Usage
  • 35 views
  • 36 downloads

On the Application of Effective Field Theory Methods to Polyelectrons

  • Author / Creator
    McGrath, Paul
  • A recent study of the positronium atom showed that the energy levels could be determined numerically using an effective field theory just as easily as the underlying true theory. Here, we expand on this idea by modeling the three-body positronium-ion and four-body di-positronium molecule with low-energy effective field theories. We then compare the results obtained using the effective theories to those found in a similar manner with the true theory to determine if numerical calculations will converge more quickly using the effective field theory due to removal of the Coulomb divergence. Finally, with the necessary framework in place, we calculate a matrix element needed to evaluate the correction to the magnetic moment of the positronium-ion due to the interaction between the positron and the two electrons which form a spin singlet.

  • Subjects / Keywords
  • Graduation date
    2010-06
  • Type of Item
    Thesis
  • Degree
    Master of Science
  • DOI
    https://doi.org/10.7939/R3NS8Q
  • License
    This thesis is made available by the University of Alberta Libraries with permission of the copyright owner solely for non-commercial purposes. This thesis, or any portion thereof, may not otherwise be copied or reproduced without the written consent of the copyright owner, except to the extent permitted by Canadian copyright law.
  • Language
    English
  • Institution
    University of Alberta
  • Degree level
    Master's
  • Department
  • Supervisor / co-supervisor and their department(s)
  • Examining committee members and their departments
    • Page, Don (Physics)
    • Brown, Alex (Chemistry)
    • Penin, Alexander (Physics)