Usage
  • 220 views
  • 623 downloads

GDF11 in Ocular Development and MOTA Mapping

  • Author / Creator
    Mateo, Robertino RKP
  • Vision relies on the ability of the eye to receive, process, and send signals to the brain for interpretation. To perform these functions, the eye must properly form during embryogenesis which requires the interaction of genes encoding proteins with various functions during development such as cellular differentiation, migration, and proliferation. In this thesis, I investigate ocular formation and disease. One project assesses the role of gdf11 in a zebrafish animal model to study the eye formation. I also explore the effect of human GDF11 sequence variants in ocular disorders. The second project involves mapping a genomic interval responsible for an autosomal recessive disorder known as Manitoba Oculotrichoanal syndrome. The interval detected is in the vicinity of FREM1, whose paralogs cause Fraser Syndrome, a disease with phenotypic overlaps. Understanding the molecular basis of ocular diseases can aid the development of new methods to potentially better manage, treat, and reduce their occurrences.

  • Subjects / Keywords
  • Graduation date
    Fall 2012
  • Type of Item
    Thesis
  • Degree
    Master of Science
  • DOI
    https://doi.org/10.7939/R3HK71
  • License
    This thesis is made available by the University of Alberta Libraries with permission of the copyright owner solely for non-commercial purposes. This thesis, or any portion thereof, may not otherwise be copied or reproduced without the written consent of the copyright owner, except to the extent permitted by Canadian copyright law.