Laser Ablation Laser Induced Fluorescence for the Sensitive Detection of Heavy Metals in Water

  • Author / Creator
    Godwal, Yogesh
  • Laser Induced Breakdown Spectroscopy LIBS is a fast non-contact technique for the analysis of the elemental composition using spectral information of the emission from a laser-induced plasma. For the LIBS studies in this thesis the focus has been in using very low energy, microjoule pulses in order to give high spatial resolution and minimize the laser system requirements. This is a regime that we refer to as microLIBS. Under such conditions it is important to maximize the signal detected to give the lowest limit of detection LOD possible. One technique to improve the signal to noise ratios is by coupling LIBS with Laser Induced Fluorescence. This is a technique where the _rst pulse creates a vapor plume and the second pulse tuned to a resonant absorption line of the species of interest re-excites the plume. We term this technique as Laser ablation Laser Induced Fluorescence LA-LIF. We have been investigating the performance of LA-LIF at low pulse energies (_ 1 mJ for both pulses) for the detection of elemental contaminants in water. This technique allows reasonable performance compared to high energy singlepulse LIBS, but at a much reduced total energy expenditure. This allows LODs in the parts per billion range ppb range which typically cannot be obtained with low energy single pulse probing of the systems. This approach or exceeds the sensitivities which can be obtained with many shots using much larger energy systems. In this thesis we investigated the performance of LIBS at low pulse energies for the detection of Pb as a contaminant in water. An LOD of 70 ppb was obtained for an accumulation of 100 shots with the ablation laser pulse energy of 250 _J and an excitation laser pulse energy of 8 _J. A systematic study of the detector conditions was made for the system for the detection of Pb. Scaling laws for the LOD in terms of the pump and probe energies were measured and also the e_ect of detector gain, the gate delay and the gate width were studied. In this thesis LIBS and LA-LIF were also used to analyze ultralow volumes of analyte in liquids in microuidic geometries. LIBS was applied for the detection of Na in liquid droplets in a microuidic system. The detection of Na as low as 360 femtograms was demonstrated for 100 shots integrated in this system. An LOD of 7 ppm for Pb for 100 shot accumulation was demonstrated using the LA-LIF technique on an 18 _m diameter microdroplet. To study the laser interaction with the water targets the MEDUSA one dimensional hydrocode was used. The propagation of the shockwave and plume dynamics were studied using this modeling code. The expansion of the plume was studied and compared to experimentally measured values and to physical models for blast wave expansion and stagnation. Two preconcentration techniques were also studied, one of which used a wood-chip as a substrate to absorb the analyte liquid and wick the salt on to the surface for analysis and the other used an electroplating technique to plate the analyte metal as a thin _lm on a substrate metal used as a cathode. The electroplating method for preconcentration was also studied using a microchip laser and a LOD of 6.4 ppb for Pb in water was obtained for an accumalation of 200,000 shots.

  • Subjects / Keywords
  • Graduation date
  • Type of Item
  • Degree
    Doctor of Philosophy
  • DOI
  • License
    This thesis is made available by the University of Alberta Libraries with permission of the copyright owner solely for non-commercial purposes. This thesis, or any portion thereof, may not otherwise be copied or reproduced without the written consent of the copyright owner, except to the extent permitted by Canadian copyright law.
  • Language
  • Institution
    University of Alberta
  • Degree level
  • Department
    • Department of Electrical and Computer Engineering
  • Supervisor / co-supervisor and their department(s)
    • Fedosejevs, Robert (Electrical and Computer Engineering)
  • Examining committee members and their departments
    • Tsui, Ying (Electrical and Computer Engineering)
    • Marchand, Richard (Electrical and Computer Engineering)
    • Tulip, John (Electrical and Computer Engineering)
    • Singh, Jagdish (DIAL, Mississippi State University)
    • Elezabbi, Abdul (Electrical and Computer Engineering)