Atomic Layer Deposition of Metal Oxide Thin Films on Metallic Substrates

  • Author / Creator
    Foroughi Abari, Ali
  • Atomic layer deposition (ALD) is a powerful ultra-thin film deposition technique that uses sequential self-limiting surface reactions to provide conformal atomic scale film growth. Deposition of ALD films on many substrate systems has been studied before; however, limited data is available on deposition on metallic surfaces. The investigation of the growth of Al2O3, HfO2, and ZrO2 as three technologically important metal oxides on metallic substrates is the subject of this thesis. Al2O3, HfO2, and ZrO2 films were grown by ALD on silicon, as a well-studied substrate, in different operating conditions to investigate the effect of process parameters on film properties. To study the growth of oxides on metals, thin metallic substrates were prepared by sputter deposition on silicon wafers and then were transferred to the ALD chamber where the film growth was monitored by in-situ spectroscopic ellipsometry. The transfer was performed via a load lock system without breaking the vacuum to preserve the pristine metal surface. Formation of a thin interfacial layer of metal oxide was observed during the initial moments of plasma enhanced ALD, that was due to the exposure of metal surface to oxygen plasma. In-situ spectroscopic ellipsometry was used to accurately measure the thickness change of the growing films including the interfacial layer. The thickness of this interfacial oxide layer depended on various process parameters including deposition temperature, order of precursors and plasma pulse length. The interfacial oxide layer was absent during the conventional thermal ALD. However, thermal ALD of oxides on metals exhibited substrate-inhibited growth, especially at higher deposition temperatures. With the knowledge of ALD growth characteristics on metals, metal-insulator-metal (MIM) devices were fabricated by both thermal and plasma enhanced ALD and electrically characterized. The presence of the interfacial oxide layer altered the device performance by changing the capacitance and current characteristics. Employing this approach, it was shown that ALD can be successfully used in the fabrication process of MIM devices and similar systems where ultra-thin insulating layers need to be uniformly deposited on a metallic surface.

  • Subjects / Keywords
  • Graduation date
    Fall 2012
  • Type of Item
  • Degree
    Doctor of Philosophy
  • DOI
  • License
    This thesis is made available by the University of Alberta Libraries with permission of the copyright owner solely for non-commercial purposes. This thesis, or any portion thereof, may not otherwise be copied or reproduced without the written consent of the copyright owner, except to the extent permitted by Canadian copyright law.