Download the full-sized PDF of Life Cycle Assessment of Transportation Fuels from Canada’s Oil Sands through Development of Theoretical Engineering ModelsDownload the full-sized PDF



Permanent link (DOI):


Export to: EndNote  |  Zotero  |  Mendeley


This file is in the following communities:

Graduate Studies and Research, Faculty of


This file is in the following collections:

Theses and Dissertations

Life Cycle Assessment of Transportation Fuels from Canada’s Oil Sands through Development of Theoretical Engineering Models Open Access


Other title
Oil Sands
Energy Consumption
GHG emissions
Surface Mining
Type of item
Degree grantor
University of Alberta
Author or creator
Nimana,Balwinder Singh
Supervisor and department
Kumar,Amit (Department of Mechanical Engineering)
Examining committee member and department
Trivedi, Japan (Civil and Environmental Engineering)
Ma, Yongsheng (Mechanical Engineering)
Department of Mechanical Engineering
Engineering Management
Date accepted
Graduation date
Master of Science
Degree level
Oil sands in Canada are significant in fulfilling the current and the future energy demands of North America. The development of these resources, besides the increased awareness in global carbon management, has given way to various policy regulations such as the Low Carbon Fuel Standard (LCFS) and Europe’s Fuel Quality Directive that demand proper quantification and estimation of life cycle (LC) greenhouse gas (GHG) emissions from transportation fuels. Previous studies show the variability in oil sands projects and the demand for proper quantification of project-specific energy consumption and GHG emissions. The novelty of this study is its aim at developing theoretical models based on engineering first principles to quantify the energy demand and GHGs emitted in oil sands operations using project-specific parameters. These models are used to quantify the GHG emissions in surface mining, steam assisted gravity drainage (SAGD), upgrading, transportation, and refining operations, through identifying the key sensitive parameters. Further, a comprehensive life cycle assessment (LCA) for transportation fuels (gasoline, diesel, and jet fuel) derived from Canada’s oil sands is conducted in which all the possible pathways from bitumen extraction to use in vehicles are explored. The life cycle inventory data for the LCA are obtained from the developed theoretical models. The impact of cogeneration of electricity in oil sands recovery, extraction, and upgrading on the LC GHG emissions of gasoline is explored. Sub process level mass allocation is followed to allocate the refinery emissions among the products. Emissions in surface mining and SAGD range from 180 to 302 kg of CO2 eq/m3 of bitumen and 238 to 1,204 kg of CO2 eq/m3 of bitumen, respectively, representing a wide range of variability in oil sands projects. Temperature and warm water consumption in surface mining and the steam-to-oil ratio (SOR) in SAGD are major parameters affecting GHG emissions. Hydroconversion upgrading is more energy- and GHG-intensive than delayed coker upgrading but gives a higher SCO yield. Refining SCO to transportation fuels produces 41% and 49% fewer emissions than do dilbit and bitumen, respectively. LC well-to-wheel (WTW) GHG emissions range from 106.8 to 116 g-CO2eq/MJ of gasoline; 100.5 to 115.2 g-CO2eq/MJ of diesel, and 96.4 to 109.2 g-CO2 eq/MJ of jet fuel, depending on the pathway. Combustion emissions (64.7% to 70.3%) are the largest constituent of WTW emissions for gasoline production; recovery forms 7.2% to 16%. The WTW GHG intensity of pathways depends on the allocation method and transportation fuel chosen for comparison.
Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis and to lend or sell such copies for private, scholarly or scientific research purposes only. The author reserves all other publication and other rights in association with the copyright in the thesis and, except as herein before provided, neither the thesis nor any substantial portion thereof may be printed or otherwise reproduced in any material form whatsoever without the author's prior written permission.
Citation for previous publication

File Details

Date Uploaded
Date Modified
Audit Status
Audits have not yet been run on this file.
File format: pdf (PDF/A)
Mime type: application/pdf
File size: 2458027
Last modified: 2016:06:24 17:55:59-06:00
Filename: Nimana_Balwinder Singh_201408_MSc.pdf
Original checksum: fe5fa1d9c1d6a76ac87137521588a3e4
Activity of users you follow
User Activity Date