Usage
  • 189 views
  • 194 downloads

Air- and water-stable halide perovskite nanocrystals protected with nearly-monolayer carbon nitride for CO2 photoreduction and water splitting

  • Author(s) / Creator(s)
  • Halide perovskites are exciting candidates for broad-spectrum photocatalysts but have the problem of ambient stability. Protective shells of oxides and polymers around halide perovskite nano- and micro-crystals provide a measure of chemical and photochemical resilience but the photocatalytic performance of perovskites is compromised due to low electron mobility in amorphous oxide or polymer shells and rapid charge carrier recombination on the surface. Herein, an in situ surface passivation and stabilization of CsPbBr3 nanocrystals was achieved using monolayered graphenic carbon nitride (CNM). Extensive characterization of carbon nitride protected CsPbBr3 nanocrystals (CNMBr) indicated spherical CsPbBr3 nanoparticles encased in a few nm thick g-C3N4 sheets facilitating better charge separation via percolation/tunneling of charges on conductive 2D nanosheets. The CNMBr core-shell nanocrystals demonstrated enhanced photoelectrochemical water splitting performance and photocurrent reaching up to 1.55 mA cm−2. The CNMBr catalyst was successfully deployed for CO2 photoreduction giving carbon monoxide and methane as the reaction products.

  • Date created
    2022-04-04
  • Subjects / Keywords
  • Type of Item
    Research Material
  • DOI
    https://doi.org/10.7939/r3-zpwj-5q69
  • License
    Attribution-NonCommercial 4.0 International