This decommissioned ERA site remains active temporarily to support our final migration steps to https://ualberta.scholaris.ca, ERA's new home. All new collections and items, including Spring 2025 theses, are at that site. For assistance, please contact erahelp@ualberta.ca.
Theses and Dissertations
This collection contains theses and dissertations of graduate students of the University of Alberta. The collection contains a very large number of theses electronically available that were granted from 1947 to 2009, 90% of theses granted from 2009-2014, and 100% of theses granted from April 2014 to the present (as long as the theses are not under temporary embargo by agreement with the Faculty of Graduate and Postdoctoral Studies). IMPORTANT NOTE: To conduct a comprehensive search of all UofA theses granted and in University of Alberta Libraries collections, search the library catalogue at www.library.ualberta.ca - you may search by Author, Title, Keyword, or search by Department.
To retrieve all theses and dissertations associated with a specific department from the library catalogue, choose 'Advanced' and keyword search "university of alberta dept of english" OR "university of alberta department of english" (for example). Past graduates who wish to have their thesis or dissertation added to this collection can contact us at erahelp@ualberta.ca.
Items in this Collection
- 1Ball's integral inequality
- 1Compressive Sensing
- 1Khinchine's type inequality
- 1Prolate Spheroidal Wave Function
- 1Random Matrices
- 1Sinc function
Results for "Probability Distributions on a Circle"
-
Spring 2014
for a random variable with hypergeometric distribution, improving previously known estimates. The fourth paper devoted to the quantitative version of a Silverstein's Theorem on the 4-th moment condition for convergence in probability of the norm of a random matrix. More precisely, we show that for a
This thesis is mostly based on six papers on selected topics in Asymptotic Geometric Analysis, Wavelet Analysis and Applied Fourier Analysis. The first two papers are devoted to Ball's integral inequality. We prove this inequality via spline functions. We also provide a method for computing all
under the assumption that the sum of the Rademacher random variables is zero. We also discuss other approaches to the problem. In particular, one may use simple random walks on graph, concentration and the chaining argument. As a special case of Khinchine's type inequality, we provide a tail estimate