Usage
  • 52 views
  • 32 downloads

Amino acid sequence of fast-twitch skeletal muscle calsequestrin

  • Author(s) / Creator(s)
  • Partial amino acid sequence analysis of rabbit fast-twitch skeletal muscle calsequestrin permitted the construction of synthetic oligonucleotides that were used as both primers and probes for the synthesis and isolation of cDNAs encoding calsequestrin from neonatal rabbit skeletal muscle libraries. The cDNA sequence encodes a processed protein of 367 residues with a Mr of 42,435 and a 28-residue amino-terminal signal sequence. The deduced amino acid sequence agreed closely with the portions of the mature protein that were sequenced using standard protein sequencing. The neonatal protein, however, contains an acidic carboxyl-terminal extension not present in the adult protein, suggesting that the cDNA sequence may have arisen from an alternatively spliced neonatal transcript. A single transcript of 1.9-2.0 kilobases was seen in neonatal skeletal muscle mRNA. A glycosylation site and two potential phosphorylation sites were detected. Although the protein contains about two acidic residues for each Ca2+ bound, there is no repeating distribution of acidic residues and no evidence of EF hand structures. Hydropathy plots show no transmembrane sequences, and structural analyses suggest that less than half of the protein is likely to be highly structured. This sequence defines the characteristics of a class of high-capacity, moderate-affinity, Ca2+ binding proteins.

  • Date created
    1987-01-01
  • Subjects / Keywords
  • Type of Item
    Article (Published)
  • DOI
    https://doi.org/10.7939/r3-kt94-1c32
  • License
    Attribution-NonCommercial-NoDerivatives 4.0 International
  • Language
  • Citation for previous publication
    • Fliegel, Larry, Ohnishi, Mmamoru, Carpenter, Michael R., Khanna, Vijay K., Reithmeier, Reinhart A. F., & MacLennan, David H. (1987). Amino acid sequence of fast-twitch skeletal muscle calsequestrin. Proceedings of the National Academy of Sciences of the United States of America, 84(5), 1167-1171. https://doi.org/10.1073/pnas.84.5.1167
  • Link to related item
    https://doi.org/10.1073/pnas.84.5.1167