This decommissioned ERA site remains active temporarily to support our final migration steps to https://ualberta.scholaris.ca, ERA's new home. All new collections and items, including Spring 2025 theses, are at that site. For assistance, please contact erahelp@ualberta.ca.
Theses and Dissertations
This collection contains theses and dissertations of graduate students of the University of Alberta. The collection contains a very large number of theses electronically available that were granted from 1947 to 2009, 90% of theses granted from 2009-2014, and 100% of theses granted from April 2014 to the present (as long as the theses are not under temporary embargo by agreement with the Faculty of Graduate and Postdoctoral Studies). IMPORTANT NOTE: To conduct a comprehensive search of all UofA theses granted and in University of Alberta Libraries collections, search the library catalogue at www.library.ualberta.ca - you may search by Author, Title, Keyword, or search by Department.
To retrieve all theses and dissertations associated with a specific department from the library catalogue, choose 'Advanced' and keyword search "university of alberta dept of english" OR "university of alberta department of english" (for example). Past graduates who wish to have their thesis or dissertation added to this collection can contact us at erahelp@ualberta.ca.
Items in this Collection
- 4Reinforcement Learning
- 1Artificial Intelligence
- 1Autonomous Robot
- 1Baseline
- 1Behavior Policy
- 1GQ lambda
-
Spring 2011
Off-policy reinforcement learning is useful in many contexts. Maei, Sutton, Szepesvari, and others, have recently introduced a new class of algorithms, the most advanced of which is GQ(lambda), for off-policy reinforcement learning. These algorithms are the first stable methods for general...
-
Fall 2023
Of all the capabilities of natural intelligence, one of the most exceptional is the ability to expand upon and refine knowledge of the world through subjective experience. Therefore, a longstanding goal of Artificial Intelligence has been to replicate this success: to enable artificial agents to...
-
Spring 2015
This thesis consists of two independent projects, each contributing to a central goal of artificial intelligence research: to build computer systems that are capable of performing tasks and solving problems without problem-specific direction from us, their designers. I focus on two formal...
-
Strengths, Weaknesses, and Combinations of Model-based and Model-free Reinforcement Learning
DownloadSpring 2016
Reinforcement learning algorithms are conventionally divided into two approaches: a model-based approach that builds a model of the environment and then computes a value function from the model, and a model-free approach that directly estimates the value function. The first contribution of this...