Download the full-sized PDF of Maternal and Paternal Polymorphisms in Prehistoric Siberian Populations of Lake BaikalDownload the full-sized PDF



Permanent link (DOI):


Export to: EndNote  |  Zotero  |  Mendeley


This file is in the following communities:

Graduate Studies and Research, Faculty of


This file is in the following collections:

Theses and Dissertations

Maternal and Paternal Polymorphisms in Prehistoric Siberian Populations of Lake Baikal Open Access


Other title
Prehistoric Siberian Populations
mtDNA and Y-chromosome
Ancient DNA
Type of item
Degree grantor
University of Alberta
Author or creator
Moussa, Nour M
Supervisor and department
Bamforth, Fiona (Laboratory Medicine and Pathology)
Examining committee member and department
Somerville, Martin (Medical Genetics)
Andrew, Susan (Medical Genetics)
Yang, Dongya (Archaeology)
Bamforth, Fiona (Laboratory Medicine and Pathology)
Weber, Andrzej (Anthropology)
Medical Sciences-Laboratory Medicine and Pathology

Date accepted
Graduation date
Doctor of Philosophy
Degree level
The study of Ancient DNA (aDNA), DNA recovered from archaeological and historic post mortem material, has complemented the study of anthropology and archaeology. There are several challenges in the retrieval and analysis of DNA from ancient specimens including exogenous contamination with modern DNA, polymerase chain reaction (PCR) inhibitors and DNA damage because of environmental factors. Despite all the obstacles, the extraction of aDNA is still possible through reliable extraction methods and highly sensitive PCR-based technologies that facilitated the use of aDNA analysis in revealing the maternal and paternal backgrounds of ancient populations. This dissertation examines prehistoric hunter-gatherer populations that inhabited Siberia, Russia, several thousand years ago. The Lake Baikal of Siberia was home to two temporally distinct populations from Early Neolithic, EN (8000-6800 cal BP) to Late Neolithic-Early Bronze Age, LN-EBA (5800-4000 cal BP). The EN group was separated from the LN-EBA group by a 1000-year gap (hiatus). Several cemeteries have been excavated as part of an international Baikal Archaeology Project (BAP). These include one EN cemetery (Shamanka II) and two LN-EBA cemeteries (Kurma XI and Khuzhir-Nuge XIV). Maternally inherited mitochondrial DNA (mtDNA) has been examined previously for two EN cemeteries (Lokomotiv and Shamanka II) and one of the LN-EBA cemeteries (Ust’-Ida). mtDNA has not been analyzed before from the Kurma XI cemetery. This dissertation hypothesis focused on the examination of mtDNA from Shamanka II and Kurma XI cemeteries and examination of Y-chromosomal DNA from the four excavated cemeteries (Lokomotiv, Shamanka II, Ust’-Ida and Kurma XI) to identify genetic discontinuity and/or continuity between and within the EN and LN-EBA of prehistoric populations. The project aims were; first, modification of published methods for sample preparation, DNA extraction and PCR amplification for aDNA research. Second, interpretation of mtDNA haplogroup distribution from Kurma XI in the context of other Lake Baikal cemeteries. Third, compare the genetic affinities of the prehistoric populations with the contemporary populations of the area through the maternal lineage. Finally, comprison of mtDNA and Y-chromosomal haplogroup distributions to determine maternal and paternal genetic affinities. Four different mtDNA haplogroups were found in Kurma XI individuals including A, D, F and Z. mtDNA haplogroup Z was not represented before in Lake Baikal’s prehistoric populations. In addition, six extra samples from Shamanka II were analyzed to reveal that Shamanka II and Lokomotiv did not share the same maternal background as was previously suggested. New mtDNA results from Kurma XI and Shamanka II suggested that each of the EN cemeteries and LN-EBA cemeteries had a different maternal origin; however, Kurma XI shared a similar maternal origin with Lokomotiv and also with Shamanka II. Through SNaPshot multiplex PCR amplification, Y-chromosomal haplogroups were obtained from male individuals in the four cemeteries. Individuals from Lokomotiv and Shamanka II were found to possess haplogroups K, R1a1 and C3, and individuals from Ust’-Ida and Kurma XI were found to belong to haplogroups Q, K and unidentified SNP (L914). For those individuals belonging to haplogroup Q, further experimentation to examine sub-haplogroups of Q revealed that these individuals belong to sub-haplogroup Q1a3. There was significant heterogeneity in the males from the Lokomotiv cemetery when compared to the other three cemeteries. Furthermore, the Y-chromosome results showed a discontinuity between the EN and the LN-EBA populations of Lake Baikal. Combining the maternal and the paternal results from the prehistoric populations of Lake Baikal suggested a patrilocal post-marital residence pattern, where females moved to their husbands’ birthplace after marriage. This research highlighted the utility of DNA analysis as an archaeological tool in conjunction with burial practices and artifacts in making inferences about the prehistoric population structure.
Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis and to lend or sell such copies for private, scholarly or scientific research purposes only. The author reserves all other publication and other rights in association with the copyright in the thesis and, except as herein before provided, neither the thesis nor any substantial portion thereof may be printed or otherwise reproduced in any material form whatsoever without the author's prior written permission.
Citation for previous publication

File Details

Date Uploaded
Date Modified
Audit Status
Audits have not yet been run on this file.
File format: pdf (PDF/A)
Mime type: application/pdf
File size: 16053343
Last modified: 2016:06:24 17:54:45-06:00
Filename: Moussa_Nour_M_201509_PhD.pdf
Original checksum: da78b8653ed8552ace53ab7c1b047b3d
Activity of users you follow
User Activity Date