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Abstract

A recent study of the positronium atom showed that the energy levels could be

determined numerically using an e�ective �eld theory just as easily as the underlying

true theory. Here, we expand on this idea by modeling the three-body positronium-

ion and four-body di-positronium molecule with low-energy e�ective �eld theories.

We then compare the results obtained using the e�ective theories to those found

in a similar manner with the true theory to determine if numerical calculations

will converge more quickly using the e�ective �eld theory due to removal of the

Coulomb divergence. Finally, with the necessary framework in place, we calculate

a matrix element needed to evaluate the correction to the magnetic moment of the

positronium-ion due to the interaction between the positron and the two electrons

which form a spin singlet.
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1 Introduction

Many of our current theories of physics are most e�ectively applied perturbatively.
For instance, in Quantum Electrodynamics (QED) one is often interested in cal-
culating the probability for a particular event to occur. One way to do this is to
consider all possible intermediate steps, or diagrams, that will result in this event
and add them up. Each interaction in the intermediate steps decreases the order at
which that diagram contributes to the total probability so only a �nite number of
diagrams need to be calculated to �nd the probability for a desired precision. One
can increase the precision of their prediction from QED by calculating diagrams to
higher and higher orders, in other words, by calculating more terms in the series.

Similar perturbative approaches are applied in extracting predictions from other
physical theories as well. Unfortunately, as one moves to higher orders the interac-
tions become more complicated and as a result the terms in the series become much
more di�cult to handle. In essence, as one moves to higher order processes they
are dealing with terms that probe the dynamics of the system to higher energies or,
equivalently, shorter distances. If one is only interested in exploring to high precision
the low-energy behaviour of a system then using the full theory to calculate higher
order corrections becomes extremely ine�cient. This is when applying an e�ective
�eld theory can be very useful.

In [18] Richard Hill constructs an e�ective �eld theory to determine the energy
levels of the positronium atom. He argues that since the behaviour of positronium is
dominated by low-energy interactions using the full theory of QED to determine the
bound state energies is excessive. Using an e�ective �eld theory Hill shows that one
can reproduce the results of the true theory to arbitrarily high precision. Positronium
is an ideal candidate for using an e�ective �eld theory since it is a relatively low-
energy system. However, the energy levels of the positronium atom with a purely
Coulombic potential can be determined analytically and the higher order corrections
due to relativistic and radiative e�ects have already been worked out to high precision
[4]. The potential advantages of the e�ective �eld theory approach, in this case, may
be somewhat hidden by being applied to such a well understood system. On the other
hand, the dynamics of the positronium-ion and di-positronium molecule are also
largely determined by the low-energy behaviour but cannot be solved analytically
even when considering only Coulombic interactions. This makes both systems ideal
testing grounds for moving to the next level and searching for possible advantages
of using and e�ective �eld theory. Such an investigation is the focus of this work.

1.1 Polyelectrons

In 1928 Paul Dirac proposed that the bizarre negative energy solutions of his new
wave equation for spin-half particles could be interpreted as antiparticles [10]. That
is, his theory suggested that for every particle there exists a conjugate antiparticle
with the same mass but opposite electric charge. In the simple case of the electron
this meant that there should exist a particle with the same mass as the electron
but with the charge of a proton. Indeed, in 1932 Carl D. Anderson con�rmed the
existence of the antielectron, or positron, by identifying it in a cloud chamber [2].

It turns out that after solving the wave equation for the bound states energies and
wave functions of the hydrogen atom one �nds that these solutions can be written
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entirely in terms of the reduced mass of the system. This means that the stability
of the system is not reliant upon the mass ratio of the proton and electron. This
led Stjepan Mohorovi£i¢ to predict the existence of a hydrogen-like atom where a
positron would replace the proton [29]. Later on, in 1951, Martin Deutsch would go
on to discover this hydrogen-like atom composed of an electron and a positron and
he would give it the name positronium which has stuck ever since [9].

However, even before the experimental discovery of positronium, the idea that
positrons could be substituted for nuclei in more complex atoms and molecules had
been investigated. In these cases the system would be composed of at least three
particles which rendered �nding an analytical solution impossible. Thus, the most
appropriate method to see whether positrons could stabilize systems of three or more
bodies was to use Ritz's variational principle.

John Wheeler presented the �rst proof that a system of two electrons and one
positron - a positronium-ion - would form a stable state in 1946 [38]. Wheeler realized
that the positronium-ion should be solvable using the methods previously applied to
the Helium atom wherein the Helium atom was treated as a three-body system: one
nucleus with twice the individual charge of two orbiting electrons. Following this
reasoning Wheeler used essentially the same trial wave function that Egil Hylleraas
used for the Helium atom and was able to show that it was more energetically
favourable for the positronium-ion to form as compared to having a positronium
atom and a free electron. In this calculation, Wheeler showed that the three-body
system was stable against dissociation into a positronium atom and a free electron
by an energy of at least 0.19 eV. In the same paper Wheeler went on to consider
the four-body case of two electrons and two positrons, later dubbed di-positronium.
He was able to show that the four-body entity was stable against dissociation into
a positronium-ion and a free positron by an energy of at least 3 eV but was 3.6 eV
shy of ruling out dissociation into two separate positronia atoms.

Aadne Ore and Egil Hylleraas picked up where Wheeler left o� shortly thereafter.
Ore performed his own variational calculation for di-positronium but was also unable
to demonstrate that this state was stable although he was able to slightly close the
gap of 3.6 eV that Wheeler had found to about 3.5 eV [30]. Hylleraas on the other
hand worked on the positronium-ion and was able to increase the binding energy
for a positronium atom and a free electron from 0.19 eV as found by Wheeler to
over 0.20 eV [21]. Hylleraas and Ore would then combine their expertise later that
year in a more sophisticated variational calculation to show that the four-body state,
di-positronium, was in fact stable against dissociation into two positronia atoms by
an energy of at least 0.11 eV thus providing the �rst proof that the di-positronium
molecule should exist [22].

Extensive theoretical investigations of these polyelectron systems have continued
to reveal their properties. The fundamentals of the positronium atom can be found
in many textbooks [4] and higher order QED corrections have been laid out in
a recent review by Penin [31]. Bhatia and Drachman [5], Frolov [13], Frost [16],
and Ho [19], to name a few, have improved upon the predicted bound state energy
of the positronium-ion. Likewise, the bound state energy of di-positronium has
been determined to higher precision by Frolov [14], Ho [20], and Rebane [36] among
others. Studies by Bubin et al. [8], Puchalski and Czarnecki [35, 34], and others have
taken the next step by calculating relativistic and radiative corrections to the pure
Coulomb treatment of both the positronium-ion and di-positronium. Also, work by
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Frolov [15], Kinghorn et al. [26], and Suzuki and Usukura [37] have shown that
there are actually four stable states of di-positronium - the L = 0 ground state, two
excited L = 0 states, and one L = 1 state.

In 1980, Allen P. Mills was able to push forward on the experimental side of
things by con�rming through observation the existence of the positronium-ion [23].
Mills �red a beam of positrons through a carbon target so that the positrons from the
beam could interact with the electrons in the carbon to form positronia atoms and
positronium-ions. He was then able to detect the negatively charged positronium-
ions by separating them from the neutrally charged positronia atoms and positively
charged positrons with a magnetic �eld. In 2007 Mills and David Cassidy would
go on to con�rm the existence of di-positronium as well [24]. To do this they �red
a beam of positrons into a porous silica �lm. When the positrons would interact
with the electrons in the silica they could form positronia atoms, either in the long-
lived triplet state ortho-positronium or the short-lived singlet state para-positronium.
Two of these atoms could then interact to form a di-positronium molecule. However,
the decay products and decay rate of di-positronium are di�cult to distinguish from
those of para-positronium so even if di-positronium is created one simply sees a burst
of photons from the para-positronium and di-positronium decays followed by a second
burst from the ortho-positronium decays. In order to be sure the di-positronium was
there at all Mills and Cassidy realized that, unlike the rates of formation of ortho and
para-positronia atoms, the formation rate of di-positronium depended on the tem-
perature since it required a third body to transfer momentum to upon creation. This
meant that as one increased the temperature it became harder for positronia atoms
to interact and form di-positronium. Fewer di-positronium molecules meant more
long-lived ortho-positronium atoms. Thus by varying the temperature and �nding
that the ratio of photons from short-lived state decays (para-positronium and di-
positronium) to long-lived state decays (ortho-positronium) increased at lower tem-
peratures they demonstrated that the di-positronium molecule had indeed formed.
Nevertheless, experimental studies of the di-positronium are still in the early stages
and future investigations could bene�t from a stronger base of theoretical knowledge.

1.2 E�ective Field Theory Methods

As mentioned earlier, an e�ective �eld theory can be constructed so as to reproduce
the true theory to arbitrarily high precision. The reason that this works is relatively
simple. In general, even the best current theory itself is incomplete and only accu-
rately produces physical results up to a certain energy. As one goes to higher energies
they probe shorter distances and new phenomena that have not been incorporated in
the theory become important. Thus the best current theory is really only capable of
making predictions below the energy scale where new physics comes into play. The
fact that this theory may give some mathematical description of the short-distance
structure is unimportant because the physics that we are interested in, that is the
physics at energies accurately described by our theory, cannot probe the short-range
details. If we recall the Heisenberg Microscope thought experiment we see that it is
essentially the same situation. The processes we are interested in take place up to
a particular energy scale meaning they only probe down to a certain length scale.
Thus the details of the theory below this length scale cannot be resolved in these
processes (see Figure 1). As such, one has the freedom to make certain adjustments
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to the theory below this length scale without a�ecting the physical predictions of
the theory.

Figure 1: At a �xed energy a system can only resolve short-range structure down to
a certain limit. This lack of resolution can be exploited to replace the complicated
true theory (left) with a simple e�ective model that looks the same at that energy
(right).

In the case at hand we are interested in replacing the true theory by a low-energy
e�ective theory. The di�erence now is that we are observing processes at energies
well below the scale where the true theory fails. In other words the physics is not
just insensitive to the details beyond the scale where the true theory fails but it is
also insensitive to the details of the true theory within a certain regime. We can
characterize this regime by introducing a cuto� Λ higher than the typical energies of
the physical processes involved. This cuto� Λ is then used to construct the e�ective
�eld theory with the idea being that our e�ective �eld theory must look identical
to the true theory for energies less than Λ but for energies greater than Λ we can
change the theory in any way we like (the logical prescription being to make it easier
to work with). However, it is important to remember that the low-energy physics
is not entirely insensitive to the short-range structure of our e�ective theory. We
account for this then by including corrections in our e�ective �eld theory that mimic
the e�ects of the true short-range behaviour (see Figure 2).

Figure 2: An e�ective �eld theory reproduces the true theory by introducing a cuto�
potential that simpli�es short-range behaviour. A series of corrections can be added
to mimic local interactions.

For the case of positronium, as a lowest order approximation, traditional quantum
mechanics with a pure Coulomb interaction would be considered the true theory. The
Coulomb potential is easy to work with and indeed the dynamics of this problem can
be worked out analytically but nevertheless it provides a useful testing ground. In
[18] Hill describes the procedure for constructing a low-energy e�ective �eld theory
for the problem by �rst introducing a cuto� to eliminate the Coulomb divergence.
He then shows that predictions from the e�ective �eld theory agree with those from
the true theory to arbitrarily high precision by adding in the necessary corrections.

Using an e�ective �eld theory does not have any obvious advantage over the true
theory when dealing with a Coulomb attraction between two particles because this
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problem can be solved analytically. However, when considering scenarios with more
complicated interactions or multiple bodies an analytic solution becomes unattain-
able. Numerical methods become invaluable then to �nd approximate solutions and
this is when using an e�ective theory can become very useful. By design the e�ec-
tive theory is composed of one or more easy-to-handle pieces which can be processed
e�ciently numerically.

In this investigation we will further explore the potential bene�ts of using e�ective
�eld theories to analyze low-energy systems. The variational methods that we will
use to do this are outlined in �2 and following that, in �3, we discuss the numerical
techniques we will employ to solve the variational problem e�ectively. We then
move on to test the e�ective theory against the true theory for the positronium-ion
in �4 and for the di-positronium molecule in �5. In both cases we will be primarily
interested in comparing the rate of convergence of expectation values for the two
methods. The lack of a divergence in our e�ective �eld theory means that a Gaussian
basis should reproduce the wave function for the e�ective �eld theory faster than it
does for the true theory. However, the wave function from the e�ective �eld theory,
despite having converged more than its counterpart for the true theory, will only be
useful if we can use it to evaluate expectation values consistent with the true theory
faster. For the positronium-ion, in �4, we also take a detour from our discussion of
e�ective �eld theory methods to calculate a matrix element necessary to determine
the order α2 correction to the magnetic moment of the positronium-ion resulting from
the interaction between the positron and the two electrons. A thorough discussion of
all results is then presented in �6 where we conclude that, for this investigation, using
an e�ective �eld theory does not speed up the convergence of expectation values. On
top of that, the numerical methods used herein can reach beyond the precision for
which the e�ective �eld theory is designed to be accurate. This means that more
corrections need to be calculated for it to be useful and this creates additional work
that is not present when using the true theory alone. Ultimately, we cannot show
that using e�ective �eld theory methods to analyze low-energy systems has any
signi�cant advantage over applying the true theory directly but a de�nitive answer
is left to future work.

The software developed for this study works equally well with the e�ective and
with the full theories. It consists of modules encapsulating a Hamiltonian, �nding an
energy eigenvalue of this Hamiltonian, and optimizing the associated wave function.
It is already being used by other students for solving problems with other Hamilto-
nians, including an exact solution of the three-body problem in one dimension. A
thorough discussion of this software can be found in �9.
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2 Ritz Variational Principle in Non-Orthogonal Basis

In many circumstances one would like to determine the energy spectrum of a quan-
tum system. In almost all such cases it is very di�cult or even impossible to ana-
lytically solve the Schrödinger equation for these energy levels. However, a simple
variational calculation will often yield a set of upper bounds that closely estimate
one or more of these energy levels.

2.1 Orthonormal Trial Basis

In the simplest scheme one chooses a single normalized trial state |ψ〉 and computes
the expectation of the Hamiltonian with this state. A priori one does not know the
eigenstates of the Hamiltonian but there should exist a decomposition of our trial
state in this unknown orthonormal basis, call it |φi〉 (where Ĥ |φi〉 = Ei |φi〉), such
that

|ψ〉 =
∞∑
i=0

ci |φi〉 . (1)

Since |ψ〉 is normalized we have
∑∞

i=0 |ci|
2 = 1 and it is straightforward to show that

〈ψ| Ĥ |ψ〉 =
∞∑
i=0

|ci|2Ei ≥ E0

∞∑
i=0

|ci|2 = E0, (2)

thus giving an upper bound on the ground state energy. Often one also makes
the trial state dependent on a set of parameters, i.e. |ψ〉 = |ψ (α, β, ...)〉, so that
the upper bound can be extremized at the end of the calculation in terms of these
parameters.

Rather than using a single trial state it can be advantageous to use an orthonor-
mal basis of states {|ψi〉 , i = 0.. (N − 1)} where 〈ψi | ψj〉 = δij . In this case one
computes the expectation value of the Hamiltonian for all pairs of basis states. The
Schrödinger equation then becomes a matrix equation of the form

〈ψi| Ĥ |ψj〉 ~Φ = E~Φ, (3)

which can be treated as a simple eigenvalue problem with ~Φ being a column vector.

Upon solving for the eigenvalues (which we will denote
{
Ẽi, i = 0.. (N − 1)

}
) one

can enforce ordering without loss of generality such that

Ẽ0 ≤ Ẽ1 ≤ Ẽ2 ≤ ... (4)

In this case it becomes clear that Ẽ0 would be an upper bound on the ground state
energy, Ẽ1 an upper bound on the energy of the �rst excited state, Ẽ2 an upper
bound on the energy of the second excited state and so on. In this manner if one
works in a basis of size N they can get upper bounds on the energies of the �rst N
states.
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2.2 Non-Orthogonal Trial Basis

Ideally one would like their basis of trial wave functions to look similar to the true
wave functions. The closer a trial wave function is to an eigenstate the closer the
variational calculation will come to estimating the actual energy of that state. Un-
fortunately there is not always an obvious choice for an orthogonal basis that ac-
complishes this. Additionally, depending on the form of the Hamiltonian the matrix
elements may be di�cult to compute in an orthogonal basis. In this case it is better
to work with a simpler set of non-orthogonal trial wave functions.

The variational procedure is only slightly modi�ed when using a non-orthogonal
set of trial wave functions. One starts with a set of functions

{∣∣ψ̄i〉 , i = 0.. (N − 1)
}

and �nds matrix elements of the Schrödinger equation.〈
ψ̄i
∣∣ Ĥ ∣∣ψ̄j〉 ~Φ = E

〈
ψ̄i | ψ̄j

〉
~Φ. (5)

The obvious di�erence now compared to using an orthogonal basis is the presence
of an non-trivial overlap matrix (i.e.

〈
ψ̄i | ψ̄j

〉
6= δij). Consequently we now need to

solve a generalized eigenvalue problem (of the form
←→
A ~v = λ

←→
B ~v where

←→
A and

←→
B

are both matrices) in order to �nd the eigenvalues. In theory, this is easily done by
simply inverting the overlap matrix and solving the simple eigenvalue problem(〈

ψ̄i | ψ̄j
〉)−1 〈

ψ̄i
∣∣ Ĥ ∣∣ψ̄j〉 ~Φ = E~Φ. (6)

In practice, one must also consider the error introduced by performing a certain
type of step and matrix inversion can be a very costly process in terms of error. As
such, the task of the solving the generalized eigenvalue problem (5) requires some
extra thought and various shortcuts exist that simplify this process. We will discuss
this problem in more detail in �3.1. The main point is that we are free to perform a
variational calculation with a non-orthogonal basis of trial functions and still obtain
upper bounds on the energy levels of the system. The only downside is that to do
this we would have to solve a generalized eigenvalue problem.

2.3 Application to Polyelectrons

The eigenfunctions of the positronium atom with a simple Coulomb potential can
be found analytically as with the hydrogen atom. Just like the hydrogen atom they
turn out to form a complete orthogonal basis of Hylleraas wave functions. For the
positronium-ion and di-positronium molecule one would expect that using a set of
Hylleraas wave functions would act as a good orthogonal trial basis for variational
calculations. There are two problems with this. First, the fully orthogonalized
Hylleraas wave functions become increasingly complicated as we move higher in the
basis. This is similar to many orthogonal bases with polynomial coe�cients (for ex-
ample regular polynomials, Hermite polynomials, Laguerre polynomials). If we wish
to use Hylleraas functions then we must sacri�ce the simplicity that normally comes
with using an orthogonal basis. The second problem is that the matrix elements are
not easily computed for Hylleraas-type wave functions. For a variational calculation
we would like to simplify our calculations as much as possible so Hylleraas wave
functions are not well suited to our needs.
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Since using an orthogonal basis will only increase the complexity of the cal-
culation of the matrix elements then we are better o� switching to a simple non-
orthogonal trial basis. We will use Gaussians since the are easy to work with and
have the nice property of helping to make integrals easier to solve. The negative
aspect of using Gaussians is that they do not have the same limiting behaviours
as Hylleraas wave functions which is the type of function we expect would most
accurately re�ect the true eigenfunctions. That is, Gaussians do not have a cusp
at ~r = 0 and behave like e−r

2
at large distances whereas Hylleraas functions have

a cusp and behave like e−r at large distances. Fortunately, for the positronium-ion
and the di-positronium molecule, our full basis of Gaussians can be tailored entirely
to reproduce the ground state. The hope is that with enough Gaussians we can
mimic the short and long-range behaviour closely enough to get a good estimate of
the true energy. Meanwhile all of our calculations will have been made much easier
by incorporating Gaussians. On the other hand, Gaussian functions will be ideally
suited to the e�ective �eld theory approach. There is still the issue of long-range
behaviour but, nevertheless, we expect that for the e�ective �eld theory we should
be able to approximate the wave function quite accurately with Gaussians, since the
long-range region's contribution is relatively unimportant.
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3 Numerical Analysis

A single variational calculation with a randomly chosen set of non-orthogonal trial
wave functions {|ψi〉 ; i = 0.. (N − 1)} is unlikely to give a good estimate of the energy
of the system. A better approach is to allow the wave functions to depend on a set of
parameters |ψi〉 = |ψ (ai, bi, ci, ...)〉. The variational problem then constitutes solving
a matrix equation whose parts depend on these parameters.

←→
H |Φ〉 = E (ai, bi, ...; i = 0.. (N − 1))

←→
W |Φ〉 , (7)

where

←→
H =

←→
H (ai, bi, ...; i = 0.. (N − 1)) = 〈ψi| Ĥ |ψj〉

and ←→
W =

←→
W (ai, bi, ...; i = 0.. (N − 1)) = 〈ψi | ψj〉 .

Since the eigenvalues of the problem now depend on the parameters, these parameters
can be adjusted so as to minimize the eigenvalues and improve the upper bounds on
the actual energies of the system.

For the positronium-ion there is only one stable zero angular momentum state.
For the di-positronium molecule, there are also two excited S-states but we will here
be interested only in the ground state. We can thus focus our attention on solving
the generalized eigenvalue problem for just one eigenvalue. Furthermore, we know
a priori roughly what the energies of these states are. This makes the method of
inverse iteration ideal for solving this problem.

3.1 Generalized Eigenvalue Problem

Inverse Iteration

To solve the generalized eigenvalue problem

←→
H |Φ〉 = E

←→
W |Φ〉 (8)

for a single energy (eigenvalue) E we begin with an estimate of this energy, E0, and
a normalized trial eigenvector, |ψ0〉. Then consider the linear system(←→

H − E0
←→
W
)
|χ0〉 =

←→
W |ψ0〉 . (9)

The vector |χ0〉 will be closer to the true eigenvector corresponding to the energy E
than |ψ0〉 was (see [33]). We can see why this is by writing both eigenvectors in the
eigenbasis, denoted |φi〉, with respective eigenvalues εi,

|ψ0〉 =
∑
i

αi |φi〉 |χ0〉 =
∑
i

βi |φi〉 .

If we insert these decompositions into equation (9) we �nd

βi =
αi

εi − E0
,

and

9



|χ0〉 =
∑
i

αi
εi − E0

|φi〉 .

Since (εi − E0)−1 is very large when |φi〉 is the eigenvector we are interested in �nding
then, provided the eigenvalues are well-separated, |χ0〉 will quickly converge to the
true eigenvector. Our new and old eigenvectors, |χ0〉 and |ψ0〉, can then be used to
�nd an updated estimate on the energy, E1, which will be closer to E than E0 was
also. We can then normalize the new vector

|ψ1〉 ≡
|χ0〉√
〈χ0 | χ0〉

, (10)

and solve equation (9) again to obtain a further improved estimate of the eigenenergy
and eigenvector. This process can be repeated to determine the eigenenergy with
arbitrarily high precision. Also, since each iteration increases the dependence of our
trial eigenvector on the true eigenvector by a factor of (εi − E0)−1 this process is
very fast.

To see how we update the energy consider the k-th iteration where we must solve(←→
H − Ek

←→
W
)
|χk〉 =

←→
W |ψk〉 . (11)

For the actual eigenvector |Φ〉, equation (8) tells us(←→
H − Ek

←→
W
)
|Φ〉 = (E − Ek)

←→
W |Φ〉 . (12)

The improved eigenvector |χk〉 should also approximately satisfy this equation so
that ←→

W |ψk〉 ≈ (E − Ek)
←→
W |χk〉 , (13)

where we have used equation (11) on the left side. Taking this equation to be exact
gives us a formula for an improved energy rather than the actual energy,

←→
W |ψ0〉 = (Ek+1 − Ek)

←→
W |χ0〉 , (14)

or

Ek+1 = Ek +
〈χ0|
←→
W |ψ0〉

〈χ0|
←→
W |χ0〉

. (15)

QR Decomposition

Inverse iteration now gives us a method to solve the generalized eigenvalue problem
very e�ciently provided we can solve equation (11) for |χk〉. There are many ways to
do this but we will use QR decomposition for reasons that will be clear later. In QR
decomposition the goal is to decompose a matrix into the product of an orthogonal

matrix
←→
Q (i.e.

←→
Q
←→
Q T =

←→
Q T←→Q =

←→
I ) and an upper triangular matrix

←→
R . In our

case, at the k-th step, we would like to �nd the matrices
←→
Q k and

←→
R k satisfying

←→
Q k
←→
R k =

←→
H − Ek

←→
W . (16)

10



This is a fairly standard procedure and we use the Numerical Recipes routine

NR::qrdcmp to carry it out. Once we have these two matrices we can apply
←→
Q T
k to

either side of equation (17) to give

←→
R k |χk〉 =

←→
Q T
k

←→
W |ψk〉 . (17)

This equation can now be easily solved via back-substitution for |χk〉 given that
←→
R k

is upper triangular. As discussed above, the component of the new eigenvector in the
direction of the true eigenvector improves by a factor of (E − E0)−1 at each step so
we need only to repeat this process a few times to �nd an eigenvalue and eigenvector
that agree with the actual ones to very high precision.

Repeating this process after updating the energy according to equation (15)
will produce the actual eigenenergy and eigenvector correct to whatever precision is
required. This eigenvalue then gives us an upper bound on the eigenenergy for our
physical system based on the current basis of trial wave functions.

It should be pointed out that one does not need to update the energy after each
iteration and often is it best not to. This is because the QR decomposition takes time
of the order N3 and each time the energy is updated the full QR decomposition must
be recalculated. On the other hand, once a QR decomposition is known, equation
(17) can be solved for a new vector quickly. If one repeats this process several times
without updating the energy then the resulting vectors will give a more accurate
estimate of how to update the energy. In other words, equation (15) becomes more
e�ective with better tuned vectors.

3.2 Eigenvalue Minimization

Since the variational method can only determine an upper bound to the true en-
ergy, it is crucial that we use a good set of trial wave functions. By introducing
a set of parameters into each trial wave function we can search for a set of pa-
rameters that minimizes the upper bound on the true energy. As we saw above in
equation (7), when we let our trial wave function depend on a set of parameters,
|ψi〉 = |ψ (ai, bi, ...)〉, the eigenvalues of the problem become dependent on this set of
parameters, E = E (ai, bi, ...; i = 0.. (N − 1)). Now what we need is a routine that
can e�ectively adjust these parameters to seek out a minimum value for E.

Naively we could de�ne a function that solves the generalized eigenvalue problem
(as described in �3.1) and returns the eigenenergy and �nally minimizes this function.
The problem with this is that changing a parameter in the k-th trial wave function

will alter the k-th row and k-th column of
(←→
H − E

←→
W
)
. This would mean each time

we evaluate the function we would need to �nd a new QR decomposition and in turn
the new energy at a cost in time of O

(
N3
)
. If we wish to work with a large basis of

trial wave functions then we will have to do better than this.

Updating a QR Decomposition

This is where choosing to use QR decomposition to solve the generalized eigenvalue
problem comes in very useful. It turns out that if you have already QR decomposed

a matrix
←→
A such that

←→
A =

←→
Q
←→
R

11



and you make a change to
←→
A of the form

←→
A →

←→
A + ~s⊗ ~t

then the QR decomposition can be updated in time of O
(
N2
)
[33] (a routine for

doing this is provided by Numerical Recipes). As mentioned, when we change a
parameter in the k-th trial wave function it a�ects only the k-th row and k-th

column of
←→
Q
←→
R =

(←→
H − E

←→
W
)
. Thus the change in the QR decomposition can be

written in the form

←→
Q
←→
R →

←→
Q
←→
R + ~s⊗ ~ek + ~ek ⊗ ~t, (18)

for two vectors ~s and ~t where ~ek is a unit vector non-zero in the k-th entry only. The
QR update scheme can then be applied twice to give the updated QR decomposition

←→
Q ′
←→
R ′ =

←→
Q
←→
R + ~s⊗ ~ek + ~ek ⊗ ~t. (19)

With the QR decomposition updated for the new parameters we can quickly solve
the inverse iteration equation (9) for an updated eigenvector and then use equation
(15) to calculate the associated change in energy. A function that calculates the
change in energy in this way is what we would now like to minimize.

Powell's Method

In order to improve the e�ciency of the minimization process at each step we
will work with all of the parameters for a given wave function rather than deal-
ing with each parameter separately. For example, each trial wave function for the
positronium-ion will have three adjustable parameters so, in this case, we will handle
each set of three parameters at once. We do this because regardless of how many pa-
rameters in a single trial wave function we adjust at a given step, we will only a�ect
one row and one column of the QR decomposition. To deal with this task we will
need a minimization scheme that is able to e�ciently handle multidimensional prob-
lems. Additionally, for a given set of parameters we can only calculate the energy
for those exact parameters and have no information about how the energy changes
with varying parameters. In others words, we will need a method that does not
require gradients of the function being minimized. Powell's method is ideal since it
is designed to handle multidimensional problems and avoids the need for derivatives.
A thorough discussion of Powell's method can be found in [33] along with source
code for executing the routine NR::powell which was used in our analysis.

Growing the Basis

To obtain precise upper bounds on the energies of the positronium-ion and di-
positronium systems we will need many trial wave functions in our basis and we
will need to �ne-tune all wave function parameters. If one begins with a large num-
ber of trial functions with random parameters then Powell's method will take a very
long time to tune these parameters and �nd the minimum energy. The trick around
this is to grow the basis size during the calculation. In this way we can begin with
a small number of trial functions and �ne-tune the associated parameters relatively
quickly. This gives us a coarsely-tuned set of wave functions with a rough upper

12



bound on the energy. If we now increase the basis size and include the already
coarsely-tuned wave functions then Powell's method can focus on adjusting the new
trial functions with only minor adjustments to the old trial functions. This process
can be repeated until the desired basis size is reached and a minimum energy is found
with high precision. Once the minimization process is �nished we can use the tuned
parameters and eigenvector to construct the wave function. The wave function can
then be used to calculate expectation values for various operators.
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4 Positronium-ion

We will look �rst at the three-body positronium-ion system to test the ideas outlined
in the previous sections. In particular we will compare the accuracy and rate of
convergence of expectation values calculated with an e�ective �eld theory versus the
true theory. Like any problem in quantum mechanics, writing down the Hamiltonian
is a good place to begin. Since the positronium-ion is a relatively low-energy system
it su�ces to consider a Hamiltonian with only Coulomb interactions to act as the
underlying true theory. Thus we can write the Hamiltonian for the positronium-ion
as

Ĥ =
[
p̂2

1

2m
+

p̂2
2

2m
+

p̂2
3

2m

]
+
[
α

r12
− α

r13
− α

r23

]
(20)

= − 1
2m

[
∇2
~A1

+∇2
~A2

+∇2
~A3

]
+ α

[
1
r12
− 1
r13
− 1
r23

]
. (21)

We have labeled the particles with the same charge as each other as {1, 2} and
the particle with opposite charge to the �rst two as {3}. All particles have the
same mass m since they are either electrons or positrons and α denotes the �ne
structure constant. The kinetic energy operators are naturally de�ned in terms of
the absolute displacements of each particle with respect to the lab frame, denoted ~Ai.

The potential terms contain the scalar interparticle distances rij =

√(
~Ai − ~Aj

)2
.

It will be convenient at this point to introduce atomic units. We will from now on
measure distances in units 1

mα , momenta in units mα, and energies in units mα2.
In these units the Hamiltonian takes the simpli�ed form

Ĥ = −1
2

[
∇2
~A1

+∇2
~A2

+∇2
~A3

]
+
[

1
r12
− 1
r13
− 1
r23

]
. (22)

Later on, the trial wave functions that we will use will depend only on the
interparticle distances rij . As such it will be necessary to rewrite the kinetic energy
operator,

T̂ = −1
2

[
∇2
~A1

+∇2
~A2

+∇2
~A3

]
, (23)

in terms of the interparticle distances rather than absolute coordinates. To accom-
plish this we introduce the center of mass coordinate

~R =
1
3

(
~A1 + ~A2 + ~A3

)
(24)

and two independent relative coordinates

~r12 = ~A2 − ~A1, (25)

~r13 = ~A3 − ~A1. (26)

It is straightforward to �nd the following relations between the gradients of the two
coordinate systems
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∇ ~A1
=

1
3
∇~R −∇~r12

−∇~r13
,

∇ ~A2
=

1
3
∇~R +∇~r12

,

∇ ~A3
=

1
3
∇~R +∇~r13

.

Thus we can rewrite

T̂ = −1
2

[
∇2
~A1

+∇2
~A2

+∇2
~A3

]
= −1

2

[(
1
3
∇~R −∇~r12

−∇~r13

)2

+
(

1
3
∇~R +∇~r12

)2

+
(

1
3
∇~R +∇~r13

)2
]

= −1
2

[
1
3
∇2
~R

+ 2∇2
~r12

+ 2∇2
~r13

+ 2∇~r12
· ∇~r13

]
.

The term containing ∇2
~R
corresponds to the kinetic energy of the center-of-mass

of the system and has no e�ect on the internal dynamics of the system so can be
omitted. This leaves us with

T̂ = −
[
∇2
~r12

+∇2
~r13

+∇~r12
· ∇~r13

]
, (27)

giving a Hamiltonian purely in terms of interparticle displacements as

Ĥ = −
[
∇2
~r12

+∇2
~r13

+∇~r12
· ∇~r13

]
+
[

1
r12
− 1
r13
− 1
r23

]
. (28)

4.1 E�ective Field Theory for the Positronium-ion

The only unattractive feature of the Coulomb potential is the divergence at ~r = 0
so we will construct our e�ective �eld theory by eliminating this divergence. This is
accomplished by introducing a cuto� Λ beyond which we will modify the Coulomb
potential. The value of the cuto� Λ is chosen to be much higher that the typical
energies of the system (in momenta units mα this means Λ � 1). The dynamics
of the systems are not strongly a�ected by the physics at energies higher than Λ
so any way we choose to modify the Coulomb potential in this region will not be
devastating to the predictive power of the theory. Let us follow the prescription by
Hill in [18] and make the replacement for the potential

1
r
→ 1

r
erf
(

Λr√
2

)
≡ V̂ Λ (r) . (29)

Notice that lim
r→0 V̂

Λ (r) =
√

2
πΛ so that the modi�ed potential is now �nite at r =

0 but more importantly this choice preserves the long-range structure of the true
theory. It is also useful to observe that in momentum space this is equivalent to
multiplying the potential by a Gaussian,
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4π
q2
→ 4π

q2
exp

{
− q2

2Λ2

}
. (30)

At this point our e�ective Hamiltonian is

ĤΛ = T̂ +
[

1
r12

erf
(

Λr12√
2

)
− 1
r13

erf
(

Λr13√
2

)
− 1
r23

erf
(

Λr23√
2

)]
, (31)

but we cannot expect to obtain highly accurate results ignoring the short-range
behaviour completely. In order to exactly reproduce the true theory we would need
an in�nite series of local operators to mimic the short-range interactions which would
look something like

ĤΛ = T̂ +
[
V̂ Λ (r12)− V̂ Λ (r13)− V̂ Λ (r23)

]
+
d1

α2

[
δ3

Λ (r12)− δ3
Λ (r13)− δ3

Λ (r23)
]

+d2

[
−∇2

r12
δ3

Λ (r12) +∇2
r13
δ3

Λ (r13) +∇2
r23
δ3

Λ (r23)
]

+d3

[
∇r12δ

3
Λ (r12) · ∇r12 −∇r13δ

3
Λ (r13) · ∇r13 −∇r23δ

3
Λ (r23) · ∇r23

]
+..., (32)

where δ3
Λ is a generating function for the local interactions. We are free to choose

this function so for simplicity we will use Gaussians such that

δ3
Λ(r) =

α3Λ3

(2π)3/2
exp

(
−Λ2r2

2

)
. (33)

If we Taylor expand each coe�cient di in α

di = αd
(1)
i + α2d

(2)
i + α3d

(3)
i + ... (34)

then we can match the e�ective theory and the true theory in powers of α to deter-

mine each d
(j)
i . One can show that in order to have agreement in energies (in atomic

units) between the theories through O
(
α3
)
we can set all d

(j)
i = 0 except for d

(1)
1

and d
(2)
1 . This degree of precision will be su�cient for our purposes. In [18] Hill

uses perturbative matching of scattering amplitudes between the true and e�ective
theories to show that for the Coulomb potential

d
(1)
1 =

2π
Λ2α2

, (35)

d
(2)
1 =

10
√
π

3Λ3α3
, (36)

when d2 = 0.
For the purpose of �nding an approximate wave function for the system we will

leave our e�ective Hamiltonian as

ĤΛ = T̂ +
[
V̂ Λ (r12)− V̂ Λ (r13)− V̂ Λ (r23)

]
,
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and later on use the wave function to calculate the lowest order correction

ĈΛ = ĈΛ (r12)− ĈΛ (r13)− ĈΛ (r23) .

This should allow us to �nd energies correct through O
(
α3
)
. To summarize, for the

above equations we have

T̂ = −
[
∇2
~r12

+∇2
~r13

+∇~r12
· ∇~r13

]
, (37)

V̂ Λ (r) =
1
r

erf
(

Λr√
2

)
, (38)

CΛ (r) ≡ Λ√
2π

(
1 +

5
3
√
πΛ

)[
exp

(
−Λ2r2

2

)]
. (39)

4.2 Matrix Elements for Positronium-ion

In �2.2 we demonstrated that one could perform a variational calculation using a
non-orthogonal basis of trial wave functions, {|ψi〉}, to get an upper bound on the
energy of the system,

〈ψi| Ĥ |ψj〉 |Φ〉 ≥ E 〈ψi|ψj〉 |Φ〉 . (40)

As discussed, we will use a basis of Gaussian trial wave functions for our vari-
ational calculation that will only depend on the interparticle distances. However,
since the system is unchanged under the exchange of the two same-charge particles
this must be re�ected in our trial wave functions. We will then take the base trial
wave function to be

|ψi〉 = exp
{
−air2

12 − bir2
13 − dir2

23

}
+ exp

{
−air2

12 − dir2
13 − bir2

23

}
≡

∣∣ψ12
i

〉
+
∣∣ψ21
i

〉
. (41)

The parameters {ai, bi, di; i = 0.. (N − 1)} will be �ne-tuned later on during the
optimization process in order to improve the upper bound on the eigenenergy. Since
we would like to compare results from the e�ective �eld theory with those from the
true theory we will need to calculate 〈ψi|ψj〉 , 〈ψi| Ĥ |ψj〉, and 〈ψi| ĤΛ |ψj〉 and solve
the matrix problem in both cases. To simplify this process we will for now consider

only the matrix elements
〈
ψ12
i |ψ12

j

〉
,
〈
ψ12
i

∣∣ Ĥ ∣∣∣ψ12
j

〉
, and

〈
ψ12
i

∣∣ ĤΛ
∣∣∣ψ12
j

〉
and then

later on we can swap parameters in the resulting expressions to obtain all required
matrix elements.

Before we begin it will save time later on to obtain an expression for T̂
∣∣ψ12
i

〉
. We

will use the form of the kinetic energy operator T̂ given by equation (37) in terms of
gradients with respect to interparticle displacements. Taking gradients of the trial
function

∣∣ψ12
i

〉
with respect to ~r12 and ~r13 we can show

∇~r12
|ψ〉 = [−2 (a+ d)~r12 + 2d~r13] |ψ〉 ,

∇~r13
|ψ〉 = [2d~r12 − 2 (b+ d)~r13] |ψ〉 ,
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where we have temporarily dropped the wave function and parameter indices. Taking
a second gradient gives the various combinations needed to complete the kinetic
energy operator,

∇2
~r12
|ψ〉 =

[
−6 (a+ d) + 4

[
(a+ d)2 r2

12 + d2r2
13

−2d (a+ d)~r12 · ~r13]] |ψ〉 ,

∇2
~r13
|ψ〉 =

[
−6 (b+ d) + 4

[
d2r2

12 + (b+ d)2 r2
13

−2d (b+ d)~r12 · ~r13]] |ψ〉 ,
∇~r12

· ∇~r13
|ψ〉 =

[
6d+ 4

[
−d (a+ d) r2

12 − d (b+ d) r2
13

+
(
d2 + (a+ d) (b+ d)

)
~r12 · ~r13

]]
|ψ〉 .

Adding these up and using the identity 2~r12 · ~r13 = r2
12 + r2

13 − r2
23 (law of cosines)

we �nd

T̂ |ψ〉 =
[
6 (a+ b+ d)− 2

(
2a2 + ab+ ad− bd

)
r2

12

−2
(
2b2 + ab+ bd− ad

)
r2

13

−2
(
2d2 + ad+ bd− ab

)
r2

23

]
|ψ〉 . (42)

This allows us to break up the matrix element for the kinetic energy operator (restor-
ing indices) as

〈
ψ12
i

∣∣ T̂ ∣∣ψ12
j

〉
= 6 (ai + bi + di)

〈
ψ12
i |ψ12

j

〉
−2
(
2a2

i + aibi + aidi − bidi
) 〈
ψ12
i

∣∣ r2
12

∣∣ψ12
j

〉
−2
(
2b2i + aibi + bidi − aidi

) 〈
ψ12
i

∣∣ r2
13

∣∣ψ12
j

〉
−2
(
2d2

i + aidi + bidi − aibi
) 〈
ψ12
i

∣∣ r2
23

∣∣ψ12
j

〉
. (43)

In order to determine the matrix elements for the exact potential we will need to
�nd

〈
ψ12
i

∣∣ V̂ ∣∣ψ12
j

〉
=

〈
ψ12
i

∣∣ 1
r12

∣∣ψ12
j

〉
−
〈
ψ12
i

∣∣ 1
r13

∣∣ψ12
j

〉
−
〈
ψ12
i

∣∣ 1
r23

∣∣ψ12
j

〉
. (44)

The cuto� potential is, of course, also easily broken up into three parts

〈
ψ12
i

∣∣ V̂ Λ
∣∣ψ12
j

〉
=

〈
ψ12
i

∣∣ 1
r12

erf
(

Λr12√
2

) ∣∣ψ12
j

〉
−
〈
ψ12
i

∣∣ 1
r13

erf
(

Λr13√
2

) ∣∣ψ12
j

〉
−
〈
ψ12
i

∣∣ 1
r23

erf
(

Λr23√
2

) ∣∣ψ12
j

〉
. (45)

Finally, the correction terms can be divided up
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〈
ψ12
i

∣∣ ĈΛ
∣∣ψ12
j

〉
=

Λ√
2π

(
1 +

5
3
√
πΛ

)[〈
ψ12
i

∣∣ exp
(
−Λ2r2

12

2

) ∣∣ψ12
j

〉
−
〈
ψ12
i

∣∣ exp
(
−Λ2r2

13

2

) ∣∣ψ12
j

〉
−
〈
ψ12
i

∣∣ exp
(
−Λ2r2

23

2

) ∣∣ψ12
j

〉]
. (46)

As a additional test, we will look at the convergence of expectation values calcu-
lated with the wave functions we obtain. In particular, we will consider the electron-
positron contact density which is used to determine annihilation rates. Since the
�rst and second particle are identical we need only consider the operator δ3 (~r13).
Thus, we will also need to calculate

〈
δ3 (~r13)

〉
=

〈
ψ12
i

∣∣ δ3 (~r13)
∣∣ψ12
j

〉
. (47)

It remains now to perform the integrations that will give analytic forms for these
matrix elements in terms of the parameters.

4.3 Coordinate Shift Approach for Gaussian Integrals

To begin let us consider the overlap integral

〈χi|χj〉 =
ˆ

d3 ~A1d3 ~A2d3 ~A3 e
−ar2

12−br2
13−dr2

23 , (48)

where a = ai + aj , b = bi + bj , and d = di + dj when |χi〉 =
∣∣ψ12
i

〉
and |χj〉 =∣∣∣ψ12

j

〉
. The full matrix elements can be obtained from this integral by changing the

de�nitions of a, b, and d. The vectors ~Ai are the absolute coordinates of the particles
in the lab frame. The integration measure above is the most general possible and
covers all possible positions of the three particles over all space. In fact, we only need
to integrate over all possible con�gurations and we can disregard the position and
motion of the center-of-mass in space since this has no physical signi�cance without
an external potential.

First let us move to centre-of-mass coordinates ~Ri de�ned by ~Ai = ~R + ~Ri and
~R = 1

3

(
~A1 + ~A2 + ~A3

)
. It is straightforward to compute the Jacobian for this

transformation
∂
(
~A1, ~A2, ~A3

)
∂
(
~R1, ~R2, ~R

) = 33. (49)

In centre-of-mass coordinates then our volume element becomes

33d3 ~R1d3 ~R2. (50)

We have omitted integration over d3 ~R since the trial wave function does not de-
pend on the center-of-mass coordinate ~R and the resulting divergent integral will be
canceled out upon normalization.
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Moving next to relative coordinates de�ned by ~r12 = ~R2− ~R1 and ~r13 = ~R3− ~R1

one can show the Jacobian of this transformation to be

∂
(
~R1, ~R2

)
∂ (~r12, ~r13)

= 3−3. (51)

We can now rewrite the overlap integral with an integration measure suitable to the
integrand as

〈χi|χj〉 ≡ I (a, b, d) (52)

=
ˆ

d3~r12d3~r13 e
−ar2

12−br2
13−dr2

23 . (53)

In order to solve this integral consider the coordinate shift

~r12 = ~x+m~y,

~r13 = ~y, (54)

with unit Jacobian for some constantm yet to be determined. With these coordinates
we can rewrite

~r23 = ~r13 − ~r12 = −~x+ (1−m) ~y.

The argument of the exponential in (53) then becomes

−ar2
12 − br2

13 − dr2
23 = −a

[
x2 +m2y2 + 2m~x · ~y

]
− b

[
y2
]

−d
[
x2 + (1−m)2 y2 − 2 (1−m) ~x · ~y

]
. (55)

We are now free to choose our parameter m so that all dot products in the (~x, ~y)
coordinates vanish. In order to make this determination we must solve for arbitrary
~x, ~y the simple equation

(~x · ~y) [am− d (1−m)] = 0, (56)

which tells us to choose

m =
d

a+ d
. (57)

With this choice for m, equation (55) can be rewritten

−ar2
12 − br2

13 − dr2
23 = −a

[
x2 +m2y2

]
− b

[
y2
]
− d

[
x2 + (1−m)2 y2

]
= −x2 [a+ d]− y2

[
ab+ ad+ bd

a+ d

]
≡ −αxx2 − αyy2, (58)

20



where we have introduced the coe�cients

αx = a+ d ,

αy =
ab+ ad+ bd

a+ d
.

Overlap Matrix Elements

This now allows us to work out the overlap integral quite easily. Rewriting equation
(53) as simply

I(a, b, d) =
ˆ

d3~xd3~y e−αxx2−αyy2
, (59)

it is trivial to obtain

I(a, b, d) =
π3

(αxαy)
3/2

=
π3

(ab+ ad+ bd)3/2
(60)

=
π3

[(ai + aj) (bi + bj) + (ai + aj) (di + dj) + (bi + bj) (di + dj)]
3/2

.

Here we have evaluated only a piece of the overlap matrix element when |χi〉 =∣∣ψ12
i

〉
and |χj〉 =

∣∣∣ψ12
j

〉
. The full overlap matrix element is given by

〈ψi|ψj〉 =
〈
ψ12
i

∣∣ (1 + P̂12

)2 ∣∣ψ12
j

〉
(61)

= 2
[〈
ψ12
i |ψ12

j

〉
+
〈
ψ12
i |ψ21

j

〉]
(62)

=
2π3

[(ai + aj) (bi + bj) + (ai + aj) (di + dj) + (bi + bj) (di + dj)]
3/2

+
2π3

[(ai + aj) (bi + dj) + (ai + aj) (di + bj) + (bi + dj) (di + bj)]
3/2

,

where P̂12 is the permutation operator swapping the �rst and second particles.

Exact Coulomb Potential Matrix Elements

It turns out we can work out all of the other matrix elements that we will need
by simple modi�cations of the above integration. Let us next work out the matrix
element for the exact Coulomb potential terms. Given the choice of coordinates (54)
we can most easily work out the integral

V13(a, b, d) ≡
ˆ

d3~r12d3~r13

(
1
r13

)
e−ar

2
12−br2

13−dr2
23 , (63)

which transforms simply to
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V13(αx, αy) =
ˆ

d3~xd3~y

(
1
y

)
e−αxx2−αyy2

(64)

=
π3/2

(αx)3/2

ˆ
d3~y

(
1
y

)
e−αyy2

(65)

=
4π5/2

(αx)3/2

ˆ ∞
0

dy y e−αyy2
(66)

=
2π5/2

(ab+ ad+ bd)
√
a+ d

. (67)

Using this result we can quickly �nd the other exact Coulomb integrals by pa-
rameter swapping. For example

V12(a,b, d) =
ˆ

d3~r12d3~r13

(
1
r12

)
e−ar2

12−br2
13−dr2

23 (68)

=
ˆ

d3~r13d3~r12

(
1
r12

)
e−br2

13−ar2
12−dr2

23 (69)

=
ˆ

d3~r12d3~r13

(
1
r13

)
e−br2

12−ar2
13−dr2

23 (70)

≡ V13(b,a, d). (71)

From equation (68) to (69) we simply rearrange the integral so that ~r12 takes the
role of ~r13 in equation (63). Then to get to (70) we simply change the indices (in
this case swapping 2 ↔ 3) so as to relate this integral to the one we already know.
Similarly, one can show

V23(a,b,d) = V13(a,d,b). (72)

As with the overlap integral we have only been using one part of the wave function
so this result only gives us the matrix element

〈
ψ12
i

∣∣ 1
r12
− 1
r13
− 1
r23

∣∣ψ12
j

〉
=

2π5/2

(ab+ ad+ bd)

×
[

1√
b+ d

− 1√
a+ b

− 1√
a+ d

]
, (73)

where a = ai + aj , b = bi + bj , and d = di + dj . The full matrix element for the
exact potential is just the sum of four terms like equation (73) with the choices for
the parameters for each as

(1) a = ai + aj , b = bi + bj , d = di + dj , (74)

(2) a = ai + aj , b = bi + dj , d = di + bj , (75)

(3) a = ai + aj , b = di + bj , d = bi + dj , (76)

(4) a = ai + aj , b = di + dj , d = bi + bj . (77)
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E�ective Potential Matrix Elements

The cuto� potential matrix elements are given by evaluating integrals of the form

V Λ
13(a, b, d) ≡

ˆ
d3~r12d3~r13

(
1
r13

erf
{

Λ√
2
r13

})
e−ar

2
12−br2

13−dr2
23 ,

which under the coordinate transformation (54) gives

V Λ
13(a, b, d) =

ˆ
d3~xd3~y

(
1
y

erf
{

Λ√
2
y

})
e−αxx2−αyy2

=
π3/2

(αx)3/2

ˆ
d3~y

(
1
y

erf
{

Λ√
2
y

})
e−αyy2

=
4π5/2

(αx)3/2

ˆ ∞
0

dy y erf
{

Λ√
2
y

}
e−αyy2

=
2π5/2

(ab+ ad+ bd)
√

(a+ d) + 2(ab+ad+bd)
Λ2

. (78)

Using the same tricks as in (68-71) it is straightforward to show

V Λ
12(a, b,d) = V Λ

13(b,a, d), (79)

V Λ
23(a,b,d) = V Λ

13(a,d,b). (80)

We construct the full e�ective potential matrix element, as we did with equation
(73) for the exact potential, by adding up terms of the form (78) for the parameter
choices (74-77).

E�ective Potential Correction Matrix Elements

To �nd the matrix elements for the correction terms to the e�ective potential we
need to evaluate

CΛ
13(a, b, d) ≡

ˆ
d3~r12d3~r13

(
exp

{
−Λ2

2
r2

13

})
e−ar

2
12−br2

13−dr2
23

=
ˆ

d3~r12d3~r13 e
−ar2

12−
(
b+ Λ2

2

)
r2
13−dr2

23

≡ I

(
a,

(
b+

Λ2

2

)
, d

)
. (81)

This is simply the overlap integral with a shift in the parameter corresponding to
the scalar distance involved in the correction. In this manner we can show

CΛ
12(a, b, d) = I

((
a +

Λ2

2

)
, b, d

)
, (82)

CΛ
23(a, b,d) = I

(
a, b,

(
d +

Λ2

2

))
, (83)
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and again we construct the full correction matrix element as we did in equation (73)
for the exact potential by adding up terms of the form (81) for the parameter choices
(74-77).

Kinetic Energy Matrix Elements

Based on equation (92) we can see that in order to compute the matrix elements
for the kinetic energy terms we will need the overlap integral I(a, b, d) as well as
integrals of the form

T13(a, b, d) ≡
ˆ

d3~r12d3~r13

(
r2

13

)
e−ar

2
12−br2

13−dr2
23 , (84)

which in the (~x, ~y) coordinate system becomes

T13(a, b, d) =
ˆ

d3~xd3~y
(
y2
)
e−αxx2−αyy2

(85)

=
π3/2

(αx)3/2

ˆ
d3~y

(
y2
)
e−αyy2

(86)

=
4π5/2

(αx)3/2

ˆ ∞
0

dy y4e−αyy2
(87)

=
3π3

2αy (αxαy)
3/2

(88)

=
3π3 (a+ d)

2 (ab+ ad+ bd)5/2
. (89)

The other integrals for kinetic energy terms can be found by swapping parameters
again. In particular

T12(a, b,d) = T13(b, a,d), (90)

T23(a,b,d) = T13(a,d,b). (91)

We now have everything we need to compute the matrix element

〈
ψ12
i

∣∣ T̂ ∣∣ψ12
j

〉
= 6 (aj + bj + dj)

〈
ψ12
i |ψ12

j

〉
−2
(
2a2

j + ajbj + ajdj − bjdj
) 〈
ψ12
i

∣∣ r2
12

∣∣ψ12
j

〉
(92)

−2
(
2b2j + ajbj + bjdj − ajdj

) 〈
ψ12
i

∣∣ r2
13

∣∣ψ12
j

〉
−2
(
2d2

j + ajdj + bjdj − ajbj
) 〈
ψ12
i

∣∣ r2
23

∣∣ψ12
j

〉
,

since
〈
ψ12
i

∣∣ r2
13

∣∣∣ψ12
j

〉
= T13(ai+aj , bi+bj , di+dj),

〈
ψ12
i

∣∣ r2
12

∣∣∣ψ12
j

〉
= T12(ai+aj , bi+

bj , di + dj), and
〈
ψ12
i

∣∣ r2
23

∣∣∣ψ12
j

〉
= T23(ai + aj , bi + bj , di + dj) and we worked out〈

ψ12
i |ψ12

j

〉
in equation (61) above. Then to construct the entire kinetic energy wave

function we add together four such pieces with parameters chosen according to equa-
tions (74-77).
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Delta Function Matrix Elements

Finally, the matrix element for the electron-positron contact density is just

〈
ψ12
i

∣∣ δ3 (~r13)
∣∣ψ12
j

〉
=
ˆ

d3~r12d3~r13δ (~r13) e−ar
2
12−br2

13−dr2
23 (93)

=
ˆ

d3~r12e
−(a+d)x2

(94)

=
π3/2

(a+ d)3/2
. (95)

For the full matrix element we must add up four pieces like this where a = ai+aj
always but d takes on the de�nitions

(1) d = di + dj ,

(2) d = di + bj ,

(3) d = bi + dj ,

(4) d = bi + bj .

4.4 Magnetic Moment

With the above framework in place it is worthwhile to take a detour from the cen-
tral theme of this thesis to calculate a matrix element, previously unknown for the
positronium-ion, that is necessary to quantify the e�ect that the interaction be-
tween the constituents of the positronium-ion has on its magnetic moment. Naively,
we would take the magnetic moment of the positronium-ion to be just that of the
positron since the electrons form a spin singlet with no net magnetic moment. The
magnetic moment of the system would then be just that of a free positron, that is,
g ~

2
e

2m where g = 2 + α
π + . . . is the gyromagnetic ratio known for the free-particle

up to O
((

α
π

)4)
and �ve-loop e�ects are being calculated at present [3]. However,

for the positronium-ion we expect the interaction between the positron and the elec-
trons to modify this magnetic moment. This e�ect is similar to that in hydrogen-like
atoms and ions where the nuclear electric �eld modi�es the g-factor of an electron
[6]. We can use this analogy to deduce that such an e�ect should be a correction
of O

(
α2
)
enhanced relative to the free-particle e�ects at this order in the coupling

constant by a factor of order π2. A more detailed calculation, wherein one expands
the Dirac equation describing the dynamics of a charged particle bound with two
antiparticles to O

(
α2
)
, shows that the magnetic interaction in a hydrogen-like atom

is described not by the lowest order expression

e

2m
σ · B, (96)

which gives g = 2, but rather by [1, 25],

e

2m

(
1− p2

4m2
− e

6m
ε · r
)
σ · B. (97)
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Here, ε denotes the electric �eld due to the companion particles. The bound-particle
g-factor in a hydrogen-like atom then becomes

g = 2→ g = 2

(
1−

〈
p2
〉

2m2
− e

6m
〈ε · r〉

)
. (98)

For a three-body positronium-ion, this formula will have to be modi�ed , but
it is likely to also include the expectation value 〈ε · r〉 which, in the case of the
positronium-ion, is the expectation value of the scalar product of the electric �eld
that the positron feels times its position vector, as measured from the ion's center of
mass. This expectation value, 〈ε · r〉, has yet to be calculated for the positronium-ion
so our purpose here will be to do just that.

Magnetic Moment Matrix Elements

In terms of the notation from previous sections the matrix element of interest can be

written
〈
~ε3 · ~R3

〉
where ~ε3 is the electric �eld as felt by the positron (particle 3) due

to the Coulomb �elds of the electrons (particles 1 and 2) and ~R3 is the center-of-mass
position of the positron. Let us focus on just the electric �eld from the electron at
position 1 for now. This electric �eld is

~ε13 = −e~r13

r3
13

. (99)

Figure 3: Positronium-ion in center-of-mass coordinates ~Ri and relative coordinates
~rij = ~Rj − ~Ri.

Thus, we will need an expression for ~r13 · ~R3. Since the centre of mass of a
triangle (see Figure 3) is the intersection of its medians we can deduce the relation
~R3 = 1

3 (~r13 + ~r23). Therefore

~r13 · ~R3 =
1
3
~r13 · (~r13 + ~r23)

=
1
3
(
r2

13 + ~r13 · ~r23

)
=

1
2
r2

13 +
1
6
(
r2

23 − r2
12

)
.

This gives us 〈
~ε13 · ~R3

〉
= −e

[
1
2

〈
1
r13

〉
+

1
6

〈
r2

23 − r2
12

r3
13

〉]
.
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The �eld from the electron at position 2 will contribute the exact same amount when
averaged with the wave function so we can simply double this result to obtain〈

~ε3 · ~R3

〉
= −e

[〈
1
r13

〉
+

1
3

〈
r2

23 − r2
12

r3
13

〉]
. (100)

We already have an expression for the expectation value of the Coulomb operator
in equation (67) above. All that remains then is to calculate the second expectation
value. This requires evaluating the integral

〈
r2

23 − r2
12

r3
13

〉
=
ˆ

d3~r12d3~r13

(
r2

23 − r2
12

r3
13

)
e−ar

2
12−br2

13−dr2
23 . (101)

Notice we can take antiderivatives with respect to parameters a and d to rewrite this
as

〈
r2

23 − r2
12

r3
13

〉
=

(
d
da
− d

dd

) ˆ
d3~r12d3~r13

(
1
r3

13

)
e−ar

2
12−br2

13−dr2
23 . (102)

Making the coordinate change (54) gives

〈
r2

23 − r2
12

r3
13

〉
=

(
d
da
− d

dd

) ˆ
d3~xd3~y

(
1
y3

)
e−αxx2−αyy2

(103)

=
(

d
da
− d

dd

)(
π3/2

α
3/2
x

)ˆ
d3~y

(
1
y3

)
e−αyy2

. (104)

It is straightforward to show that(
d
da
− d

dd

)(
π3/2

α
3/2
x

)
= 0.

We can thus bring the derivative operators inside the integrand so that

〈
r2

23 − r2
12

r3
13

〉
=

π3/2

α
3/2
x

ˆ
d3~y

(
1
y3

)
e−αyy2

(
y2

(
d
dd
− d

da

)
αy

)
(105)

=
π3/2

α
3/2
x

((
d
dd
− d

da

)
αy

)ˆ
d3~y

(
1
y

)
e−αyy2

(106)

=
π3/2

α
3/2
x

(
a2 − d2

(a+ d)2

)(
2π
αy

)
. (107)

From line (106) to (107) we have used the relations
dαy

dd = a2

(a+d)2 and
dαy

da = d2

(a+d)2 .

Simplifying then gives the desired expectation value〈
r2

23 − r2
12

r3
13

〉
=

2π5/2 (a− d)

(ab+ ad+ bd) (a+ d)3/2
.

We are now in a position to calculate 〈ε · r〉 in equation (98) for the positronium-ion.
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4.5 Results

We can now use the above expressions for the Hamiltonian matrix elements to op-
timize a parameter set {ai, bi, di; i = 0.. (N − 1)} using the program described in �3
so as to compare the true and e�ective theories. First let us look at the convergence
of the bound state energy. For the e�ective �eld theory we took Λ = 50. Results for
various size bases of trial wave functions are given in Table 1.

Basis Size EFT at O (α), Correction, EFT at O
(
α3
)
, Exact Theory

(N)
〈
ĤΛ
〉 〈

ĈΛ
〉 〈

ĤΛ
〉
+
〈
ĈΛ
〉 〈

Ĥ
〉

10 -0.260710305 -0.000854119 -0.260795717 -0.261471242
20 -0.261839109 -0.000096780 -0.261935890 -0.261946028
40 -0.261889258 -0.000099431 -0.261988689 -0.261999937
60 -0.261903359 -0.000100691 -0.262004050 -0.262003853
80 -0.261904266 -0.000100855 -0.262005122 -0.262004316
100 -0.261904369 -0.000100837 -0.262005206 -0.262004851
120 -0.261904401 -0.000100836 -0.262005237 -0.262004975
160 -0.261904437 -0.000100841 -0.262005278 -0.262005036
200 -0.261904447 -0.000100853 -0.262005301 -0.262005055
240 -0.261904458 -0.000100846 -0.262005304 -0.262005057

Table 1: Energy of the positronium-ion bound state in units mα2.

The actual energy of the positronium-ion, given to nine signi�cant digits, was
found by Frolov to be −0.262005070mα2 [13]. As we can see in the last column
of Table 1 all of the energies produced using the true theory are consistent with
Frolov's results in the sense that they do not drop below his value. Additionally,
as the number of wave functions in the basis increases, the upper bounds converge
nicely to his value with agreement to a few parts in 108 for N = 240. For the
e�ective �eld theory we can see that both the uncorrected energy (Table 1: Column
2) and expectation value for the O

(
α2
)
plus O

(
α3
)
correction (Table 1: Column

3) converge nicely to a constant value. Consequently, the corrected energy also
converges to a constant value (Table 1: Column 4). Unfortunately, this constant
value overshoots the actual energy for N ≥ 80. This is because at this basis size the
program can resolve energies to parts per 107 which is where the O

(
α4
)
correction

becomes important. Note, as a consistency check one can show that the next order
correction will be positive in agreement with the fact that our results for the e�ective
�eld theory at O

(
α3
)
are lower than the actual energy [18].

Comparing the speed of convergence for the two theories (Table 1: Column 3
and 4) we see that the e�ective �eld theory actually converges to its �nal value
slightly faster than the true theory. For example, the di�erence between the N = 80
and N = 240 for the e�ective �eld theory is less than 2 × 10−7 meanwhile for the
true theory it is slightly more than 7 × 10−7 . This is what we would expect since
the trial basis is composed of Gaussian wave functions which are better suited to
the e�ective �eld theory. The more important question, however, is; will the wave
function associated with the e�ective �eld theory produce expectation values that
converge more quickly than the wave function for the true theory? To answer this
let us look now at the expectation values for the delta function.
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Once the optimization process is �nished at a particular basis size we can use
the tuned parameters and eigenvector corresponding to the eigenvalues in Table 1
to approximate the wave function for the system. This wave function is then used
to calculate the expectation value of the electron-positron contact density (the delta
function). Values of this expectation value for various basis sizes are given in Table
2.

Basis Size 〈δe+e−〉 using 〈δe+e−〉 using
(N) EFT Exact Theory

10 0.016835 0.017846
20 0.019080 0.019250
40 0.019645 0.020188
60 0.019963 0.020354
80 0.020020 0.020438
100 0.020022 0.020577
120 0.020029 0.020592
160 0.020025 0.020663
200 0.020044 0.020670
240 0.020029 0.020671

Table 2: Expectation values of delta function, δe+e− , for positronium-ion.

The actual value for the electron-positron contact density in positronium-ion
given to six decimal places is 0.020733 [13]. In both approaches the values are rela-
tively well behaved but the exact theory clearly gives more accurate results. Despite
the fact that the values from the e�ective �eld theory appear to converge more
quickly than those from the true theory, they do not converge to the correct value.
Based on the values in Table 2: Column 2 we might estimate that the expectation
value of this delta function was roughly 0.02003±

(
2× 10−5

)
. This would be a gross

error. The underlying reason for this disagreement is most likely due to the fact that
the e�ective �eld theory gives rise to a wave function that is smooth at ~r = 0. Such
a function is not well-suited to probing the divergence of the delta function. On the
other hand, the wave function for the true theory takes longer to converge but, in
doing so, would attempt to mimic the cusp of the true wave function at ~r = 0. This
is why the values produced using the true theory (Table 2: Column 3) come much
closer to the actual result.

We turn our attention now to the expectation values of the operators needed to
calculate the correction to the magnetic moment. We use the wave function produced
by the true theory to �nd the values in Table 3.

For both operators the expectation values converge to constant values. The

values from Table 3: Column 2 imply that
〈

1
r13

〉
= 0.339821±

(
1× 10−6

)
mα. This

expectation value has actually been worked out to higher precision by Frolov and he
reports a value of 0.339821023mα to nine signi�cant digits [12]. This acts as a good
consistency check for our result since they are in agreement. The second operator, on
the other hand, has not been worked out to our knowledge and based on our results

(Table 3: Column 3) we can estimate that
〈
r2
23−r2

12

r3
13

〉
= −0.24687±

(
2× 10−5

)
mα.

Thus, using Frolov's result for
〈

1
r13

〉
and our value for

〈
r2
23−r2

12

r3
13

〉
we can infer based
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Basis Size (N)
〈

1
r13

〉 〈
r2
23−r2

12

r3
13

〉
40 0.33981484 -0.2468256
80 0.33982184 -0.2468704
120 0.33982152 -0.2468650
160 0.33982116 -0.2468714
200 0.33982114 -0.2468671
240 0.33982113 -0.2468631

Table 3: Expectation values needed for calculating the correction to magnetic mo-
ment of the positronium-ion in units mα.

on equation (100) that〈
~ε3 · ~R3

〉
= −0.25753±

(
1× 10−5

)
mα3/2. (108)
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5 Di-positronium Molecule

Let us now move on to the four-body di-positronium molecule to further test the
ideas outlined in the previous sections. Once again we will compare the accuracy
and speed of convergence of expectation values calculated with the e�ective �eld
theory and the true theory. Since the di-positronium molecule is a relatively low-
energy system it su�ces to consider a Hamiltonian with only Coulomb interactions
to act as the underlying true theory. Thus we can write the Hamiltonian for the
di-positronium molecule as

Ĥ =
[
p̂2

1

2m
+

p̂2
2

2m
+

p̂2
3

2m
+

p̂2
4

2m

]
+
[
α

r12
+

α

r34
− α

r13
− α

r14
− α

r23
− α

r24

]
= − 1

2m

[
∇2
~A1

+∇2
~A2

+∇2
~A3

+∇2
~A4

]
+α

[
1
r12

+
1
r34
− 1
r13
− 1
r14
− 1
r23
− 1
r24

]
.

We have taken particles {1, 2} to have the same charge as each other but opposite
to that of particles {3, 4}. All particles have the same mass m since they are either
electrons or positrons and α denotes the �ne structure constant. The kinetic energy
operators are naturally de�ned in terms of the absolute displacements of each particle
with respect to the lab frame, denoted ~Ai. The potential terms contain the scalar

interparticle distances rij =

√(
~Ai − ~Aj

)2
. Let us now introduce atomic units such

that distances are measured in units 1
mα , momenta in unitsmα, and energies in units

mα2. This change allows us to rewrite the Hamiltonian more simply as

Ĥ = −1
2

[
∇2
~A1

+∇2
~A2

+∇2
~A3

+∇2
~A4

]
+
[

1
r12

+
1
r34
− 1
r13
− 1
r14
− 1
r23
− 1
r24

]
The trial wave functions that we will use later on will depend only on the inter-

particle distances rij so it will be useful to rewrite the kinetic energy operator,

T̂ = −1
2

[
∇2
~A1

+∇2
~A2

+∇2
~A3

+∇2
~A4

]
, (109)

in terms of the interparticle distances rather than absolute coordinates. To accom-
plish this we introduce the center of mass coordinate

~R =
1
4

(
~A1 + ~A2 + ~A3 + ~A4

)
, (110)

and three independent relative coordinates

~r12 = ~A2 − ~A1, (111)

~r13 = ~A3 − ~A1, (112)

~r14 = ~A4 − ~A1. (113)

It is straightforward to �nd the following relations between the gradients in the two
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coordinate systems

∇ ~A1
=

1
4
∇~R −∇~r12

−∇~r13
−∇~r14

,

∇ ~A2
=

1
4
∇~R +∇~r12

,

∇ ~A3
=

1
4
∇~R +∇~r13

,

∇ ~A4
=

1
4
∇~R +∇~r14

.

Substituting these into the expression for the kinetic energy operator (109) gives us

T̂ = −1
2

[
∇2
~A1

+∇2
~A2

+∇2
~A3

+∇2
~A4

]
= −1

2

[(
1
4
∇~R −∇~r12

−∇~r13
−∇~r14

)2

+
(

1
4
∇~R +∇~r12

)2

+
(

1
4
∇~R +∇~r13

)2

+
(

1
4
∇~R +∇~r14

)2
]

= −1
2

[
1
4
∇2
~R

+ 2∇2
~r12

+ 2∇2
~r13

+ 2∇2
~r14

+2∇~r12
· ∇~r13

+ 2∇~r12
· ∇~r14

+ 2∇~r13
· ∇~r14

] .

We can omit the term containing ∇2
~R
because it corresponds to the kinetic energy of

the center-of-mass of the system and has no e�ect on the internal dynamics of the
system. This leaves us with

T̂ = −
[
∇2
~r12

+∇2
~r13

+∇2
~r14

+∇~r12
· ∇~r13

+∇~r12
· ∇~r14

+∇~r13
· ∇~r14

]
We now have a dimensionless Hamiltonian purely in terms of interparticle dis-

placements

Ĥ = −
[
∇2
~r12

+∇2
~r13

+∇2
~r14

+∇~r12
· ∇~r13

+∇~r12
· ∇~r14

+∇~r13
· ∇~r14

]
+
[

1
r12

+
1
r34
− 1
r13
− 1
r14
− 1
r23
− 1
r24

]
5.1 E�ective Field Theory the Di-positronium

As with the positronium-ion, we would like to build an e�ective �eld theory which
does not have the ~r = 0 divergence in the Coulomb potential. To accomplish this
we will follow the same prescription that we did in �4.1. In particular, we will again
use the e�ective potential in equation (29) in place of the Coulomb potential and we
also keep the same generating function, equation (33), to reproduce the short-range
behaviour. This means we do not need to recalculate the coe�cients, equations
(35-36), which make the e�ective theory correct through O

(
α3
)
.

Thus, in order to �nd an approximate wave function for the system in the e�ective
theory case we will take the e�ective Hamiltonian as
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ĤΛ = T̂ +
[
V̂ Λ (r12) + V̂ Λ (r34)− V̂ Λ (r13)− V̂ Λ (r14)

−V̂ Λ (r23)− V̂ Λ (r24)
]
,

and once we have found the wave function for ĤΛ we will use it to calculate the
correction to the energy,

ĈΛ = ĈΛ (r12) + ĈΛ (r34)− ĈΛ (r13)
−ĈΛ (r14)− ĈΛ (r23)− ĈΛ (r24) .

Recall, in the above equations we have

T̂ = −
[
∇2
~r12

+∇2
~r13

+∇2
~r14

+∇~r12
· ∇~r13

+∇~r12
· ∇~r14

+∇~r13
· ∇~r14

]
, (114)

V̂ Λ (r) =
1
r

erf
(

Λr√
2

)
, (115)

CΛ (r) ≡ Λ√
2π

(
1 +

5
3
√
πΛ

)[
exp

(
−Λ2r2

2

)]
. (116)

5.2 Matrix Elements for Di-positronium Molecule

We now need to compute the matrix elements for the di-positronium molecule system
with the e�ective and true theory Hamiltonians using a basis of trial wave functions,
{|ψi〉}. The variational procedure discussed in �2.2 will then enable us to get an
upper bound on the energy of the system since

〈ψi| Ĥ |ψj〉 |Φ〉 ≥ E 〈ψi|ψj〉 |Φ〉 . (117)

As discussed, we will use a basis of Gaussian trial wave functions for our varia-
tional calculation that will only depend on the interparticle distances. In construct-
ing the trial wave function we must take into account the symmetries of the system.
In particular, our trial wave function must re�ect: (1) that the dynamics are un-
changed by swapping two same-charge particles and (2) we are free to invert the
charges of all the particles simultaneously without a�ecting the system's dynamics.
Let us denote the electrons as particles {1, 2} and the positrons as particles {3, 4}.
To see how we will construct the full trial wave function let us start out with what
will end up just being a piece of the �nal result. Consider

∣∣ψ1234
i

〉
≡ φ (ai, bi, ci, di, ei, fi)
≡ exp

{
−air2

12 − bir2
13 − cir2

14 − dir2
23 − eir2

24 − fir2
34

}
. (118)

The �rst symmetry rule says we are free to, for example, exchange the positrons in
the system. This amounts to swapping the indices {3↔ 4} which gives the wave
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function ∣∣ψ1243
i

〉
≡ exp

{
−air2

12 − bir2
14 − cir2

13 − dir2
24 − eir2

23 − fir2
34

}
= φ (ai, ci, bi, ei, di, fi) .

It turns out that if we exhaust all such symmetries then we �nd our wave function
must be built up from eight such pieces (see Figure 4).

Figure 4: Physically equivalent con�gurations of the di-positronium system.

Thus the total trial wave function is

|ψi〉 =
∣∣ψ1234
i

〉
+
∣∣ψ1243
i

〉
+
∣∣ψ2134
i

〉
+
∣∣ψ2143
i

〉
+
∣∣ψ3412
i

〉
+
∣∣ψ3421
i

〉
+
∣∣ψ4312
i

〉
+
∣∣ψ4321
i

〉
= φ (ai, bi, ci, di, ei, fi) + φ (ai, ci, bi, ei, di, fi) + φ (ai, di, ei, bi, ci, fi)

+φ (ai, ei, di, ci, bi, fi) + φ (fi, bi, di, ci, ei, ai) + φ (fi, ci, ei, bi, di, ai)
+φ (fi, di, bi, ei, ci, ai) + φ (fi, ei, ci, di, bi, ai) . (119)

The parameters {ai, bi, ci, di, ei, fi; i = 0.. (N − 1)} will be �ne-tuned later during
the optimization process in order to improve the upper bound on the eigenenergy.
Since we would like to compare results from the e�ective �eld theory with those
from the true theory we will need to calculate 〈ψi|ψj〉 , 〈ψi| Ĥ |ψj〉, and 〈ψi| ĤΛ |ψj〉
and solve the matrix problem in both cases. With each wave function broken up
into the eight pieces as in equation (119) the resulting matrix elements will have
64 terms each (not including the fact that the Hamiltonians themselves are broken
up into multiple pieces). To simplify this process we will for now consider only the

matrix elements
〈
ψ1234
i |ψ1234

j

〉
,
〈
ψ1234
i

∣∣ Ĥ ∣∣∣ψ1234
j

〉
, and

〈
ψ1234
i

∣∣ ĤΛ
∣∣∣ψ1234
j

〉
and then

later on we can swap parameters in the resulting expressions to obtain the full set
of matrix elements.

It will be advantageous later to have an expression for T̂
∣∣ψ1234
i

〉
so let us work

that out now before we move on. We will use the form of the kinetic energy oper-
ator T̂ given by equation (114) in terms of gradients with respect to interparticle
displacements. Taking gradients of the trial function (118) with respect to ~r12, ~r13,
and ~r14 we can show
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∇~r12
|ψ〉 = [−2 (a+ d+ e)~r12 + 2d~r13 + 2e~r14] |ψ〉 ,

∇~r13
|ψ〉 = [2d~r12 − 2 (b+ d+ f)~r13 + 2f~r14] |ψ〉 ,

∇~r14
|ψ〉 = [2e~r12 + 2f~r13 − 2 (c+ e+ f)~r14] |ψ〉 ,

where we have temporarily dropped the wave function and parameter indices. Taking
a second gradient gives the various combinations needed to complete the kinetic
energy operator,

∇2
~r12
|ψ〉 =

[
−6 (a+ d+ e) + 4

[
(a+ d+ e)2 r2

12 + d2r2
13 + e2r2

14

−2d (a+ d+ e)~r12 · ~r13 − 2e (a+ d+ e)~r12 · ~r14

+2de~r13 · ~r14]] |ψ〉 ,

∇2
~r13
|ψ〉 =

[
−6 (b+ d+ f) + 4

[
d2r2

12 + (b+ d+ f)2 r2
13 + f2r2

14

−2d (b+ d+ f)~r12 · ~r13 + 2df~r12 · ~r14

−2f (b+ d+ f)~r13 · ~r14]] |ψ〉 ,

∇2
~r14
|ψ〉 =

[
−6 (c+ e+ f) + 4

[
e2r2

12 + f2r2
13 + (c+ e+ f)2 r2

14

+2ef~r12 · ~r13 − 2e (c+ e+ f)~r12 · ~r14

−2f (c+ e+ f)~r13 · ~r14]] |ψ〉 ,

∇~r12
· ∇~r13

|ψ〉 =
[
6d+ 4

[
−d (a+ d+ e) r2

12 − d (b+ d+ f) r2
13 + efr2

14

+
(
d2 + (a+ d+ e) (b+ d+ f)

)
~r12 · ~r13

+ (de− f (a+ d+ e))~r12 · ~r14

+ (df − e (b+ d+ f))~r13 · ~r14]] |ψ〉 ,

∇~r12
· ∇~r14

|ψ〉 =
[
6e+ 4

[
−e (a+ d+ e) r2

12 + dfr2
13 − e (c+ e+ f) r2

14

+ (de− f (a+ d+ e))~r12 · ~r13

+
(
e2 + (a+ d+ e) (c+ e+ f)

)
~r12 · ~r14

+ (ef − d (c+ e+ f))~r13 · ~r14]] |ψ〉 ,

∇~r13
· ∇~r14

|ψ〉 =
[
6d+ 4

[
der2

12 − f (b+ d+ f) r2
13 − f (c+ e+ f) r2

14

+ (df − e (b+ d+ f))~r12 · ~r13

+ (ef − d (c+ e+ f))~r12 · ~r14

+
(
f2 + (b+ d+ f) (c+ e+ f)

)
~r13 · ~r14

]]
|ψ〉 .
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Adding these up and using the identity 2~r12 · ~r13 = r2
12 + r2

13 − r2
23 (law of cosines),

we �nd

T̂ |ψ〉 = [6 (a+ b+ c+ d+ e+ f)
−2
(
2a2 + ab+ ad− bd+ ac+ ae− ce

)
r2

12

−2
(
2b2 + ab+ bd− ad+ bc+ bf − cf

)
r2

13

−2
(
2c2 + ac+ ce− ae+ bc+ cf − bf

)
r2

14

−2
(
2d2 + ad+ bd− ab+ de+ df − ef

)
r2

23

−2
(
2e2 + ae+ ce− ae+ de+ ef − df

)
r2

24

−2
(
2f2 + bf + cf − bc+ df + ef − de

)
r2

34

]
|ψ〉 .

This allows us to break up the matrix element for the kinetic energy operator as

〈
ψ1234
i

∣∣ T̂ ∣∣ψ1234
j

〉
= 6 (ai + bi + ci + di + ei + fi)

〈
ψ1234
i |ψ1234

j

〉
(120)

−2
(
2a2

i + aibi + aidi − bidi + aici + aiei − ciei
) 〈
r2

12

〉
−2
(
2b2i + aibi + bidi − aidi + bici + bifi − cifi

) 〈
r2

13

〉
−2
(
2c2
i + aici + ciei − aiei + bici + cifi − bifi

) 〈
r2

14

〉
−2
(
2d2

i + aidi + bidi − aibi + diei + difi − eifi
) 〈
r2

23

〉
−2
(
2e2
i + aiei + ciei − aiei + diei + eifi − difi

) 〈
r2

24

〉
−2
(
2f2
i + bifi + cifi − bici + difi + eifi − diei

) 〈
r2

34

〉
,

where
〈
r2
kl

〉
≡
〈
ψ1234
i

∣∣ r2
kl

∣∣∣ψ1234
j

〉
and we have restored indices.

In order to determine the matrix elements for the exact potential we will need
to �nd

〈
ψ1234
i

∣∣ V̂ ∣∣ψ1234
j

〉
=

〈
ψ1234
i

∣∣ 1
r12

∣∣ψ1234
j

〉
+
〈
ψ1234
i

∣∣ 1
r34

∣∣ψ1234
j

〉
−
〈
ψ1234
i

∣∣ 1
r13

∣∣ψ1234
j

〉
−
〈
ψ1234
i

∣∣ 1
r14

∣∣ψ1234
j

〉
−
〈
ψ1234
i

∣∣ 1
r23

∣∣ψ1234
j

〉
−
〈
ψ1234
i

∣∣ 1
r24

∣∣ψ1234
j

〉
.

The cuto� potential is, of course, also broken up into six parts
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〈
ψ1234
i

∣∣ V̂ Λ
∣∣ψ1234
j

〉
=

〈
ψ1234
i

∣∣ 1
r12

erf
(

Λr12√
2

) ∣∣ψ1234
j

〉
+
〈
ψ1234
i

∣∣ 1
r34

erf
(

Λr34√
2

) ∣∣ψ1234
j

〉
−
〈
ψ1234
i

∣∣ 1
r13

erf
(

Λr13√
2

) ∣∣ψ1234
j

〉
−
〈
ψ1234
i

∣∣ 1
r14

erf
(

Λr14√
2

) ∣∣ψ1234
j

〉
−
〈
ψ1234
i

∣∣ 1
r23

erf
(

Λr23√
2

) ∣∣ψ1234
j

〉
−
〈
ψ1234
i

∣∣ 1
r24

erf
(

Λr24√
2

) ∣∣ψ1234
j

〉
, (121)

and �nally the correction terms

〈
ψ1234
i

∣∣ ĈΛ
∣∣ψ1234
j

〉
=

Λ√
2π

(
1 +

5
3
√
πΛ

)
×
[〈
ψ1234
i

∣∣ exp
(
−Λ2r2

12

2

) ∣∣ψ1234
j

〉
+
〈
ψ1234
i

∣∣ exp
(
−Λ2r2

34

2

) ∣∣ψ1234
j

〉
−
〈
ψ1234
i

∣∣ exp
(
−Λ2r2

13

2

) ∣∣ψ1234
j

〉
−
〈
ψ1234
i

∣∣ exp
(
−Λ2r2

14

2

) ∣∣ψ1234
j

〉
−
〈
ψ1234
i

∣∣ exp
(
−Λ2r2

23

2

) ∣∣ψ1234
j

〉
−
〈
ψ1234
i

∣∣ exp
(
−Λ2r2

24

2

) ∣∣ψ1234
j

〉]
. (122)

Let us also look at the two-particle contact densities as a test of the convergence
of expectation values calculated with wave functions from each theory. After taking
into account the symmetries of the system there are only two such operators to
consider: the electron-positron contact density δ3 (~r14) and the positron-positron
contact density (equivalent to electron-electron) δ3 (~r34). Thus we will also need to
calculate

〈
δ3 (~r14)

〉
=

〈
ψ1234
i

∣∣ δ3 (~r14)
∣∣ψ1234
j

〉
, (123)

and

〈
δ3 (~r13)

〉
=

〈
ψ1234
i

∣∣ δ3 (~r34)
∣∣ψ1234
j

〉
. (124)

It remains now to perform the integrations that will give analytic forms for the
matrix elements in terms of the parameters.
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5.3 Coordinate Shift Approach for Gaussian Integrals

To begin let us consider the overlap integral

〈χi|χj〉 =
ˆ

d3 ~A1d3 ~A2d3 ~A3d3 ~A4 e
−ar2

12−br2
13−cr2

14−dr2
23−er2

24−fr2
34 (125)

where a = ai+aj , b = bi+ bj , etc., when |χi〉 =
∣∣ψ1234
i

〉
and |χj〉 =

∣∣∣ψ1234
j

〉
. The full

matrix elements can be obtained from this integral by changing the de�nitions of
these parameters. The vectors ~Ai are the absolute coordinates of the particles as seen
from the lab frame. The integration measure in (125) is the most general possible
covering all possible positions of the four particles over all space. We actually only
need to integrate over all possible con�gurations and we can disregard the position
and motion of the center-of-mass in space since this has no physical implications
without any external potentials.

First let us move to centre-of-mass coordinates de�ned by ~Ai = ~R + ~Ri and
~R = 1

4

(
~A1 + ~A2 + ~A3 + ~A4

)
. It is straightforward to compute the Jacobian for this

transformation
∂
(
~A1, ~A2, ~A3, ~A4

)
∂
(
~R1, ~R2, ~R3, ~R

) = 43. (126)

In centre-of-mass coordinates then our volume element becomes

43d3 ~R1d3 ~R2d3 ~R3. (127)

We have omitted integration over d3 ~R since the trial wave function does not de-
pend on the center-of-mass coordinate ~R and the resulting divergent integral will be
canceled out upon normalization.

Moving next to relative coordinates de�ned by ~rij = ~Rj − ~Ri one can show the
Jacobian of this transformation to be

∂
(
~R1, ~R2, ~R3

)
∂ (~r12, ~r13, ~r14)

= 4−3. (128)

We can now rewrite the overlap integral with an integration measure suitable to the
integrand as

〈χi|χj〉 ≡ I (a, b, c, d, e, f) (129)

=
ˆ

d3~r12d3~r13d3~r14 e
−ar2

12−br2
13−cr2

14−dr2
23−er2

24−fr2
34 . (130)

In order to evaluate this integral �rst consider the coordinate shift

~r12 = ~x+m1~y +m2~z,

~r13 = ~y +m3~z,

~r14 = ~z, (131)
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with unit Jacobian. The constants m1, m2, and m3 will be determined later on. It
follows from these de�nitions that

~r23 = ~r13 − ~r12 = −~x+ (1−m1)~y + (m3 −m2)~z,
~r24 = ~r14 − ~r12 = −~x−m1~y + (1−m2)~z,
~r34 = ~r14 − ~r13 = −~y + (1−m3)~z.

The argument of the exponential in (130) in the new coordinate system becomes

−ar2
12 − ...− fr2

34 = −a
[
x2 +m2

1y
2 +m2

2z
2 + 2m1~x · ~y

+2m2~x · ~z + 2m1m2~y · ~z]
−b
[
y2 +m2

3z
2 + 2m3~y · ~z

]
− c

[
z2
]

−d
[
x2 + (1−m1)2 y2 + (m3 −m2)2 z2

−2 (1−m1) ~x · ~y − 2 (m3 −m2) ~x · ~z
+2 (1−m1) (m3 −m2) ~y · ~z]

−e
[
x2 +m2

1y
2 + (1−m2)2 z2 + 2m1~x · ~y

]
−2 (1−m2) ~x · ~z − 2m1 (1−m2) ~y · ~z]

−f
[
y2 + (1−m3)2 z2 − 2 (1−m3) ~y · ~z

]
. (132)

Let us introduce a redundant set of parametersm4 = 1−m2, m5 = 1−m3. At �rst it
looks like we have complicated things but we are now free to choose our parameters
m1, m4, and m5 so that all coe�cients of the dot products in our new coordinates
vanish. In order to make this determination we must solve for arbitrary ~x, ~y, ~z the
set of equations

(~x · ~y) [am1 − d (1−m1) + em1] = 0, (133)

(~x · ~z) [a (1−m4)− d (m4 −m5)− em4] = 0, (134)

(~y · ~z) [am1 (1−m4) + b (1−m5) + d (1−m1) (m4 −m5)
−em1m4 − fm5] = 0. (135)

Equation (133) tells us that

m1 =
d

a+ d+ e
, (136)

and equation (134) gives us the relation

m4 = 1−m2 = m1

(
m5 +

a

d

)
, (137)

which upon substituting into equation (135) gives

m5 = 1−m3 =
am1 + b

b+ d+ f − dm1
. (138)
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All of our coe�cients are now fully determined and with these choices of param-
eters (132) can be rewritten

−ar2
12 − ...− fr2

34 = −a
[
x2 +m2

1y
2 +m2

2z
2
]
− b

[
y2 +m2

3z
2
]
− c

[
z2
]

−d
[
x2 + (1−m1)2 y2 + (m3 −m2)2 z2

]
−e
[
x2 +m2

1y
2 + (1−m1)2 z2

]
−f
[
y2 + (1−m3)2 z2

]
= −x2 [a+ d+ e]− y2

[
am2

1 + b+ d (1−m1)2 + em2
1 + f

]
−z2

[
am2

2 + bm2
3 + c+ d (m3 −m2)2

+e (1−m2)2 + f (1−m3)2
]

(139)

≡ −αxx2 − αyy2 − αzz2, (140)

where we have introduced the coe�cients αx, αy, and αz such that

αx = a+ d+ e ,

αy =
(a+ d+ e) (b+ d+ f)− d2

a+ d+ e
=
F2 (a, b, c, d, e, f)

αx
,

αz =
F1 (a, b, c, d, e, f)

(a+ d+ e) (b+ d+ f)− d2

=
F1 (a, b, c, d, e, f)

αxαy
=
F1 (a, b, c, d, e, f)
F2 (a, b, c, d, e, f)

,

with

F1(a, b, c, d, e, f) ≡ abc+ abe+ abf + acd+ acf + ade+ adf + aef

+bcd+ bce+ bde+ bdf + bef + cde+ cdf + cef,

and

F2(a, b, c, d, e, f) ≡ (a+ d+ e) (b+ d+ f)− d2

= ab+ ad+ af + bd+ be+ de+ df + ef.

The function F2 will be useful later on when calculating matrix elements for the
kinetic energy and potential parts of the Hamiltonian.

Overlap Matrix Elements

In this coordinate system it is straightforward to work out the overlap integral,
equation (130),

I(αx, αy, αz) =
ˆ

d3~xd3~yd3~z e−αxx2−αyy2−αzz2
, (141)
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which can be integrated trivially to obtain

I(αx, αy, αz) =
π9/2

(αxαyαz)
3/2

, (142)

so that

I(αx, αy, αz) =
π9/2

F1(a, b, c, d, e, f)3/2
. (143)

Here we have found only one piece of the overlap matrix element, that for

|χi〉 =
∣∣ψ1234
i

〉
and |χj〉 =

∣∣∣ψ1234
j

〉
. The full overlap matrix element requires adding

up 64 such pieces as discussed in �5.2 above. However, all of these pieces can be deter-
mined from this result, equation (143), by rede�ning the parameters {a, b, c, d, e, f}
according to the symmetries of the wave function in equation (119).

Exact Coulomb Potential Matrix Elements

It turns out that we can work out all of the other matrix elements that we will
need with simple modi�cations of the above integration. Let us next �nd the matrix
elements for the exact Coulomb potential terms. Given the choice of coordinates
(131) we can directly solve the integral

V14(a, b, c, d, e, f) ≡
ˆ

d3~r12d3~r13d3~r14

(
1
r14

)
(144)

×e−ar2
12−br2

13−cr2
14−dr2

23−er2
24−fr2

34 ,

which transforms simply to

V14(αx, αy, αz) =
ˆ

d3~xd3~yd3~z

(
1
z

)
e−αxx2−αyy2−αzz2

(145)

=
π3

(αxαy)
3/2

ˆ
d3~z

(
1
z

)
e−αzz2

(146)

=
4π4

(αxαy)
3/2

ˆ ∞
0

dz z e−αzz2
(147)

=
2π4

F1(a, b, c, d, e, f) [F2 (a, b, c, d, e, f)]1/2
. (148)

Swapping parameters in this result we can easily work out the other exact
Coulomb integrals. For example
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V12(a, b, c,d, e, f) =
ˆ

d3~r12d3~r13d3~r14

(
1
r12

)
(149)

×e−ar2
12−br2

13−cr2
14−dr2

23−er2
24−fr2

34

=
ˆ

d3~r14d3~r13d3~r12

(
1
r12

)
(150)

×e−cr2
14−br2

13−ar2
12−fr2

34−er2
24−dr2

23

=
ˆ

d3~r12d3~r13d3~r14

(
1
r14

)
(151)

×e−cr2
12−br2

13−ar2
14−fr2

23−er2
24−dr2

34

≡ V14(c, b,a, f , e,d). (152)

From line (149) to (150) we simply rearrange the integral so that ~r12 takes the role
of ~r14 in equation (144). Then to get to (151) we simply change the indices (in this
case swapping 2↔ 4) and the result is an integral equivalent to the one we already
know. Similarily, one can show

V13(a,b, c,d, e, f) = V14(a, c,b, e,d, f), (153)

V23(a,b, c,d, e, f) = V14(a, e,d, c,b, f), (154)

V24(a,b, c,d, e, f) = V14(a,d, e,b, c, f), (155)

V34(a,b, c,d, e, f) = V14(b,d, f ,a, c, e). (156)

As with the overlap integral, we have only been using one part of the wave
function so this result does not give us the full matrix element. The next step is
adjust the parameters in equations (148,152-156) so as to account for all of the
symmetries discussed in �5.2 and add up the resulting matrix elements.

E�ective Potential Matrix Elements

Next we evaluate the cuto� potential matrix elements, one of which is

V Λ
14(a, b, c, d, e, f) ≡

ˆ
d3~r12d3~r13d3~r14

(
1
r14

erf
{

Λ√
2
r14

})
×e−ar2

12−br2
13−cr2

14−dr2
23−er2

24−fr2
34 .

Under the coordinate transformation (131) this gives
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V Λ
14(a, b, c, d, e, f) =

ˆ
d3~xd3~yd3~z

(
1
z

erf
{

Λ√
2
z

})
×e−αxx2−αyy2−αzz2

=
π3

(αxαy)
3/2

ˆ
d3~z

(
1
z

erf
{

Λ√
2
z

})
e−αzz2

=
4π4

(αxαy)
3/2

ˆ ∞
0

dz z erf
{

Λ√
2
z

}
e−αzz2

=
2π4

F1

√
F2 + 2α2F1

Λ2

. (157)

Using the same tricks as in (149-152) it is straightforward to show

V Λ
12(a, b, c,d, e, f) = V Λ

14(c, b,a, f , e,d), (158)

V Λ
13(a,b, c,d, e, f) = V Λ

14(a, c,b, e,d, f), (159)

V Λ
23(a,b, c,d, e, f) = V Λ

14(a, e,d, c,b, f), (160)

V Λ
24(a,b, c,d, e, f) = V Λ

14(a,d, e,b, c, f), (161)

V Λ
34(a,b, c,d, e, f) = V Λ

14(b,d, f ,a, c, e). (162)

Again, we construct the full e�ective potential matrix element, as we did for the
exact potential, by adding up terms of the form (157) for the various parameter
choices that take into account all of the symmetries of the system.

E�ective Potential Correction Matrix Elements

The matrix elements for the correction terms to the e�ective potential are given by
evaluating integrals of the form

CΛ
14(a, b, c, d, e, f) ≡

ˆ
d3~r12d3~r13d3~r14

(
exp

{
−Λ2

2
r2

14

})
×e−ar2

12−br2
13−cr2

14−dr2
23−er2

24−fr2
34

=
ˆ

d3~r12d3~r13d3~r14

×e−ar
2
12−br2

13−
(
c+ Λ2

2

)
r2
14−dr2

23−er2
24−fr2

34

≡ I(a, b,
(
c+

Λ2

2

)
, d, e, f).

In other words they are simply given by the overlap integral with a shift in the
parameter corresponding to the scalar distance involved. In this manner we can
show
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CΛ
12(a, b, c, d, e, f) = I(

(
a +

Λ2

2

)
, b, c, d, e, f), (163)

CΛ
13(a,b, c, d, e, f) = I(a,

(
b +

Λ2

2

)
, c, d, e, f), (164)

CΛ
23(a, b, c,d, e, f) = I(a, b, c,

(
d +

Λ2

2

)
, e, f), (165)

CΛ
24(a, b, c, d, e, f) = I(a, b, c, d,

(
e +

Λ2

2

)
, f), (166)

CΛ
34(a, b, c, d, e, f) = I(a, b, c, d, e,

(
f +

Λ2

2

)
). (167)

To construct the matrix element for the full wave function we again need to sum
up terms like these with parameters rede�ned to account for all of the symmetries
of the system.

Kinetic Energy Matrix Elements

Equation (120) tells us that in order to compute the matrix elements for the kinetic
energy terms we will need the integral I(a, b, c, d, e, f) as well as integrals of the form

T14(a, b, c, d, e, f) ≡
ˆ

d3~r12d3~r13d3~r14

(
r2

14

)
×e−ar2

12−br2
13−cr2

14−dr2
23−er2

24−fr2
34 ,

which in the (~x, ~y, ~z) coordinate system becomes

T14(a, b, c, d, e, f) =
ˆ

d3~xd3~yd3~z
(
z2
)
e−αxx2−αyy2−αzz2

(168)

=
π3

(αxαy)
3/2

ˆ
d3~z

(
z2
)
e−αzz2

(169)

=
4π4

(αxαy)
3/2

ˆ ∞
0

dz z4e−αzz2
(170)

=
3π9/2

2αz (αxαyαz)
3/2

(171)

=
3π9/2F2 (a, b, c, d, e, f)

2 [F1 (a, b, c, d, e, f)]5/2
. (172)

The other integrals for kinetic energy terms can be found again by swapping
parameters. In particular
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T12(a, b, c,d, e, f) = T14(c, b,a, f , e,d), (173)

T13(a,b, c,d, e, f) = T14(a, c,b, e,d, f), (174)

T23(a,b, c,d, e, f) = T14(a, e,d, c,b, f), (175)

T24(a,b, c,d, e, f) = T14(a,d, e,b, c, f), (176)

T34(a,b, c,d, e, f) = T14(b,d, f ,a, c, e). (177)

We can now compute the matrix element (120) since

〈
ψ1234
i

∣∣ T̂ ∣∣ψ1234
j

〉
= 6 (aj + bj + cj + dj + ej + fj)

〈
ψ1234
i |ψ1234

j

〉
−2
(
2a2

i + aibi + aidi − bidi + aici + aiei − ciei
) 〈
r2

12

〉
−2
(
2b2i + aibi + bidi − aidi + bici + bifi − cifi

) 〈
r2

13

〉
−2
(
2c2
i + aici + ciei − aiei + bici + cifi − bifi

) 〈
r2

14

〉
−2
(
2d2

i + aidi + bidi − aibi + diei + difi − eifi
) 〈
r2

23

〉
−2
(
2e2
i + aiei + ciei − aiei + diei + eifi − difi

) 〈
r2

24

〉
−2
(
2f2
i + bifi + cifi − bici + difi + eifi − diei

) 〈
r2

34

〉
,

and we already have
〈
ψ1234
i |ψ1234

j

〉
from equation (143) above. Note that in the

above notation,
〈
r2

13

〉
=
〈
ψ1234
i

∣∣ r2
13

∣∣∣ψ1234
j

〉
= T13(ai + aj , bi + bj , ci + cj , di + dj , ei +

ej , fi+fj), and so on. Then to construct the entire kinetic energy matrix element we
add together 64 pieces like this with parameters chosen according to the symmetry
rules outlined in �5.2.

Delta Function Matrix Elements

Last, we come to the matrix elements for the electron-positron and positron-positron
contact densities. Considering �rst the electron-positron contact density we have to
compute

〈
ψ1234
i

∣∣ δ (~r14)
∣∣ψ1234
j

〉
≡
ˆ

d3~r12d3~r13d3~r14 (δ (~r14))

×e−ar2
12−br2

13−cr2
14−dr2

23−er2
24−fr2

34

=
ˆ

d3~r12d3~r13 e
−(a+e)r2

12−(b+f)r2
13−dr2

23 .

This is just the overlap integral for the positronium-ion with a → (a+ e) and b →
(b+ f). Thus, using the result in equation (60) we have〈

ψ1234
i

∣∣ δ (~r14)
∣∣ψ1234
j

〉
=

π3

((a+ e) (b+ f) + (a+ e) d+ (b+ f) d)3/2
. (178)

Similarly, for the positron-positron contact density one can show〈
ψ1234
i

∣∣ δ (~r34)
∣∣ψ1234
j

〉
=
ˆ

d3~r12d3~r13 e
−(d+e)r2

12−(b+c)r2
13−ar2

23

=
π3

((d+ e) (b+ c) + (d+ e) a+ (b+ c) a)3/2
. (179)
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Both of these matrix elements are again only a piece of the matrix elements for
the full wave function. However, the full matrix elements can be found by sim-
ply swapping parameters around in (178) and (179) so as to exhaust all possible
symmetries of the wave function.

5.4 Results

At this point we can use the matrix elements for the e�ective and exact Hamiltonians
to �nd an optimal set of parameters {ai, bi, ci, di, ei, fi; i = 0.. (N − 1)} that minimize
the di-positronium ground state energy. Let us �rst compare the bound state energies
produced by each theory for di�erence basis sizes. For the e�ective �eld theory we
take Λ = 50. Results for various size bases of trial wave functions are shown in Table
4.

Basis Size EFT at O (α), Correction, EFT at O
(
α3
)
, Exact Theory,

(N)
〈
ĤΛ
〉 〈

ĈΛ
〉 〈

ĤΛ
〉

+
〈
ĈΛ
〉 〈

Ĥ
〉

10 -0.51336375 -0.00018141 -0.51354516 -0.51221924
20 -0.51532713 -0.00020120 -0.51552833 -0.51546153
40 -0.51567711 -0.00020871 -0.51588582 -0.51588625
60 -0.51575941 -0.00021130 -0.51597071 -0.51596430
80 -0.51577822 -0.00021212 -0.51599034 -0.51598202
100 -0.51578340 -0.00021217 -0.51599557 -0.51599207
120 -0.51578378 -0.00021222 -0.51599600 -0.51599325
160 -0.51578850 -0.00021242 -0.51600093 -0.51599945
200 -0.51578936 -0.00021250 -0.51600186 -0.51600070

Table 4: Ground state energy of the di-positronium molecule in units mα2.

Current estimates show the actual energy of the di-positronium molecule ground
state to eight decimal places to be −0.51600379mα2 [8]. As we can see in Table 4:
Columns 4 and 5 all of the energies produced by both the true theory and e�ective
theory appear to be converging to this value and, more importantly, they do not
drop below it. In both cases, as the basis grows to N = 200, our values di�er from
the true result by just a few parts in 106. This agreement is not quite as good as that
for the positronium-ion in �4 but this is to be expected because the wave function
for the four-body di-positronium molecule is much more complicated. On the bright
side, the e�ective �eld theory results here (Table 4: Column 4) do not overshoot the
actual result as they did with the positronium-ion because at this precision the next
order corrections (O

(
α4
)
) do not come into play.

With regards to the rate of convergence of the two methods, the e�ective �eld
theory seems to be very slightly better than the true theory. We can see this by
noting that for N = 40 the two theories gives very close results but beyond that, for
N ≥ 60, the e�ective �eld theory is always lower, although by only a few parts in
106. This should not be surprising, however, because our trial wave functions, which
are Gaussians, are better suited to the smooth nature of the wave function of the
e�ective �eld theory. However, a di�erence of only a few parts in 106 in the energies
does not give us any de�nite information on if the wave function for the e�ective
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theory is converging to the true di-positronium wave function better than our wave
function from the exact theory.

To determine which wave function is more useful we want to see which will give
us expectation values that converge to their actual values faster. Once the optimiza-
tion routine determines an energy estimate (those in Table 4) it also gives us the
corresponding eigenvector and a tuned parameter set. From these two objects we can
construct an approximate full wave function for the system and then calculate expec-
tation values. Here we present the results of calculating expectation values for the
electron-positron and positron-positron contact densities (Table 5). For comparison,
we calculate them with both the e�ective �eld theory and exact theory approximate
wave functions.

Basis Size 〈δe+e−〉 using 〈δe+e−〉 using 〈δe+e+〉 using 〈δe+e+〉 using
(N) EFT Exact Theory EFT Exact Theory

10 0.018198 0.017264 0.00082408 0.00076688
20 0.020100 0.020091 0.00078380 0.00073796
40 0.020868 0.021109 0.00068294 0.00067055
60 0.021158 0.021478 0.00066185 0.00066208
80 0.021259 0.021676 0.00066322 0.00065517
100 0.021284 0.021681 0.00065051 0.00064643
120 0.021288 0.021769 0.00064917 0.00064400
160 0.021299 0.021874 0.00064881 0.00064287
200 0.021311 0.021890 0.00064621 0.00064082

Table 5: Expectation values of delta functions, δe+e− and δe+e+ , for di-positronium
molecule.

For the di-positronium molecule the actual value for the electron-positron contact
density is 0.022118 and for the positron-positron contact density it is 0.00062580
(each value given to �ve signi�cant digits) [7]. As we can see in Table 5, all of the
values are well behaved and appear to be moving in the right direction. However,
as was the case with the positronium-ion, the expectation values of the electron-
positron contact density for the e�ective �eld theory converge faster than those for
the true theory but not to the right value (see Table 5: Column 2). The true theory,
on the other hand, takes longer to settle on a particular value but seems to be closing
in on the correct one (see Table 5: Column 3). For the positron-positron contact
density expectation values (Table 5: Columns 4 and 5) both theories do a reasonable
job, but the exact theory does slightly better. Thus, in each case the wave function
from the e�ective �eld theory does not perform as well as that from the true theory.
This is almost certainly due to the fact that the e�ective potential has no divergence
at ~r = 0 and in turn gives rises to a wave function that is smooth there. This makes
the wave function unreliable for working out expectation values for the exact theory
whose wave function has a cusp at ~r = 0. The wave function produced using the
true theory, on the other hand, better approximates the cusp and that is why it
ultimately gives better results.
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6 Conclusions

When attempting to determine the properties of a complicated quantum system, one
cannot always hope to �nd an exact wave function. Often, the only way to proceed
is to perform a variational calculation and try to approximate the wave function for
the system. Usually, this also means performing a numerical calculation, especially
if one wants to perform some sort of optimization of the wave function. However,
as physicists try to determine the properties of increasingly complicated systems to
higher and higher precisions, it becomes important to �nd shortcuts for these types
of problems.

As we have seen, if one is interested in the low-energy phenomena associated
with a system, it is straightforward to construct an e�ective �eld theory that mimics
the true theory to arbitrarily high precision. Additionally, one can remove certain
inconvenient features of the true theory (e.g. cusps, divergences). The wave function
associated with the resulting e�ective �eld theory should consequently be much
smoother than that of the true theory. This could be a great advantage if we are
trying to approximate our wave function with a basis of smooth functions. When
this is the case, which it often is, then we would expect an optimization routine
to produce the wave function for the e�ective theory faster than it could that of
the true theory. If this wave function could then lend itself to calculating accurate
expectation values that converged faster than those calculated using the true theory,
then this would be a great advantage of using e�ective �eld theories.

To test this idea we considered both the three-body positronium-ion and the
four-body di-positronium molecule, each with the true theory (Coulomb) and an
e�ective theory (Coulomb with high-energy cuto�). We then performed a variational
calculation using multiple Gaussian trial wave functions with tunable parameters.
Using these smooth Gaussians meant that we could accurately construct the wave
function for the e�ective theory with fewer basis functions than we would need to
do the same for the true theory. An optimization routine allowed us to seek out the
parameters which gave a minimum upper bound on the energy of the system as well
as an approximate wave function. We could then compare the e�ectiveness of the
well-converged wave function from the e�ective theory with the slowly converging
wave function from the true theory. This was done for multiple basis sizes so that
convergence properties could be observed.

For the positronium-ion bound state energy, with a basis size N = 240, the
optimized wave functions gave for the true theory −0.262005057mα2 and for the
e�ective theory −0.262005304mα2 (the actual value to nine decimal places being
−0.262005070mα2). As we can see, there is excellent agreement between the result
from the true theory and the actual result, di�ering by less than two parts in 108.
Unfortunately, the lack of corrections beyond O

(
α3
)
in our e�ective theory resulted

in an energy lower than the actual value. More important than the �nal precision,
however, is how well the energies converged as the basis size increased. In both
cases, the convergence is clear and, not surprisingly, the energies for the e�ective
�eld theory converge faster. This is because we can construct the wave function for
the e�ective theory much more easily with Gaussians than we can the wave function
for the true theory. Nevertheless, the wave function from the e�ective theory has
no advantage over the wave function from the true theory if it cannot be used to
calculate expectation values that converge faster (and to the actual value) as well. To
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test this we used the tuned wave functions to compute the electron-positron contact
density for the positronium-ion. At the largest basis size of N = 240 the wave
function from the true theory gave a value of 0.020671 very close to the actual value
of 0.020733 (to �ve signi�cant digits), while the wave function from the e�ective
theory only gave 0.020029. More seriously, the e�ective theory results appeared to
converge to this value very quickly and then did not change signi�cantly, implying
convergence to an incorrect �nal answer. This is another indication that the wave
function from the e�ective theory converged very quickly but, unfortunately, it also
means that it is not useful for practical applications.

Before we moved on from the positronium-ion, we took advantage of the fact that
we were in possession of a highly-tuned wave function for that system to calculate a
useful expectation value. We reasoned that the pair of electrons with no net magnetic
moment could alter the magnetic moment of the positron, which characterizes the
magnetic moment of the ion. This, we determined, would be an O

(
α2
)
correction.

We then found that in order to calculate this correction for the positronium-ion
one needed the expectation value of the scalar product of the electric �eld as felt
by the positron with its center-of-mass position which has not been calculated to
our knowledge. After �nding an explicit formula for this expectation value in terms
of our Gaussian basis trial functions, we then computed it using our tuned wave
function and found the currently unknown matrix element to be〈

~ε · ~R
〉

= −0.25753±
(
1× 10−5

)
mα3/2. (180)

Our next system to test the potential bene�ts of using an e�ective �eld theory
was the di-positronium molecule. For a basis size N = 200, the optimized wave
functions found ground state energies for the true theory of −0.51600070mα2 and
for the e�ective theory −0.51600186mα2 (the actual value to eight decimal places
being −0.51600379mα2). Again we have very good agreement between the energy
produced here by the true theory and the actual energy, di�ering by a few parts in
106. This time, however, our e�ective theory produces an even closer result without
going lower than the actual value, also di�ering by a few parts in 106. The fact that
we did not overshoot with the e�ective theory this time is to be expected since for the
di-positronium molecule the program did not achieve precision that made the O

(
α4
)

correction important. It is also not surprising that neither method could match the
precision achieved with the positronium-ion simply because the wave function for the
molecule is much more complicated and, thus, not as easily constructed from our trial
basis. The precision we obtained was not the main issue though. We were primarily
concerned with how well the energies converged as the basis size increased. There is
clear convergence again in both cases with the e�ective �eld theory converging faster
again, but only slightly. To answer the convergence question more de�nitely we use
the wave functions obtained to compute the positron-positron and electron-positron
contact densities for the system. For the electron-positron contact density at the
largest basis size of N = 200, the wave function from the true theory gave a value
of 0.021890, which is quite close to the actual value of 0.022118 (to �ve signi�cant
digits) while the wave function from the e�ective theory came up shy again, giving
only 0.021311. As was the case with the ion, the electron-positron contact density
expectation value as predicted by the e�ective theory su�ered from the defect of
converging to the wrong value. For the positron-positron contact density at the
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largest basis size, the wave function from the true theory gave a value of 6.4082×10−4

while the wave function from the e�ective theory gave 6.4621 × 10−4. The actual
value (to �ve signi�cant digits) is 6.2580×10−4 so again the true theory did a better
job.

For both systems of interest, the e�ective �eld theory and true theory were both
able to produce very accurate energies. As expected, the energies from the e�ective
theory always converged faster as well. This, we said, was because the wave function
for the e�ective theory is easier to construct with a basis of smooth trial functions.
However, when we went on to compare the e�ectiveness of the wave functions in
calculating expectation values, the e�ective theory clearly fell short. The results
from the e�ective theory still converged as fast or faster than the true theory but
they were never as accurate in the end. However, the expectation value of the
delta function is a particularly severe test of the e�ective theory, since it probes
the wave function exactly at the place where the change of the potential a�ects
it most strongly. It is likely that other operators can be evaluated more reliably
with the e�ective theory. Even the delta function can be rewritten with the help of
equations of motion in terms of operators that probe more global properties of the
wave function [11]. A de�nite answer to this question will require more work since
here, despite the fact that our energies and wave functions from the e�ective theory
converged faster than their true theory counterparts, we did not see any obvious
advantage to using an e�ective �eld theory, because its predictions ultimately did
not match the reliability and accuracy of the true theory.
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7 Appendix - Alternate Approach to Three and Four-

Body Integrals

In �4.3 and �5.3 we introduced coordinate shifts to help solve the integrals for the
three and four-body matrix elements. Through suitable coordinate shifts the matrix
elements could be transformed into easily integrable three-dimensional Gaussians
since the wave functions themselves were Gaussians depending only upon the scalar
interparticle distances. However, one is not always lucky enough to be using a trial
wave function that can be simpli�ed using this approach. Here we discuss another
method for �nding three and four-body matrix elements by breaking down the inte-
gration measure into one-dimensional interparticle scalar distances and angles. This
method of integration has the advantage that one is always working to integrate over
physical degrees of freedom of the system that can be visualized.

7.1 Three-body Integrals

In the lab frame where particles' positions are given by the vectors ~A1,2,3 the volume
element that allows one to integrate over the positions of all particles is given by

dV3 ≡ d3 ~A1d3 ~A2d3 ~A3.

In �4.3 we showed how one could move from the lab frame coordinates to relative
coordinates ~rij (see Figure 5).

Figure 5: Three-body system in absolute coordinates ~Ai and relative coordinates ~rij .

After making these coordinate changes the volume element becomes

dV3 = d3~r12d3~r13d3 ~R ≡ d3 ~Rdv3.

We then argued that the term d3 ~R which corresponded to the position of the centre-
of-mass could be disregarded in the integration. Thus we are left with just dv3 which
has six degrees of freedom to integrate over. However, we really only need to integrate
over all possible con�gurations of the three particles. If we imagine the three particles
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forming a triangle then the orientation of this triangle is not important. Since the
orientation of this triangle requires three degrees of freedom we are actually only
left with three degrees of freedom to cover all possible con�gurations of our system.
This makes sense since the shape of a triangle is �xed given the knowledge of its
three edge lengths.

In order to �ush out the degrees of freedom associated with the orientation of
the triangle let us the �x our triangle of particles in space so that particle {1} is at
the origin (see Figure 6).

Figure 6: Fixing the orientation of the three-body system to remove orientational
degrees of freedom in the volume element.

Next we will demand that particle {2} lies on a �xed vertical axis. In doing so
we will pick up a factor of 4π for the orientation of ~r12. Finally, let us �x ~r13 in
a circle at an angle θ23 from ~r12. This contributes an additional factor of 2π. Our
volume element can then be written

d3~r12d3~r13 = 8π2r2
12dr12r

2
13dr13d cos θ23, (181)

where r12, r13 ∈ (0,∞) and θ23 ∈ (0, π). There are no more degrees of freedom that
can be eliminated from the volume element, but it is useful to replace the integration
over the angle θ23 by integration over the remaining scalar distance r23. The law of
cosines give us that

(~r12 − ~r13)2 = r2
23 = r2

12 + r2
13 − 2r12r13 cos θ23,

or

|r23dr23| = |r12r13d cos θ23| .

The volume element (181) then becomes simply

d3~r12d3~r13 = 8π2r12dr12 r13dr13 r23dr23, (182)
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where r12, r13 ∈ (0,∞) and r23 ∈ (|r12 − r13| , |r12 + r13|). The bounds of integration
for r23 correspond to when ~r12 and ~r13 are anti-parallel and parallel respectively.

7.2 Four-body Integrals

Starting from the lab frame where the particles' positions are given by the vectors
~A1,2,3,4 we can write down the volume element that allows one to integrate over the
positions of all particles as

dV3 ≡ d3 ~A1d3 ~A2d3 ~A3d3 ~A4.

In �5.3 we showed how to change from absolute coordinates to relative coordinates
~rij (see Figure 7).

Figure 7: Four-body system in absolute coordinates ~Ai and relative coordinates ~rij .

In doing so the volume element becomes

dV3 = d3~r12d3~r13d3~r14d3 ~R ≡ d3 ~Rdv3.

The term d3 ~R corresponds to the position of the centre-of-mass so can be disre-
garded in the integration. Thus we are left with just dv3, which has nine degrees
of freedom to integrate over. However, we only need to integrate over all possible
con�gurations of the four particles. The four particles form a tetrahedron in space
and the orientation of this tetrahedron is not important. Since the orientation is
determined by three degrees of freedom, we are actually only left with six degrees of
freedom to cover all possible con�gurations of our system. This makes sense since
the shape of a tetrahedron is �xed if the lengths of its edges are known.

Let us remove the degrees of freedom associated with the orientation of the
tetrahedron by �rst �xing it in space so that particle {1} is at the origin (see Figure
8).

Next we will demand that particle {2} lies on a �xed vertical axis. In doing so we
will pick up a factor of 4π for the orientation of ~r12. We will then �x ~r13 in a circle at
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Figure 8: Fixing the orientation of the four-body system to remove orientational
degrees of freedom in the volume element.

an angle θ23 from ~r12. This contributes an additional factor of 2π. The �nal vector
~r14 is free to point in any direction and still give rise to a unique con�guration so no
degrees of freedom can be eliminated here. Now, let us break up the integration over
~r14 into integration over the scalar distance r14, the angle between ~r12 and ~r14 which
we will call θ24, and the angle between the triangle formed by particles {1, 2, 3} and
{1, 2, 4} which we will denote by φ. Our volume element can then be written

d3~r12d3~r13 = 8π2r2
12dr12r

2
13dr13r

2
14dr14d cos θ23d cos θ24dφ, (183)

where r12, r13, r14 ∈ (0,∞), θ23, θ24 ∈ (0, π), and φ ∈ (0, 2π). Using the law
of cosines one can attempt to write the volume element purely in terms of scalar
distances. However, a more convenient form is given in [32] using the angle between
~r13 and ~r14 (denoted θ34) instead of the angle φ. In this case the volume element
(183) becomes

d3~r12d3~r13d3~r14 ∝
r2

12dr12r
2
13dr13r

2
23dr23d cos θ23d cos θ24d cos θ34√

1− cos2 θ23 − cos2 θ24 − cos2 θ34 + 2 cos θ23 cos θ24 cos θ34

.

(184)
With this volume element, the bounds of integrations on the distances are still

r12, r13, r14 ∈ (0,∞), but the angles are not independent. In particular, if we
choose to integrate θ23, θ24 ∈ (0, π), then the remaining angle only spans the range
θ34 ∈ (|θ23 − θ24| , |θ23 + θ24|). The minimum corresponding to when the triangles
formed by particles {1, 2, 3} and {1, 2, 4} are overlapping in the same plane and the
maximum to when the triangles are in the same plane not overlapping (see Figure
9).
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Figure 9: Given values for two angles, say θ23 and θ24, the third angle ranges from
θ34 = |θ23 − θ24| (left) to θ34 = |θ23 + θ24| (right).

7.3 Example for Three-body Overlap Integral

To demonstrate the equivalence of the di�erent integration methods let us consider
the overlap integral for the three-body problem in �4.3. With the trial wave function

|ψi〉 = exp
{
−air2

12 − bir2
13 − dir2

23

}
, (185)

one aims to solve the integral

I (a, b, d) =
ˆ

d3~r12d3~r13 e
−ar2

12−br2
13−dr2

23 . (186)

Using the volume element (182) gives

I (a, b, d) = 8π2

ˆ ∞
0

r12dr12

ˆ ∞
0

r13dr13

ˆ |r12+r13|

|r12−r13|
r23dr23

×e−ar2
12−br2

13−dr2
23

=
−4π2

d

ˆ ∞
0

r12dr12

ˆ ∞
0

r13dr13

×
[
e−er

2
12−fr2

13−2dr12r13 − e−er2
12−fr2

13+2dr12r13

]
,

where e ≡ a+ d and f ≡ b+ d. Next let u ≡
√
er12 and v ≡

√
fr13 then

I (a, b, d) =
−4π2

def

ˆ ∞
0

udu
ˆ ∞

0
v dv

×
[
e−u

2−v2−2guv − e−u2−v2+2guv
]
,

with g = d√
ef
. Using a suitable coordinate change we can eliminate the cross-term

in the exponentials. So let x ≡ u ± gv and y ≡
√

1− g2v. The Jacobian for this

transformation is just ∂(x,y)
∂(u,v) =

√
1− g2. The integral then becomes
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I (a, b, d) =
−4π2

def (1− g2)

ˆ ∞
0

dy y e−y
2

×

[ˆ ∞
gy

dx

(
x− gy√

1− g2

)
e−x

2

−
ˆ ∞
−gy

dx

(
x+

gy√
1− g2

)
e−x

2

]

=
8π2g

def (1− g2)3/2

(ˆ ∞
0

dy e−y
2

)(ˆ ∞
0

dxx2 e−x
2

)
=

π3g

def (1− g2)3/2

=
π3

(ef − d2)3/2

=
π3

(ab+ ad+ bd)3/2
.

This result is identical to equation (61) as should be expected. It is clear that this
method is much more cumbersome for this integral than that used in �4.3, however,
we present this alternative approach because for other choices of trial wave functions
or the expectation values of certain operators the opposite may be true.
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8 Appendix - Perturbative Matching for E�ective Field

Theory Coe�cients

In �4.1 and �5.1 we constructed e�ective �eld theories by modifying the Coulomb
potential to remove the divergence. We then introduced a series of operators to
reproduce the local interactions. These operators were de�ned in terms of a func-
tion δ3

Λ (r) and an in�nite set of parameters di. Given a particular choice for the
function δ3

Λ (r), the parameters di would then be determined uniquely if we wanted
to reproduce the true theory entirely. That is, if we wanted

V (r) =
1
r

equal to

V Λ (r) =
1
r

erf
(

Λr√
2

)
+
d1

α2
δ3

Λ (r)− d2∇2
rδ

3
Λ (r) + d3∇rδ3

Λ (r) · ∇r....

Determining all of the parameters is a hopeless task. Fortunately, it turns out
that if we only want our e�ective theory to be valid to a given accuracy then only
a �nite number of correction terms are needed. For our purposes, we only required

agreement through O
(
α3
)
. This meant we only needed d

(1)
1 and d

(2)
1 , where d1 had

been expanded in α (i.e. d1 = αd
(1)
1 + α2d

(2)
1 + ...). To see why this is let us write

down our true and e�ective potentials in momentum space. The Coulomb potential
is simply

V (q) =
4π
q2
, (187)

while the e�ective potential without corrections is

V Λ (q) =
4π
q2

exp
{
− q2

2Λ2

}
, (188)

and the local operator generating function will become

δ3
Λ(q) = α3 exp

(
− q2

2Λ2

)
.

The correction terms then give a series in momenta squared,

CΛ (q) =
(
d1

α2
+ d2q

2 + d3
~l · ~k +O

(
q4
))

δ3
Λ(q). (189)

The coe�cients di can be determined via perturbative matching. For example,
at lowest order, we have the scattering amplitude from the e�ective theory as

T
(1)
eff

(
~l→ ~k

)
=

[
4π
q2

+ αd1 + α3d2q
2 + α3d3

~l · ~k + ...

]
exp

(
− q2

2Λ2

)
=

4π
q2

+
(
αd1 −

2π
Λ2

)
+
(
α3d2 −

d1α

2Λ2
+

π

2Λ4

)
q2

+α3d3
~l · ~k +O

(
q4
)

(190)
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The Born approximation gives the O (α) result T (1)
exact = 4π

q2 . Expanding the param-

eters di = αd
(1)
i + α2d

(2)
i + ... and demanding that the two methods give the same

result at O (α) for all q, equation (190) then tells us that:

d
(1)
1 =

2π
α2Λ2

,

d
(1)
2 =

π

2α4Λ4
,

d
(1)
3 = 0.

At the next order, we can compare the threshold scattering amplitudes and
demand

lim
~k → 0

[
T

(2)
eff

(
~l→ ~k

)
− T (2)

exact

(
~l→ ~k

)]
= 0,

If one does this they will �nd

d
(2)
1 =

√
π

 10
3α3Λ3

+ 20αΛ
d

(1)
2

4π
− 6α5Λ5

(
d

(1)
2

4π

)2


=
71
√
π

96α3Λ3
,

which completes the correction at one-loop order. This procedure can be repeated to
determine coe�cients that give agreement between the exact and e�ective theories
to any desired accuracy. For our investigation, we required energy levels accurate

only through O
(
α3
)
(in energy units mα2) so we could set d

(i)
2 = 0 for all i. This

then gives the only non-zero coe�cients as

d
(1)
1 =

2π
α2Λ2

,

d
(2)
1 =

10
√
π

3α3Λ3
,

in agreement with those of �4.1 and �5.1.

60



9 Appendix - Computer Software

In this section we discuss the details of the program used to solve the generalized
eigenvalue problem and implement Powell's method to minimize the result. This
program requires the input of a pair of functions to generate the Hamiltonian and
overlap matrix elements given a set of parameters. Once the matrix elements are
computed the eigenvalue problem is solved. The program then repeats this process
while varying the parameters so that it can seek out optimal values for these param-
eters and minimize the result from solving the eigenvalue problem. Upon completion
the program outputs the minimized energy and the parameters that produce it as
well as the corresponding eigenvector. From the parameters and eigenvector one
can construct the wave function and compute expectation values. The program uses
double precision and runs on a single processor.

Program Files

The �les used by this program can be broken up into two groups - those written by
the author and those from Numerical Recipes [33]. The �les written by the author
include:

main.cpp This is the control centre for the program. From this �le the parameters
are passed around to various functions to be tuned and compute quantities of
interest. This is also where one speci�es what external �les to include, what
values to choose for global constants, and how the output should be handled.

tools.h This is where all custom written functions are stored. In particular it in-
cludes a function for performing QR decomposition, a function for solving the
generalized eigenvalue problem, a function for updating a QR decomposition,
and many other minor functions which perform matrix operations and debug-
ging. All matrix operations required are custom written into this �le or part of
the Numerical Recipes routine so as to exclude the overhead that comes with
using a linear algebra package.

outcom.h This �le includes functions which handle input from and output to �les.
In particular, input and output of tuned energies, eigenvectors, and parameter
sets.

psion.h/ps2.h This is where the functions for computing matrix elements and ex-
pectation values for a particular physical system are stored.

The operations handled with Numerical Recipes code in this program are Powell's
method, QR decomposition, and QR decomposition update. The �les containing
these routines along with all other �les supporting the use of these three are:

powell.cpp Runs the Powell routine. Accepts input of a set of parameters, a direc-
tional matrix for the minimization process, an error tolerance, and a function
of the parameters to minimize. For the problems at hand the function to min-
imize called func is the custom routine (found in tools.h) which solves the
generalized eigenvalue problem.

linmin.cpp Called by powell.cpp. Finds the minimum of a function in a particular
direction in multidimensions.
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mnbrak.cpp Called by linmin.cpp. Brackets a minimum.

brent.cpp Called by linmin.cpp. Uses Brent's method to seek out a minimum.

f1dim.cpp Constructor called by linmin.cpp for evaluating a function e�ciently.

qrdcmp.cpp Performs a QR decomposition of an input matrix. Output is in the
form of two vectors from which one must construct the Q and R matrices (see
function upperTri2 in tools.h for details).

qrupdt.cpp Updates a QR decomposition based on the input of two vectors whose
outer product gives the change in the product of the Q and R matrices.

rotate.cpp Routine called by qrupdt.cpp.

Also needed to run the Numerical Recipes routines is the header �le nr.h. If you
change the arguments of a Numerical Recipes routine then you must also change its
de�nition in nr.h. More details on the Numerical Recipes code can be found in [33].

Overview of Program

We now give a more thorough discussion of the custom written �les: main.cpp,
tools.h, outcom.h, and psion.h/ps2.h.

main.cpp
At the beginning of the �lemain.cpp one �nds an assortment of global constants.

The purpose of each constant is as follows:

� DP FTOL - Speci�es the acceptable error tolerance for the Powell routine
and so determines to what precision the parameters are tuned.

� DP LINTOL - Speci�es the acceptable error tolerance for the linmin routine.

� DP ETOL - Speci�es the acceptable error tolerance when calculating the
change in energy in function func (see tools.h).

� DP ENERGY - Starting estimate for energy of system, should be close to
actual energy otherwise inverse iteration can run into problems.

� int NPAR - Number of parameters per wave function (e.g. 3 for positronium-
ion, 6 for di-positronium).

� int SubSteps - Number of times to run a full QR decomposition to update
the energy and eigenvector each time the Hamiltonian and Overlap matrices
are recomputed from scratch.

� int SubSteps2 - Maximum number of times to test a set of parameters in func
(see tools.h) within the Powell routine when trying to calculate the change
in energy for those parameters. If the change in energy is deemed acceptable
then this loop is broken but occasionally multiple iterations are needed to �nd
an eigenvector that gives a good change in energy.

� int MAXITS - Number of times the Powell routine cycles through the full
set of parameters.
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� int CYCLESTEPS - The number of times you wish to grow the basis. At
the end of each CYCLESTEP you must increase CYCLE.

� int NDIM - The total number of basis functions to use in the optimization
process. This number should be equal to CYCLE if you do not grow the
basis. If you do plan to grow the basis size then this should be the �nal basis
size, larger than CYCLE.

� int RESETMAX - Number of times to use funcQRupdate (refer to tools.h)
before performing a full QR decomposition to eliminate accumulated errors.
QR decompositions take time O

(
N3
)
while updates take O

(
N2
)
. For small

basis sizes it is alright to have smaller RESETMAX because the decompo-
sitions do not take too long and they allow you to improve your eigenenergy
and eigenvector faster. However, as the basis size gets bigger it is ine�cient to
calculate the full decomposition often so RESETMAX should be increased,
but not so large that errors spoil results.

� DP CUTOFF - This is the momentum cuto� from the e�ective �eld theory,
this term only shows up in psion.h and ps2.h. It is in units mα here.

� int CYCLE - The current basis size that you are working in. At the end of
each loop of CYCLESTEP you must give some prescription for how CYCLE
grows.

� int RESET - A counter to keep track of how many times we have done a QR
update without having done a full QR decomposition.

Immediately following these de�nitions there are a series of strings which reference
input and output �les. If you are concerned with input and output then these must
be changed constantly.

We are now ready to look at the contents of themain function. At the beginning
of themain function we de�ne all of our working variables, vectors, and matrices (e.g.
parameter set, Hamiltonian matrix, overlap matrix, eigenvector). We then initialize
the parameters so that each parameter is a function of some random number (see
initParams in tools.h). This function is chosen so that the resulting parameters
are roughly the right order of magnitude for the positronium-ion and di-positronium
molecule. Next, we initialize our eigenvector to be normalized with all equal entries
(this will soon change). The last step before parameter optimization is to read in
any external data if desired. This is done with the functions in outcom.h such as
readAll.

The �rst loop that we enter in starting the optimization runs for a total of CY-
CLESTEPS times. As discussed above, each iteration of this loop deals with a
certain basis size. Thus at the beginning of this loop we must compute the Hamil-
tonian and overlap matrices and renormalize the eigenvector. At this point we must
also perform a full QR decomposition because the basis size has changed. This also
updates the eigenvector and energy.

The next loop with loop variable maximum MAXITS determines how many
times we will run through the entire basis in our optimization. For larger basis sizes
this loop need not run many times because the tuning of the new parameters will be
relatively independent of the other pretuned ones. As an alternative to having a loop
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that runs a de�nite number of times one may also de�ne a termination condition
depending on how much the energy changes between each step. That is, if we run
this loop and the energy does not decrease by a minimum amount then we break
and grow the basis.

The last loop in the nest is where the actual optimization takes place. For each
cycle of the loop we run through the parameters of each trial wave function once.
We work with all of the parameters for a particular wave function at once and store
them in a temporary vector p. We then run the Powell routine with this vector as
the argument of the function func which is to be minimized (see below for more
details on func). The Powell routine should return a set of parameters that reduce
the upper bound on the energy and, if so, we overwrite the current parameters for the
wave function being worked on with these new ones. Before we move on, we compute
the updated QR decomposition for the new parameters (see funcQRupdate below).
Additionally, if we have updated the QR decomposition RESETMAX times then
we recalculate the Hamiltonian and overlap matrices from scratch and recompute
the full QR decomposition to remove errors. At this point the optimization of the
parameters of a single wave function is �nished and we reset the counter iter for the
Powell routine.

Once we have �nished optimizing at a particular basis size (�nished the two
inner loops) we will have a set of tuned parameters, a tuned eigenvector, and a
minimized energy. We can use the parameters and eigenvector to reconstruct a full
wave function which can then be used to work out expectation values for this basis
size. Finally, we write our results to a �le and increment CYCLE to grow the basis.

tools.h
In tools.h are all of the custom written functions which primarily deal with the

linear algebra aspects of the problem. The following is a list of the functions along
with their purposes:

multMat Performs simple matrix multiplication.

multMatVec Multiplies a matrix and a vector.

dispMat Outputs a matrix to the console (primarily used for debugging).

dispVec Outputs a vector to the console.

initParamsRand Creates a set of random parameters.

initIdent Creates an identity matrix.

equalMat Sets a matrix equal to another one.

transpose Finds the transpose of a matrix.

norm This function is overloaded and can perform three operations. If one inputs a
vector and a �oat then it will return the vector unchanged but return the norm
of the vector as the �oat. If one inputs just a vector the function will return
it normalized. Finally, if one inputs two vectors and a �oat it will return the
norm of the di�erence of the two vectors as the �oat.
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upperTri2 Finds the QR decomposition of an input matrix using the Numerical
Recipes routine qrdcmp.cpp. Returns the R matrix in place of the matrix
input to be decomposed and Q in place of an input dummy matrix.

combineMat Outputs a linear combination of two matrices.

QRBackSub Solves the matrix equation R~y = ~x for ~y where ~x and R are given
with R being an upper triangular matrix.

QRIIDecomp This function is designed to take a Hamiltonian matrix, H, an over-
lap matrix, W , a trial energy, E, and a trial eigenvector ψ and return the
QR decomposition of (H − EW ). It then uses inverse iteration to update the
energy and �nd an eigenvector of H corresponding to the eigenenergy E. It ac-
complishes this by using the QR decomposition and back substitution to solve
the equation (H − EW )ψ′ = QRψ′ = Wψ for ψ′. Inverse iteration theory
tells us that ψ′ will be closer to the true eigenvector of H corresponding to the
eigenvalue E than ψ was. We can then use this new eigenvector along with
the old one to update the energy according to E′ = E + ψ′·W ·ψ

ψ′·W ·ψ′ .

func This is the function that the Powell routine minimizes. It accepts the set
of parameters currently being tuned as well as the full parameter set, the
Hamiltonian matrix, the overlap matrix, the full QR decomposition, the cur-
rent energy, and the current eigenvector. Using the Numerical Recipes routine
qrupdt.cpp we can �nd the new Q and R matrices as if our full parameter
set included the parameters currently being tuned instead. Using the updated
QR decomposition we can solve the equation (H − EW )ψ′ = Wψ for a new
eigenvector ψ′ given our current eigenvector ψ. The new eigenvector can then
be used to calculate the new energy as a result of using the trial parameters
being tuned in our full parameter set. However, this method is not infallible
so we calculate the energy change in two ways: (1) ∆E1 = ψ′·W ·ψ

ψ′·W ·ψ′ as in QRI-

IDecomp and (2) ∆E2 = ψ·W ·ψ
ψ·W ·ψ′ . If our new eigenvector improves then these

two energies should agree. If this is the case then we break and return this
change in energy. However, occasionally the updating method fails and one
cannot �nd a good eigenvector so we can repeat this process until either we
�nd one or reach some maximum number of iterations. If the latter happens
then we return a small positive quantity for ∆E so that Powell knows that
these parameters will not help minimize the energy. It is important to note
that this function does not change anything permanently. It only temporarily
overwrites elements of the full parameter set to test them.

funcQRupdate This function updates the QR decomposition as well as the Hamil-
tonian and overlap matrices using the newly tuned parameters resulting after
each execution of the Powell routine. It does this by using the Numerical
Recipes routine qrudpt.cpp. We do not update the energy here because then
the QR decomposition QR = (H − EW ) would then no longer be valid. It is
important to note that since this function only updates matrices it allows for
the accumulation of error. To prevent this error from building up to the point
where it spoils the calculations it is important to occasionally recompute the
Hamiltonian and overlap matrices from scratch and then run QRIIDecomp.
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outcom.h
In this �le we store all of the functions that deal with input to and output from

�les. The most notable functions are:

� writeAll which outputs the current basis size, energy, parameter set, and
eigenvector. Using these values one can restart the program where it left
o� and also construct the full wave function for the purpose of calculating
expectation values and,

� readAll which reads in a basis size, energy, parameter set, and eigenvector.
Using this we can take the data from a �le created by writeAll and pick up
where we left o� in a previous program.

psion.h/ps2.h
These �les contain all of the functions speci�c to the physical problem at hand.

In other words, if you replace this �le with another one that had a similar set of
functions you could use the program to solve that system (you may also need to
change the global constants NPAR and ENERGY). Obviously, this means that if
we include the �le psion.h we will be working with the positronium-ion and if we
include ps2.h we will be working with the di-positronium molecule. Only one of
these �les should be included for a particular run.

Inside these �les you will �nd all of the functions which generate the matrix
elements for the corresponding physical system's Hamiltonian, overlap matrix, and
expectation values. For example, upon opening either �le one �nds a set of func-
tions overlap, kin_part, exact_pot_part, cuto�_part, etc. These functions
are used to generate the matrix elements worked out in �4.3 (positronium-ion) or
�5.3 (di-positronium molecule) before taking into account the symmetries of the sys-
tem. In particular, the overlap function works out a matrix element in the overlap
matrix, the kin_part function work out the kinetic energy part of a matrix element
of the Hamiltonian matrix, and so on. These functions are then called by the func-
tions prepareH and prepareW which calculate the matrix elements individually to
construct the entire Hamiltonian and overlap matrices. On top of this they also take
into account the symmetries of the system by calling the matrix element functions
multiple times for di�erent ordering of the parameters and then adding together
each result. If one only needs to calculate a single element of the Hamiltonian or
overlap matrix then you can use Helem or Welem respectively. IMPORTANT
- the functions prepareH and Helem are where one can choose if the program is
going to work with the exact potential or the cuto� potential. This is accomplished
by uncommenting the de�nition of hmat at the end of these functions correspond-
ing to your choice. After this, these �les include various functions for computing
expectation values of various operators.

Compiling and Executing the Program

UNIX

In the Unix environment we use the GNU compiler for C++ to build the program.
To compile, enter at the command line from the directory of the main.cpp �le

g++ main.cpp -o mainprog
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The part g++ main.cpp tells the compiler to compile the source code in the
�le main.cpp. The next part -o mainprog directs the output (which will be an
executable) into a �le named mainprog.

We are now ready to run the program. To do this one can enter at the command
line simply

./mainprog
However, since these programs typically take a long time and one would like to

work on other things while the program is running it is more useful to use
nice - n 10 nohup ./mainprog > out�le.dat &
The command nice -n 10 lowers the priority of the program so that other users

can run short programs on the same processor and be able to use the majority of
the processor's speed. The command nohup tells the program to continue running
even if you log out. The ampersand tells the program to run in the background and
> out�le.dat tells the program to output data that would normally show up in the
console to instead be saved in a �le named out�le.dat. If this �le does not exist
then it will be created automatically.

Windows

The software Dev-C++ by BloodshedSoftware (www.bloodshed.net) is highly rec-
ommended when working in Windows. This software allows you to compile and run
the code with the click of a button.
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