Theses and Dissertations

This collection contains theses and dissertations of graduate students of the University of Alberta. The collection contains a very large number of theses electronically available that were granted from 1947 to 2009, 90% of theses granted from 2009-2014, and 100% of theses granted from April 2014 to the present (as long as the theses are not under temporary embargo by agreement with the Faculty of Graduate and Postdoctoral Studies). IMPORTANT NOTE: To conduct a comprehensive search of all UofA theses granted and in University of Alberta Libraries collections, search the library catalogue at www.library.ualberta.ca - you may search by Author, Title, Keyword, or search by Department.
To retrieve all theses and dissertations associated with a specific department from the library catalogue, choose 'Advanced' and keyword search "university of alberta dept of english" OR "university of alberta department of english" (for example). Past graduates who wish to have their thesis or dissertation added to this collection can contact us at erahelp@ualberta.ca.

Items in this Collection

Skip to Search Results
  • Spring 2014

    Susanna, Spektor

    for a random variable with hypergeometric distribution, improving previously known estimates. The fourth paper devoted to the quantitative version of a Silverstein's Theorem on the 4-th moment condition for convergence in probability of the norm of a random matrix. More precisely, we show that for a

    This thesis is mostly based on six papers on selected topics in Asymptotic Geometric Analysis, Wavelet Analysis and Applied Fourier Analysis. The first two papers are devoted to Ball's integral inequality. We prove this inequality via spline functions. We also provide a method for computing all

    under the assumption that the sum of the Rademacher random variables is zero. We also discuss other approaches to the problem. In particular, one may use simple random walks on graph, concentration and the chaining argument. As a special case of Khinchine's type inequality, we provide a tail estimate

1 - 1 of 1