Usage
  • 8 views
  • 3 downloads

Layer-by-layer assembly of multilayers on carbon surfaces and molecular electronic junctions

  • Author / Creator
    Xing, Xiao
  • In the research described in this thesis, two molecular layers were successfully anchored on carbon surfaces (pyrolyzed photoresist films, PPFs) sequentially through two independent approaches. The first molecular layer, styrene, was covalently bonded on PPF surfaces via the method of reduction of in situ generated diazonium ions. The resulting molecular films were characterized by AFM measurements, and catechol and ferrocyanide voltammetry. The second molecular layer, ferrocene-thiol, was anchored on top of the first molecular layer through the method of thiol-ene reaction, which is an effective method for building up multilayers through layer-by-layer assembly. As ferrocene is an electrochemically active species, quantitative surface coverage was calculated according to the amount of surface-bound ferrocene through electrochemical measurements. Finally, molecular junctions were fabricated by depositing metal top contacts based on the molecular layers through electron-beam evaporation and the electronic characteristics of these molecular junctions were investigated.

  • Subjects / Keywords
  • Graduation date
    2010-06
  • Type of Item
    Thesis
  • Degree
    Master of Science
  • DOI
    https://doi.org/10.7939/R34597
  • License
    This thesis is made available by the University of Alberta Libraries with permission of the copyright owner solely for non-commercial purposes. This thesis, or any portion thereof, may not otherwise be copied or reproduced without the written consent of the copyright owner, except to the extent permitted by Canadian copyright law.
  • Language
    English
  • Institution
    University of Alberta
  • Degree level
    Master's
  • Department
    • Department of Chemistry
  • Supervisor / co-supervisor and their department(s)
    • Buriak, Jillian M. (Chemistry)
    • McCreery, Richard L. (Chemistry)
  • Examining committee members and their departments
    • Shankar, Karthik (Electrical and Computer Engineering)