger, L. A. N. Amaral, L. Glass, J. M.
Hausdorff, P. C. Ivanov, R. G. Mark, J. E. Mietus,
G. B. Moody, C.-K. Peng, and H. E. Stanley.
PhysioBank, PhysioToolkit, and PhysioNet:
Components of a new research resource for complex
physiologic signals. Circulation, 101(23):e215–e220,
2000 (June 13).

[5] I. Herraiz, J. M. Gonzalez-Barahona, and G. Robles.
Forecasting the number of changes in eclipse using time
series analysis. In MSR ’07, page 32, Washington, DC,
USA, 2007. IEEE Computer Society.

[6] I. Herraiz, J. M. Gonzalez-Barahona, and G. Robles.
Towards a theoretical model for software growth. In
MSR ’07, page 21, Washington, DC, USA, 2007. IEEE
Computer Society.

[7] P.Ch. Ivanov, L. A. N. Amaral, A. L. Goldberger,
S. Havlin, Rosenblum, Z. R. Struzik, and H. E. Stanley.
Multifractality in human heartbeat dynamics. Nature,
399:461–465, June 1999.

[8] J. Wu. Open source software evolution and its
dynamics. PhD thesis, Waterloo, Ont., Canada,
Canada, 2006. AAINR14637.

	Introduction
	Previous Work
	Self-similarity and Fractal Behaviour
	Wavelets and Multifractals

	Multifractals in Software Development
	Results
	Discussion
	Future of Multifractals in Software Engineering

	Conclusions
	References

