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Abstract

Off-policy reinforcement learning is useful in many contexts. Maei, Sutton, Szepes-

vari, and others, have recently introduced a new class of algorithms, the most ad-

vanced of which is GQ(λ), for off-policy reinforcement learning. These algorithms

are the first stable methods for general off-policy learning whose computational

complexity scales linearly with the number of parameters, thereby making them po-

tentially applicable to large applications involving function approximation. Despite

these promising theoretical properties, these algorithms have received no significant

empirical test of their effectiveness in off-policy settings prior to the current work.

Here, GQ(λ) is applied to a variety of prediction and control domains, including on

a mobile robot, where it is able to learn multiple optimal policies in parallel from

random actions. Overall, we find GQ(λ) to be a promising algorithm for use with

large real-world continuous learning tasks. We believe it could be the base algorithm

of an autonomous sensorimotor robot.
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Chapter 1

Introduction: Off-Policy

Learning

There is a need for automatic controllers that can learn from their experience in

many real world applications (e.g., nautical control, cell phone tower switching, and

precision metal cutting). For example, in the case of automatically controlling a

boat, a computer based agent would need to determine which actions to take, like

turning the rudder left or right and increasing or decreasing the throttle, in order

to stay on course. The agent could keep track of how actions previously chosen

affected the heading and distance traveled in order to better pick future actions,

forming a policy of which actions to take in each situation or state. The agent could

keep learning and reacting as the boat travels in order to adjust to new currents

and other factors affecting the boats movement in the water. This is an on-policy

problem because the agent is learning about the actions it is currently performing.

Sometimes it is not possible for the agent to learn while performing the actions.

For example, a company that wants to analyze its past decisions to improve future

profits may have a large amount of previously generated data. The company may

wish to research the possible impact of running the production line in a different way

or of putting more emphasis on overseas sales. This would be an off-policy problem,

because the policy being learned about, the target policy, would be different than

the policy used to generate the data, the behavior policy.

Learning about many separate policies from a single stream of data is another

off-policy problem. Learning about multiple policies in parallel could lead to large

time savings over learning about each sequentially. For example, if a robot was

learning how to affect the values reported by certain sensors, it might notice that

turning right towards the window would increase its light sensor values. Turning

right would also increase its infrared distance sensor value, because it would be

pointed at the wall where the window is placed. However, turning right might
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decrease its magnetometer sensor value which measures magnetic north because the

wall is south facing. If learning off-policy, it could learn how to affect all three of

these values at once by taking the same action, thus reusing one set of results to

learn policies to affect three different sensor values, the target policies.

Although an ability to learn off-policy would be useful, it has proven difficult to

design efficient algorithms with this ability. Historically, algorithms for off-policy

learning have been either slow, or unstable, or nonlinear batch algorithms that can

not be performed online on big problems. Recently, Maei, Sutton, Svespari, and

others, proposed a family of gradient-based learning algorithms that theoretically

guarantee stability. GQ(λ) is the algorithm from this family meant for use on off-

policy problems. It can be run online, in linear time and space complexity.

GQ(λ) seems like a promising algorithm for off-policy learning. With GQ(λ), we

could learn optimal control policies for large real-world problems like SPAM filters.

We could make a sensorimotor robot build up a set of actions and predictions from

simple trial and error interaction with its environment. According to the authors of

the algorithm, GQ(λ) “brings us closer...to the development of a universal prediction

learning algorithm suitable for learning experientally grounded knowledge of the

world” (Maei and Sutton, 2010). In effect, it could be the base algorithm of the

“killer app” for artificial intelligence, a general knowledge learning algorithm.

However, to date, no empirical work has been published using this algorithm.

Does it work? What are the issues with it? Is it faster than similar competitors?

Is the solution that it approximates what we want? It remains a question as to

whether this algorithm is really useful for off-policy learning.

This thesis aims to close this gap in the literature by testing the algorithm off-

policy in a range of domains, from simple random-walk experiments to a mobile

robot experiment involving the learning of multiple optimal target policies simul-

taneously. Along the way, some opinions are developed about the strengths and

weaknesses of the algorithm which are presented in the conclusion.

This thesis presents two primary contributions. The first contribution is the

empirical experiments using GQ(λ), which represent the first published empirical

work with this algorithm. One experiment uses an offshoot of GQ(λ) GreedyGQ(λ)

in a robotics domain. This is the first experiment using control with any of the

new gradient based family of algorithms. The other experiment compares GQ(λ)

to TD(λ) with importance sampling, a previous off-policy algorithm, in a gridworld

domain(Precup et al., 2001). The two algorithms are compared in terms of speed
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of learning and the solutions they approximate (see Chapter 6). This thesis is also

useful source material for developing some intuitions about how to set parameters

when using GQ(λ).

The other primary contribution is a demonstration of learning multiple optimal

policies simultaneously on a robot (see Chapter 5). There have been few, if any, ex-

periments showing this in the robotics domain. This experiment serves as a building

block towards building an autonomous sensorimotor agent.

As a secondary contribution of this work, we will develop some insights into how

off-policy learning performance suffers as the target and behavior policies get further

apart from each other through experiments in a random-walk domain (see Chapter

4).

In Chapter 2, we will take a look at a brief history of reinforcement learning,

and especially off-policy methods. Then we will take a detailed look at the GQ(λ)

algorithm in Chapter 3.
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Chapter 2

Background

This chapter provides a background on reinforcement learning and off-policy learning

that sets the context for the experimental inquiry and analytical results that follow.

2.1 Reinforcement Learning

This thesis is meant to be a contribution to the field of reinforcement learning, which

can generally be described as the study of learning from experience, and has exten-

sions to trial and error learning, automatic controllers, and even neuroscience. In

the standard reinforcement learning framework, a learning agent interacts with an

environment consisting of a finite Markov decision process (MDP). At each (gener-

ally discrete) time step t, the agent starts at a state, st ∈ S, takes action at ∈ A(s),

moves to a new state in the environment st + 1 ∈ S and receives a scalar reward

rt ∈ R, takes another action, and so on. The state and action sets are finite. State

transitions are stochastic and dependent on the immediately preceding state and

action. The agent selects actions according to a policy π which is a probability

distribution over A(s) at each state s.

The objective is to learn an approximation to its state-value function:

V π(s) = Eπ

[ ∞∑
t=0

γtrt+1|s0 = s

]
(2.1)

where γ ∈ [0, 1] is a factor for discounting future rewards. Alternatively, a state-

action value function could be learned, denoted Qπ(s, a). Solving a reinforcement

learning problem over a fixed policy is called a prediction task.

A control task is defined as a task in which the agent is concerned with finding
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the best policy for maximizing reward over time. The optimal policy π∗ is the policy

which maximizes V π(s) for all s ∈ S. The optimal action-value function, denoted

Q∗(s, a), is used to find the optimal policy.

Q∗(s, a) = maxπQ
π(s, a) (2.2)

A sequence of interactions between the agent and the environment from time step

0 to n is referred to as a trajectory. In some MDPs, there are goals or end states, and

learning takes place over episodes, termed episodic problems. When a termination

point is reached the agent is placed at a starting state or states determined by the

MDP. If learning continues indefinitely with no termination points it is called a

continuous task.

2.2 Function Approximation

In a Markov Decision Process, each state is ideally meant to encapsulate enough

information such that state transitions are dependent only on the immediately pre-

ceding state and action. When each state is directly represented, the representation

of state is referred to as tabular.

In many problems of interest the state set is too large for it to be practical

to approximate the value of each state individually. In this case, we use function

approximation to generalize over groups of states instead of reason about them

directly. In a type of function approximation called linear function approximation,

states are mapped to a vector of features, φ ∈ <n. These features are then multiplied

by a vector of learned weights θ ∈ <n to get the value function Vθ

Vθ(s) = θ>φ(s). (2.3)

For control or to predict the value of each action, we use a separate set of features

for each action to approximate Qθ:

Qθ(s, a) = θ>φ(s, a). (2.4)

We will only use linear function approximation in this thesis.
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2.3 Temporal Difference Learning

There are many methods to learn estimates of value functions. When state-action

transition probabilities are known beforehand, dynamic programming methods can

be used, such as Policy evaluation and improvement or Value Iteration. Unlike

dynamic programming, Monte Carlo methods can learn from experience with the

environment. They must wait until the agent has reached the end of the episode

before updating the value at each state visited along the way. Temporal difference

learning, or TD, takes the opposite approach and updates each state value immedi-

ately based upon the current reward and its previous state estimate (Sutton, 1988).

TD(0) is an algorithm which updates based upon the last state transition only,

termed the one-step backup. A method which combines one-step backups, two-

step backups, three-step backups and so on is called TD(λ). It uses the parameter

λ ∈ [0, 1] combined with an eligibility trace to influence the weight of each of these

predictions. An eligibility trace, e, is a vector of weights that keeps track of pre-

viously visited states or features. These are updated every time step along with

the current state and then the eligibility is trace is decayed by λγ. Lower values

of λ put more importance on shorter predictions and higher values of λ place more

importance on longer predictions (Sutton and Singh, 1994). When eligibility traces

are allowed to grow unbounded this is called accumulating traces. When they are

bounded to a maximum value (usually 1 for each feature) this is called replacing

traces (Singh and Sutton, 1996).

Temporal Difference learning is an important concept because it allows the agent

to learn from fragments of experience. It bootstraps from previous experience. The

main update step in a temporal difference algorithm is the TD update. The TD

update is the current reward plus the discounted value estimate at the next state,

minus the estimate at the current state. Here is the TD update for tabular Sarsa

(an on-policy TD algorithm for control)(Sutton, 1996):

Q(st, at) := Q(st, at) + α[rt+1 + γQ(st+1, at+1)−Q(st, at)]

where α ∈ (0, 2) is a step-size parameter.
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2.4 On-Policy Learning

When a reinforcement learning agent is learning about the policy that is used to

choose the actions, this is referred to as the on-policy problem. In the on-policy

control case, the agent takes a new action at each time step using a policy derived

from the current value function. If this policy is to simply take the action with

the highest estimated action value at state s, we call it the greedy policy. However,

learning with a greedy policy can sometimes lead to poor results, especially in non-

deterministic or non-stationary environments. To achieve the optimal policy it is

usually necessary to incorporate exploratory actions in order to reach more of the

state space. Thus policies that randomly incorporate sub-optimal actions may be

preferable (e.g.policies that use soft-max action selection (Luce, 1959; Bridle, 1990)

or ε-greedy action selection). ε-greedy action selection chooses the action which

would achieve the highest value according to the value function with probability

1− ε, and a random action with probability ε, thus guaranteeing that the agent will

keep exploring the action space.

2.5 Off-Policy Learning

Learning about a different policy than the one being used to interact with the

environment is referred to as an off-policy problem. A reinforcement learning agent

that learns an off-policy problem is doing off-policy learning. The policy the agent

is running is referred to as the behavior policy, b, and the policy it is trying to learn

about is referred to as the target policy, π.

The first learning methods for use on off-policy problems were Off-Policy Monte

Carlo control methods (Sutton and Barto (1998), pp.126-127). The most renowned

off-policy method is Q-learning (Watkins and Dayan, 1992). The one-step update

for tabular Q-learning is:

Q(st, at) := Q(st, at) + α
[
rt+1 + γmax

a
Q(st+1, a)−Q(st, at)

]
(2.5)

Q-learning is remarkable because it allows the learning agent to use an ex-

ploratory behavior policy while still learning the optimal target policy. A classic

example of this is the cliff walking problem depicted in Figure 2.1. This is a deter-

ministic episodic problem where the reward is -1 per time step in order to induce
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Figure 2.1: Q-learning Cliff Walk Example (from Sutton and Barto (1998), pp. 150, used
with permission)

learning the quickest path to the goal, and any step off the cliff results in a huge

penalty of -100. ε-greedy action selection is used, with ε = 0.1.

In order to contrast on-policy and off-policy methods, both are tried on this

problem: Sarsa (on-policy) and Q-learning (off-policy). Using Sarsa, a policy is

learned which steers several steps clear of the cliff (the “safe path” in Figure 2.1).

By using Q-learning, a policy is learned which takes a shorter path to the goal,

one that skirts the edge of the cliff (the “optimal path” in Figure 2.1). Sarsa is an

on-policy learning algorithm, so it must take into account exploratory actions which

could lead it to step off the cliff resulting in a large negative reward. Q-learning, an

off-policy algorithm, can ignore the effects of exploratory actions and instead pick

the maximal action in each case, and thus the shortest path. This shows the power

of off-policy methods to find the best path and ignore the exploratory moves in the

behavior policy.

2.6 Off-Policy Advantages

Off-policy learning is useful for the following:

1. Learning from Preexisting Data: There is a wealth of preexisting data

in the real-world. Learning on this data is referred to as offline because the

learning is being done after the data is collected, not while it is being collected

which is referred to as online learning. These are not to be confused with
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off-policy and on-policy learning, which are orthogonal concepts. When faced

with preexisting data an on-policy learner can only learn about the policy

used to create the data. An off-policy learner could potentially learn about

any other policy from this data including an optimal control policy. This

is important because in many cases, collecting more data to be used by an

on-policy learner may be expensive or even impossible.

2. Parameter Studies: Off-Policy learning can be used to pick the best param-

eter settings on the data offline. Picking parameters is an important burden

of many reinforcement learning algorithms that must be accounted for until

better auto-step size algorithms and feature selection algorithms are made.

3. State Space Exploration: On-policy learning can suffer from having to

incorporate exploratory actions into its value function. This was illustrated

earlier with the cliff-walk example. With off-policy learning, the agent is free

to explore the state space however it wishes and the learner will be able to

discard the exploratory actions and concentrate on the optimal ones.

4. Learning many functions simultaneously: With off-policy learning, one

can learn about many different target policies in parallel. On policy methods,

by definition, must focus on learning one value function at a time, but using

off-policy techniques the agent can learn as many policies and predictions as

it wants as long as they all fit into computer memory. This could lead to

tremendous time savings over learning each target policy sequentially.

2.7 Off-Policy Instability

Off-policy learning is clearly useful. However, there is an issue with off-policy meth-

ods when combined with three desirable traits: 1) linear function approximation,

2) temporal-difference learning, and 3) O(n) complexity per-time-step computation

and memory as in Q-learning or TD(λ). In 1995, Leemon Baird discovered a counter

example on which TD(λ) diverges, that is, the weights grow towards infinity over

time (see Figure 2.2 for more details).

This is unfortunate because these three traits are highly desirable. The first trait,

linear function approximation, is the simplest and most widely used form of function

approximation. Function Approximation is necessary in most large scale applica-

tions of reinforcement learning. The second trait, temporal-difference learning, is

desirable because it allows the reinforcement learning agent to learn from snippets
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of experience. In an off-policy setting, the agent may only follow the target policy

for short periods of time, and thus a monte-carlo learning agent that must wait until

the end of an episode to update its weights will have trouble piecing together an

update appropriately. Temporal-difference learning is also important in continuous

problems where there are no episodes, and thus its necessary to continually update

knowledge. The third trait, O(n) complexity, is necessary on large scale applications

where there are simply too many features to fit in a computer’s memory when they

are squared. For example, a computer program to learn how to play the game of

Go can have one million features (Silver et al., 2008). Applications for online spam

or suspicious URL filters (Ma et al., 2009) can have as many as 300,000 features. If

each feature only took one byte of memory, an O(n2) algorithm would have to have

on the order of 686 gigabytes of memory to process 300,000 features. It would also

take a very long time to make all of the computations involved. Online algorithms

need to be able to finish processing within one time step or they will lose data. Even

problems with a small number of features can blow up exponentially when used with

certain types of function approximators. Thus we can see that an O(n) algorithm

in both time and space complexity is desirable.

Figure 2.2: Baird’s Counterexample. The approximate value function for this Markov
process is of the form shown by the linear expressions inside each state. The reward is
always zero. If the parameters are set to γ = 0.99, and theta0 = (1, 1, 1, 1, 1, 10, 1)T , then
the θ weights will diverge to infinity over time using Q-learning with any positive step-size.
From (Sutton and Barto, 1998), used with permission.

In practice, Q-learning rarely diverges when using small step-sizes and when the

behavior policy is close to the target policy (as in ε − greedy methods). However,

its potential instability is unsettling. In order to do general off-policy learning in a
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function approximation setting, where we are learning multiple different targets, or

learning from precomputed data that does not follow closely to our intended target

policy, we need an algorithm that is guaranteed not to diverge with few limiting

conditions.

2.8 A Brief History of Off-Policy Methods

There have been several attempts over the years to find a stable algorithm for

reinforcement learning which incorporates the four desirable traits mentioned earlier:

off-policy updates, temporal-difference learning, linear function approximation, and

O(n) complexity.

Baird’s residual gradient algorithm (Baird, 1995) is stable; however, it is much

slower than Q-learning. In addition, it requires two independent samples at each

state, which is impractical for a learning agent operating in the real-world. Lastly,

it does not converge to the TD solution. It converges to a different solution, which

makes the value of a state look like the value of the states preceding it and following

it, and should be avoided (Sutton et al., 2009a; Sutton, 1988; Dayan, 1992).

Precup et al. (2001) developed an algorithm called TD(λ) with importance sam-

pling. This algorithm updates the state-action pairs according to the same distri-

bution that would be experienced under the target policy π. It uses importance

sampling corrections to make the expected value of the sum of the weight changes

match the expected value of on-policy TD(λ). Because Tsitsiklis and Van Roy

(1997) proved that on-policy TD(λ) will always converge to near the best solution

using function approximation without diverging, TD(λ) with importance sampling

is also stable under certain conditions.

TD(λ) with importance sampling is not a perfect solution, however. The problem

is that importance sampling weights are cumulative products of target-to-behavior-

policy likelihood ratios from the entire episode, and thus updates will have high

variance. This can lead to very slow learning. Using this algorithm, two gridworld

function approximation examples from the literature required hundreds of thousand

or even millions of episodes to learn on (Precup et al., 2001; Rafols, 2006). Eddie

Rafols used modified versions of TD(λ) with importance sampling to learn multiple

predictions and option-conditional TD Networks off-policy (Rafols, 2006). He found

that it was slow and less data-efficient than an on-policy agent using the same data.

Another problem is that in order to prove convergence, the episode lengths must be
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bounded, which limits the use of the algorithm to episodic problems.

Least Squares Temporal Difference learning (Bradtke and Barto, 1996; Boyan,

2002) and Least Squares Policy Improvement(Lagoudakis and Parr, 2003) are re-

inforcement learning techniques that directly estimate the Bellman Residual error.

These techniques are stable for off-policy learning. The main drawback of LSTD

and LSPI is that they are second-order method which use O(n2) memory and com-

putation per-time-step, where n is the number of features. Incremental methods

based on these, such as iLSTD(Geramifard et al., 2006), improve the per computa-

tion time to O(n) but not the memory requirements. For large problems like solving

Go, filtering out harmful websites, and others, it may not be possible to use this

algorithm given computer memory constraints.

GTD (Sutton et al., 2009b), GTD2, and TDC (Sutton et al., 2009a) are a family

of gradient descent methods for off-policy temporal-difference learning with linear

function approximation. These algorithms satisfy all four of the desired traits. They

are stable for learning on off-policy linear function approximation problems, and

their computations per time step and memory used are linear in the number of

features. These algorithms have been tested on Baird’s counterexample and found

to converge. They have also been tested on a variety of small function approximation

problems, and one large problem with 63,000 features (Sutton et al., 2009b). All of

these experiments were on-policy prediction problems. The best learner of the group

is TDC (temporal difference learning with correction), which performed similarly to

TD on the problems they were compared on (Sutton et al., 2009b).

GQ(λ) (Maei and Sutton, 2010) is an algorithm that extends TDC for use with

action values, eligibility traces, and learning of temporally extended actions. Theo-

retically it satisfies all four of the desired properties, although no experiments using

it have been published before this thesis. Greedy-GQ (Maei et al., 2010) is an exten-

sion of GQ(λ) to the control case. No empirical work with this algorithm has been

previously published either, so we don’t know much about the practical application

of these algorithms.

2.9 Summary

In this chapter, we explained reinforcement learning, function approximation, and

temporal difference learning. We explained the difference between the on-policy and

off-policy problems. We pointed out that the original temporal-difference learning
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methods have a problem. Their value function estimates may diverge to infinity

using function approximation in an off-policy setting. We discussed several newer

reinforcement learning methods that are stable under function approximation, and

their drawbacks.

The one method which we know little about is Maei & Sutton’s GQ(λ) algorithm,

published in 2010, which has not yet been empirically evaluated. GQ(λ) is exciting

because it combines four desirable traits: off-policy updates, temporal-difference

learning, linear function approximation, and O(n) complexity; which will allow for

use on large-scale real-world real time applications. This thesis aims to close the

gap in the literature by using the GQ(λ) algorithm in both control and prediction

experiments.
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Chapter 3

The GQ(λ) Algorithm

GQ(λ) is part of a family of gradient-descent based temporal-difference learning

methods. In this chapter, we will explain some theory behind GQ(λ), discuss its

implementation, and describe how to compute its objective function exactly.

3.1 Theory

In gradient-descent methods, the updates to the weight vector θ are proportional

to the gradient of the objective function the algorithm is trying to minimize. The

objective function which most TD methods are trying to minimize is based on the

Bellman equation. The action-value function Qπ satisfies the Bellman equation

exactly (Sutton et al., 2009a):

Qπ = R+ γPπQ
def
= TπQ,

where R is the vector with components E[rt+1|st = s, at = a], and Pπ is a matrix

of the state-action to state-action transition probabilities using policy π, and Tπ is

known as the Bellman operator with respect to the policy π (Sutton et al., 2009a). It

might be natural to choose the mean-square Bellman error, or MSBE, with respect

to the θ weights as the objective to minimize:

MSBE(θ) =‖ Qθ − TπQθ ‖2D (3.1)

where Qθ is the state-action value function with respect to the linear weights
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θ ∈ Rn from equation 2.4 and the norm is calculated with respect to the distribution

of the data (‖ x ‖2D= x>Dx).

In the function approximation case, the value function may not be representable

by the feature space. Therefore, to find the gradient of the value function updates

in the linear function approximation case GQ(λ) does gradient descent in a different

objective, called the mean-square projected Bellman error, or MSPBE, which uses

a projection operator Π to project a value function to the nearest value function

representable by the function approximation:

MSPBE(θ) =‖ Qθ −ΠTπQθ ‖2D (3.2)

From equations 10, 13 and 19 in Maei & Sutton’s GQ paper we see that the

lambda weighted version of equation 3.2 can be written in terms of statistical ex-

pectations as:

MSPBE(θ) = ED[δθe]
>ED

[
φφ>

]−1
ED[δθe] (3.3)

where

δθ = rt+1 + γθ>φ(st+1)− θ>φ(st, at), (3.4)

φ(st+1) =
∑
a

π(st+1, a)φ(st+1, a) (3.5)

e = φ(st, at) + γλρ(st, at)e(st−1, at−1) (3.6)

where rt+1 is the reward given at state st when taking action at and transitioning

to st+1 and π is the target policy. ED refers to the expected value with respect to

the behavior distribution.

The fact that the expectations in equation 3.3 are with respect to the behavior

distribution is an important detail. The objective function that GQ(λ) approximates

is with respect to the behavior distribution, not the distribution of the target policy.

This means that GQ(λ) will make estimates based on the distribution of the data it is

using to learn. If this distribution is different than the distribution that would come

from an on-policy distribution, then the value function estimates will be different.

This differs from the TD(λ) with importance sampling algorithm, which makes

corrections to learn the same value function estimates as would be learned on-policy.
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GQ(b, π, γ, λ, αθ, αw, n)
Initialize vector θ arbitrarily, and vectors w and e to 0, all of size n
s = current state of environment
Repeat at each time step of interaction with the environment:

Select action a according to behavior-policy distribution b(s, .)
Send a to the environment; receive next reward r and next state s′

φ = φ(s, a)

φ′ =
∑

a π(s′, a)φ(s′, a)

ρ = π(s,a)
b(s,a)

e = φ+ ργλe

δ = r + γθ>φ
′ − θ>φ

θ = θ + αθ[δe− γ(1− λ)(w>e)φ′]
w = w + αw[δe− (w>φ)φ)]
s = s′

Figure 3.1: GQ(λ) Algorithm with Linear Function Approximation

We will explore the consequences of this difference in Chapter 6.

3.2 Algorithm

The algorithm for GQ(λ) is shown in Figure 3.1. GQ(λ) uses a second set of weights,

w ∈ Rn, to approximate the projection. The second set of weights forms a quasi-

stationary estimate, which avoids the need for two separate independent samples

to approximate each of the two deltaθ terms in the objective function 3.3. The w

weights are used to incrementally approximate two of the three expectations from

equation 3.3:

w ≈ ED
[
φφ>

]−1
ED[δθφ] (3.7)

GQ(λ) learns to estimate policy π, while b is the policy that is used or was used

to choose actions. ρ is the ratio between the probability that the target policy π

would take action a in state s and the probability that the behavior policy b would

take the same action:

ρ(s, a) =
π(s, a)

b(s, a)
(3.8)

If GQ(λ) is used to learn about data generated by an unknown policy, then the

probabilities for the behavior policy can be sampled from the data (i.e., make a first
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pass thru the data and count the action choices at each state, or in an online set-

ting start with equal action probabilities and update the action choice probabilities

incrementally at each state). If GQ(λ) is used to learn a control problem, then the

greedy policy should be used for π. π will equal 1 if the state-action that leads to

the highest Qθ value is picked, and 0 otherwise, except in the case where there are

multiple actions that have the highest Qθ value. In this case, the probability will

be the reciprocal of the number of actions tied for the highest Qθ value.

An element of the GQ(λ) algorithm that is different from traditional methods is

that in the update it uses the expectation over all actions available at the following

state instead of just the action taken. That is, it uses:

φt+1 =
∑
a

π(st+1, a)φ(st+1, a)

instead of φ(st+1, at+1). This helps to reduce variance in the updates. The algorithm

Expected Sarsa is a modification of Sarsa that also uses expected updates. In the

Seijen et al. (2009) paper, Expected Sarsa is proven to have lower variance than

Sarsa and is empirically shown to perform better.

3.3 Calculating the TD Fixed Point

Over time, GQ(λ) converges to the TD fixed point, as long as the following conditions

are met (Maei and Sutton, 2010):

• αθ, αw > 0

•
∑∞

t=0 αθ,t =
∑∞

t=o αw,t =∞

•
∑∞

t=0 α
2
θ,t,
∑∞

t=o α
2
w,t <∞

• αθ,t
αw,t
→ 0 as t→∞

• φt is a Markov process with a unique invariant distribution

• φt, et, and rt sequences have uniformly bounded second moments

• A (described below) and C = Eb
[
φtφ
>
t

]
are non-singular matrices

The TD fixed point is used to calculate learning performance for the experiments

in the toy domains in this thesis. Thus it is prudent to explain how the fixed point is
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calculated in order to reproduce those experiments. The TD fixed point is achieved

when

ED[δθ(s, a, s
′)e(s, a)] = 0

because then the expectation in equation 3.3 will be 0 as well. This section ex-

plains how to translate this expectation into matrix form in order to easily compute

it. The rest of this section was developed through correspondence with Hamid Maei.

To translate the expectation above into Matrix form we first expand it:

ED
[
δ(s, a, s′)e(s, a)

]
=

∑
s,a

db(s, a)e(s, a)E
[
δ(s, a, s′)|s, a

]
=

∑
s,a

db(s, a)e(s, a)E
[
r(s, a, s′)|s, a

]
+
∑
s,a

db(s, a)e(s, a)E
[
(γφ(s′)− φ(s, a))>|s, a

]
θ∗

= x+Aθ∗

where

x =
∑
s,a

db(s, a)e(s, a)E
[
r(s, a, s′)|s, a

]
is a vector and

A =
∑
s,a

db(s, a)e(s, a)E
[
(γφ(s′)− φ(s, a))>|s, a

]

is a matrix. Thus the TD fixed point is θ∗ = −A−1x.

To put these into matrix form, we define a matrix Φ whose number of rows

is N = |S × A| and number of columns, n, is the size of the feature vector and

whose rows are φ(s, a)>. Note that S is the set of all states and A is the set of

all actions. We set R to be the reward transition vector of size N which holds the

expected rewards given at each state-action pair, R(s, a) = E[r(s, a, s′)|s, a]. D is

the behavior distribution over state action pairs, a diagonal matrix with diagonal

elements of db(s, a). Lastly, we define an eligibility matrix E of size N ×n with each

row made up by the vector e(s, a)>. Then determined from a recursive equation:
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x = Φ>DR

And to calculate A

A

=
∑
s,a

db(s, a)e(s, a)E
[
(γφ(s′)− φ(s, a))>|s, a

]
=

∑
s,a

db(s, a)e(s, a)E

[
(γ
∑
a′

π(a′|s′)φ(s′, a′))>|s, a

]
−
∑
s,a

db(s, a)e(s, a)φ(s, a)>

=
∑
s,a

db(s, a)φ(s, a)

γ∑
s′,a′

P
(
s′|s, a

)
π(s′, a′)φ(s′, a′)

>− E>DΦ

= E>D(γPπ)Φ− E>DΦ

= E>D(γPπ − I)Φ

where Pπ is the state/action transition matrix for the target policy. Its elements

((s, a), (s′, a′)) are constructed according to P(s′|s, a)π(s′, a′).

Thus the TD fixed point θ∗ solution is

θ∗ = −A−1x (3.9)

= (Φ>D(I − γPπ)Φ)−1Φ>Dr (3.10)
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Chapter 4

Effect of the Disparity between

Behavior and Target Policies

As a first step in the exploration of off-policy learning with GQ(λ), we explore

the effect of the disparity between the behavior and target policy probabilities on

learning performance. This will give us some idea of how well we can expect to

learn when the target and behavior policies are far apart, and potentially yield

some heuristics to follow in future experiments.

We use the experiments in this chapter to empirically evaluate the following

questions about off-policy learning on a prediction setting:

1. Is it best to learn a prediction problem on-policy?

2. How does off-policy learning performance change as the disparity between the

target and the behavior policies grows?

These questions will not be answered definitively for all off-policy problems.

Instead, I will give modest answers to these questions from the results in these

experiments and develop some intuitions about how to deal with off-policy problems

which may be applicable to larger domains.

4.1 The Off-Policy Distance

In order to more easily discuss and graph the difference in probabilities between

policies, I define the Off-Policy Distance, OPD.
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OPD(π, b) =
1

|S||A|
∑
s,a

|π(s, a)− b(s, a)| (4.1)

where π is the target policy and b is the behavior policy. The OPD is best

described as a percentage.

4.2 The Random Walk Problem

For all the experiments in this chapter, I use a simple random walk domain with

tabular features (one distinct active feature per state). I chose a simple domain for

this experiment, with no function approximation, and only two actions in order to

concentrate on the difference between the policies. Because its a tabular problem,

and not a function approximation problem there is no use for the second set of

weights in GQ(λ). So the algorithm I use is GQ(λ)with αw set to zero, which

zeros out the second set of weights. This algorithm reduces to Expected Sarsa with

eligibility traces, or Expected Sarsa(λ).

Figure 4.1: 5-State 2 exit random walk example from Sutton and Barto (1998), pg 139,
used with permission

The MDP is the 5-state random walk example from Sutton and Barto (1998),

depicted in (Figure 4.1). It is an episodic problem, with two exits. At the beginning

of each episode, the agent starts at the center state (C). Every transition gives

zero reward except the terminal transition on the right, which gives a reward of

1. γ is 1, so the value of each state-action is simply the probability of an exit

occurring on the right side given that state and action. The feature representation

uses tabular features, which means for example that state B is represented by the

vector φ(B) = (0, 1, 0, 0, 0)>.

There are only two actions, left and right, so it is easy to compare action

probabilities. This is a deterministic MDP, which means that when an action is

taken from a state it always results in the same state transition. In this MDP, the
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off-policy distance reduces to taking the absolute value of the difference between the

action right (or left) probabilities of the behavior and target policies.

I ran the experiments using 25 different parameter settings—combinations of αθ

from 2−4 to 20 in increments of powers of 2, and λ from the set [0, 0.25, 0.5, 0.75, 0.9].

The θ values were set to 0.5 initially.

4.3 Experiment 1: Varying the Target Policy

It is common place in real-world problems to have a trajectory of previously gathered

data from which to learn on. For example, a factory may want to analyze its design

process to improve production times, or a football coach may want to analyze plays

and results from previous years in order to win more games this year. It is also

common that changing behaviors in order to have new trajectories to learn from is

not possible. The factory may be reluctant to experimentally change their pipeline

for risk of sacrificing production for a period of time. The football coach may

not want to run experimental plays for fear of looking like a fool, and losing the

confidence of his team.

When there exists precompiled data, and we can not learn from new data, we can

consider the behavior policy to be fixed. In this case it would be useful to determine

how well we can expect to learn a certain target policy on this data, if at all. This

is the prediction case where we know the target policy we want to learn ahead of

time. In this section we study learning performance on various target policies given

a fixed behavior policy.

The behavior policy was fixed to the equal random policy and the algorithm was

run on the random walk MDP to learn 10 different target policies. The target policy

percentages were from 90/10 [left/right] to 0/100 in 10% increments. Throughout

the rest of the chapter, the target polices will be described by the probability of

action right with prefix T. The behavior policies will be described similarly but

with prefix B.

As a performance measure of each algorithm after each episode, I used the root

mean squared difference between our current value estimates and Qθ:

RMSE(θ) =‖ Q∗θ −Qθ ‖D=

√∑
s,a

db(s, a)(Q∗θ(s, a)−Qθ(s, a))2 (4.2)

22



whereQ∗θ(s) is calculated from the TD fixed point using equation 3.9 and equation

2.4, and db(s, a) is the distribution of the behavior policy when at state s and

taking action a. Note that this performance measure takes a weighted average of

the features, weighted by the behavior policy’s state-action distribution.

I performed 100 runs on the MDP for 2000 time steps each run. All parameter

settings and target policies were learned with the exact same action choices. For

each run the error was calculated (per equation 4.2) at each time step. Values

were averaged together every 10 steps, and recorded. The errors from all 100 runs

were then averaged together. The learning curves for the different λ settings with

αθ set to 1 using the target policy T50 are shown in Figure 4.2. I call this the

B50-T50 group, because the behavior policy is 50/50 and thus has a 50% action

right probability and the target policy is also 50/50 thus has a 50% action right

probability.
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Figure 4.2: Learning curves for various λ with α = 1 for the B50-T50 group

In order to easily compare learning performance between groups and between

settings within a group it is useful to distill each learning curve down to a single

number that represents the performance of the learner. One way to do this is to

determine the speed with which the learner reaches a near perfect guess of the

answer. I set the measure of convergence to be the time it takes for the learner

to achieve an error of less than one percent of the initial guess (.005 = 1% of the

starting θ value of 0.5 in this MDP). The curves in Figure 4.2 have the following

convergence times (to the nearest 10 steps):
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λ = 0 .25 .5 .75 .9

Time Steps 220 200 170 160 290

λ = .75 performed the best by this measure. However, convergence speed fails to

account for the error accumulated along the way to the point of convergence. For

example, in the case of the learning curves for λ = .75 and λ = .5 in Figure 4.2,

learning with λ = .5 showed better performance than learning with λ = .75 for most

of the time steps even though the convergence speed was slightly slower.

Another consideration when choosing a performance measure is that TD-based

algorithms will only converge to the fixed point when the step size is continually

reduced to 0. If the step size remains constant, as in this experiment, then the

predictions will tend to oscillate around the fixed point values forever. One way to

capture both the rate of convergence and the final asymptotic error into a single

number, is to integrate the error under the curve over a fixed number of time steps.

It is important to realize that the duration chosen will affect the result, because the

slower learners that converge to a smaller error will tend to look better when more

time steps are used. I chose to integrate over 2000 time steps, because that was

sufficient time to capture the convergence points of all the various experiments in

this chapter. I then divided this integral by the number of time steps to achieve an

average error value per time step which is used in subsequent plots.

Error = 1/2000
2000∑
t=1

RMSE(θt) (4.3)

A parameter study is a graph which generally compares error or performance of

an algorithm using different parameter settings. A parameter study over all α and λ

values for learning on T50 (the on-policy setting) is shown in Figure 4.3. The error

is measured in the y axis. Lower values are better. It is clear that setting α to 1

results in the best performance. The plot of α = 1 shows the learning curves from

Figure 4.2 each distilled down to a single scalar value: the RMSE averaged over the

first 2000 time steps (equation 4.3). By this measure, setting λ = 0.5 and α = 1

gave the best performance.

Parameter studies were performed to find the best parameters for learning all 10

target policies. The learning curves using the best parameter settings are shown in

Figure 4.4. Here we see our first comparison of learning performance over different

target policies. From this graph, the on-policy group, B50-T50, performs the best

at the beginning of learning. The extreme policies T90 and T100, achieve lower
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Figure 4.3: Parameter Study over all α and λ values on the 50/50 target policy. The line
for α = .0625 lies above the boundaries of this graph.

error after about 70 time steps.

This is because the targets with extreme percentages are easier to learn on this

MDP. A 50/50 policy is harder to learn because it spends more time wandering

around in the state space, whereas a 10/90 policy will generally only make a few

moves before exiting since it is so heavily biased towards one side. Wandering around

more increases the variance in predicted values because some episodes will be very

long and some very short. Since calculating RMSE is similar to measuring variance,

it follows that a lower variance problem would have better performance.

Now if we reduce these learning curves down to the average RMSE value (equa-

tion 4.3) and plot them on a line where the x-axis is the π(right) of each target

policy, we can compare performance of the random behavior to targets near and

far (Figure 4.5). From this figure it is clear that the learning agent performed best

when the policy to be learned matched the behavior policy, T50, and performance

seems to get worse as the target policy becomes more different, but then gets slightly

better at the extremes due to the variance of the problems decreasing.

In this MDP, the learning performance is good across all target policies when

using an equal random behavior policy distribution. Notice how small the scale

is for the error in Figure 4.5. Notice how all of the target policies were learned
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Figure 4.4: Best learning curves on every target policy
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Figure 4.5: Performance over all target policies

nearly perfectly in less than 200 time steps in Figure 4.4. This suggests that with a

trajectory from an equal random behavior policy, any target policy is easy to learn

on this small MDP. It is important to remember that this is an empirical result on

a simple random walk problem, and not a proof. These results may not hold up in

more complex environments.

4.4 Experiment 2: Varying the Behavior Policy

When given a specific task to learn we may ask what policy we should use to learn

this task most quickly? If the task is a prediction task we may assume that it
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would be best to learn using the same policy as the policy we want to predict, the

on-policy case. However, this may not be the best policy to use. In this section we

will compare the learning-performance of agents using different behavior policies to

try to learn the same target policy.

I use the same MDP and parameters as described in section 4.2. The target policy

we will try to learn is the equal random policy, T50, and we will learn this policy

using 7 different behavior policies ranging from B20 to B80 in 10% increments.
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Figure 4.6: Performance using various behavior policies over the equal random target
policy

Parameter studies were performed and the best parameters were chosen from

each target policy group. The performance measure, the errors in learning calculated

using equation 4.3, are plotted in Figure 4.6. The results show that learning the

equal random target policy using the equal random behavior policy leads to the

best performance. Using a behavior policy that differs by only 10% or 20% from

the target policy is not much worse. Only the behavior policies at the extremes

show markedly worse performance. They perform 5 to 6 times worse than the equal

random behavior policy by this performance measure.

4.5 Experiment 3: Varying Both the Target and Be-

havior Policies

In previous experiments we focused on learning performance with respect to an

equal random target policy (Experiment 1) and an equal random behavior policy

(Experiment 2). Equal random policies have the most even behavior distributions
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and thus learning with or about them may have different characteristics than learn-

ing off-balance policies, policies whose actions are not distributed equally randomly.

In this section, as in past ones, I may refer to the behavior policies being used in

each problem with a prefix B and the action right percentage, (i.e., B60 refers to

the 40/60 [left/right] behavior policy). For the target policies being learned I

will do the same but with a prefix T. All of the problems learned using a specific be-

havior policy or about a specific target policy will be referred to as a group. Specific

behavior and target policy combinations will be called groupings.

For this experiment, I used the same MDP and parameter settings as in section

4.2. I took the 10 target policies used in Experiment 1 and learned each one using

the 7 behavior policies that were used in Experiment 2, for a total of 70 groupings.

I evaluated each grouping using the same 25 combinations of parameter settings on

the same problem as in the other experiments.

Each learning problem was run 100 times for 2000 time steps and the results were

averaged together. The performance measure used is the same as in the previous

experiments (equation 4.3). For all 70 groupings, the best α value was 1 (the highest

α value used). The best λ parameters varied between 0.25 and 0.75.

The errors using each behavior to learn over different target policies are plotted

in Figure 4.7. These graphs include the line from Figure 4.5 plotted in different

scales. Error bars are displayed in the graph to show the statistical significance of

each data point. An obvious result is that errors were highest when the extreme

behaviors, B20 and B80, were used on the policies they are most distant from.

The first important thing to notice is that when a learning agent’s behavior policy

matched the target policy (the on-policy case), it resulted in the least error only

once—in the B50-T50 grouping. The agents using B40 and B60 statistically tied

with the agent using B50 on their respective on-policy target policy groupings. The

other four on-policy groupings had more error than two or more of the off-policy

learners on their respective target policies.

Another interesting thing to note is that using B40 and B60 yielded lower error

than B50 on the more extreme target policies on their respective sides of the 50%

demarker. Specifically, using B40 showed better performance than using B50 on

learning T30, T20, and T10. Using B60 showed better performance than using B50

on learning all of the target policies groups from T70 to T100. Using these behaviors

also resulted in less error than using an on-policy behavior on the respective target

policy groupings.
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Figure 4.7: Performance using each behavior policy (lines) over different target policies.
Bottom graph is a zoomed in view.
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Lastly, notice the large jump in error that occurred for every single off-balance

behavior policy when learning target policies on the other side of the 50/50 line. For

instance using B60, there was less error in learning T100 than learning T40 even

though T40 is twice as close in terms of the off-policy distance.

These are interesting and somewhat unexpected results. The first result shows

that it is not necessarily best to learn on-policy on a prediction problem. This may

be related to the state-action distributions of each behavior policy. The policies

with percentages close to 50/50 will have the most even state-action distributions,

whereas the policies farther away will rarely visit some states. The table below

shows the extreme difference in state-action distributions between behavior policies.

The first distribution listed is that of the 50/50 behavior (B50), which samples state-

actions to the left and right of center an equal number of times. The second is of

the 20/80 (left/right) policy (B80):

B50 Distribution A B C D E

Left 0.0556 0.1111 0.1667 0.1111 0.0556

Right 0.0556 0.1111 0.1667 0.1111 0.0556

B80 Distribution A B C D E

Left 0.0032 0.0159 0.0667 0.0635 0.0508

Right 0.0127 0.0635 0.2667 0.2540 0.2032

The B80 distributions are heavily skewed towards the rightmost states. In fact,

this behavior visits State A less than 1.6% of the time. If a policy rarely visits a

state then it won’t be able to learn much about it, and learning performance will

suffer. This may be why on this problem it was better to use B50, B60, and B70,

rather than B80 to learn T80, because each of those behaviors will have a more even

state action distribution. Remember that the error measure being used, the RMSE,

weights each error in the value function by the state distribution, so states that are

visited less frequently will have less of an effect on the overall error. However this

weighting is not enough to overcome the performance on problems that have more

even state distributions, like B40, B50, and B60.

The second result of interest shows that an even distribution is not the only

thing that matters, a combination of being close in off-policy distance as well as

more evenly distributed than the target policy shows the best learning performance

in general on this MDP.

The last result of interest (that performance suffered sharply across the 50/50

line) may show that it is important that the behavior policy chooses the action
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favored by the target policy more or equally as often as the other actions, otherwise

performance will suffer greatly. It would be interesting to check this result on other

MDPs with larger action spaces.

4.6 Change in Error as the Off-Policy Distance Grows

In this section, I analyze the data to answer two new questions regarding the change

in error over each policy as the off-policy distance grows. The first question is:

How does off-policy learning performance change as the target policy differs fur-

ther from each behavior policy on the random-walk problem?

To help answer this, I developed an error measure which I call the increase in

error with respect to the behavior policy (IEB):

IEB(B, T ) = Error(B, T )− Error(B,B) (4.4)

where T and B are the target and behavior policies for each group and Error(B,B)

means the Error when the target policy matches the behavior policy (the on-policy

case).

I calculated the IEB over each of the behavior policies from the results compiled

in experiment 3. Data points that had the same off-policy distance for each behavior

were averaged together. For example, T60 and T40 both have an off-policy distance

of 10 from B50, so these would be averaged together. Each line plotted in Figure 4.8

represents a different behavior policy and the x-axis denotes the off-policy distance

from each behavior policy to the various target policies being estimated. Notice

that some plotted points are less than zero which indicates that error decreased by

learning off-policy versus on-policy in these cases.

From this figure we see that performance was similar within a 20% difference

in behavior and target policy distributions. As the off-policy distance grew, perfor-

mance decayed logarithmically to an asymptotic error level. The degree of this error

is related to how evenly distributed each behavior policy is, with more even distri-

butions displaying lower asymptotic error. When learning off-policy, it was best to

learn target policies that were within a 20% difference in action selection probabili-

ties. Unless the precollected data was well distributed amongst all state-action pairs

in which case learning performance was adequate on any target policy.
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Figure 4.8: Performance as the target policy differs further from each behavior policy

This last result may only be relevant for small problems like this one. If the

state space is large and reaching the goal states requires a detailed sequence of

actions, then learning over an equal random distribution of state-actions will be

very slow. Another complication with this analysis is that as the policies become

more extreme, the problems become easier to learn. This effect may be what leads

to the flattening out of each graph at the tail ends. In future work, it would be

useful to try to account for this effect somehow.

The next question I answer is:

How does off-policy learning performance change as the behavior policy differs

further from each target policy on the random-walk problem?

To help determine the answer to this question, I modified the error measure

slightly to be the increase in error with respect to the target policy (IET ):

IET (B, T ) = Error(B, T )− Error(T, T ) (4.5)

The IET for each target policy with respect to the off-policy distance from each

behavior policy is plotted in Figure 4.9. Behavior policies with the same off-policy

distance from each target policy were averaged together. Each line represents a

different target policy and the x-axis denotes the off-policy distance between each

target policy and the various behaviors. The three target policies that did not have
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on-policy groupings used the closest grouping as their baseline (i.e., T100 used the

B80-T80 result in the error calculation). In this figure we see that performance does

not change dramatically as the behavior policy gets further from the target policy

until it reaches the extremes of the behavior policies we tested over. This is partially

due to the fact that as the target policies become more extreme, they also become

easier to learn.
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Figure 4.9: Performance as the behavior policy differs further from each target policy

4.7 Conclusions

I draw three heuristics about off-policy learning from the results in Experiment 3.

First, the distribution over the state space seems to be a very important factor.

Given the same off-policy distance, it is better to learn using a behavior policy that

is more evenly distributed than more narrowly focused. Second, it is important to

use a behavior policy that tends to choose actions favored by the target policy more

or equally as often as the other actions. There was a large loss in performance when

this was not the case. Third, it was found that it is not necessarily best to learn

on-policy. Learning using a policy that is slightly more evenly distributed than the

target policy can lead to better performance. Thus the answer to our first question:

Is it best to learn a prediction problem on-policy?

is no, not necessarily.
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Comparing learning performance between off-policy problems presents complica-

tions because different policies may be more or less difficult to learn due to variance.

In order to account for these differences, I averaged together the IEB over all of the

different behaviors used. This way, for example, the performance of B20-T50, which

consists of a behavior policy with a highly skewed state-action distribution learning

the target policy with the highest variance, is averaged together with the IEB of

B50-T80 which consists of a behavior policy that is the most evenly distributed

amongst state-action pairs with a target policy that has relatively low variance,

because they both have an OPD of 30%. All of the different combinations should

help mute the effects of distribution and variance and isolate the effect of off-policy

distance. The result is plotted in Figure 4.10.
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Figure 4.10: Learning performance as a function of the off-policy distance

Looking at the question posed in the introduction:

How does off-policy learning performance change as the disparity between the

target and the behavior policies grows?

The simple answer that can be drawn from this plot is that learning will suffer as

the disparity between the behavior and target policies grows. A more specific answer

is that learning will suffer quadratically as the disparity grows.

It is important to remember that the results and conclusions in this chapter were

drawn from a simple random walk experiment and do not necessarily hold across

all MDPs. However, these results may still be useful for informing behavior policy

choices and boundaries on target policies to be learned in future experiments and

larger problems.
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Chapter 5

Learning Multiple Optimal

Policies Simultaneously on a

Robot

Reinforcement Learning on artificial problems such as those described in the previous

chapter is informative, but in order to progress further in artificial intelligence, it is

important to apply algorithms to much larger problems. One example is robotics. A

mobile robot could use reinforcement learning to learn to interact with the real-world

from its sensorimotor experience. With an off-policy method like GQ(λ) it could

learn many different ways to interact with the world at the same time. This chapter

describes an experiment that demonstrates learning of multiple optimal policies in

parallel using a robot. For this experiment, we will use the Critterbot, a custom-

built mobile robot (see Figure A.1), that was expressly designed for reinforcement

learning experiments. The Critterbot is described in detail in the appendix.

Whereas the previous experiments were prediction experiments, predicting the

value function of a fixed policy, this is a control experiment, learning a policy to

maximize reward. For this control experiment, the learning agent will use a slightly

modified version of GQ(λ) which could be called Greedy-GQ(λ). This algorithm

extends the Greedy-GQ algorithm from Maei et al. (2010) to include eligibility

traces. Greedy-GQ was proven to be stable for learning control policies in an off-

policy unrestricted linear function approximation setting as long as the behavior

policy is stationary, which it is in this experiment. Greedy-GQ(λ) is the same as

GQ(λ) with a greedy target policy and with the behavior policy probability always

set to 1.0, so we will continue to call it GQ(λ) throughout.
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Figure 5.1: The Critterbot

5.1 Objectives

In this experiment, the Critterbot will spin left and right randomly while a computer

agent learns how to maximize various sensors. For example, it will learn how to

spin to the direction where its Magnetometer X value is maximized and stop at

which point it would be facing magnetic north. It will also learn many other sensor

maximization policies in parallel.

This experiment has 2 primary objectives:

1. Demonstrate off-policy learning for control with GQ(λ) in a real-

world domain

The robotic domain is a much more complex domain than those used in the

other experiments in this thesis. The Critterbot is a physical device which

must deal with inertia, motor ramp up times, wireless delays, and sensor

delays. When a command is given it can take up to half a second for the

motor to achieve the stated value depending on the strength of the command

and the state of the motors when the action was sent (see Appendix A.2).

When a stop action is given it can take up to 300 ms for the robot to actually

come to a stop. Sensor values are reported in their raw form and are always
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changing even when the robot is sitting still. One sensor, the beacon light

turns on at half second frequencies so the learning agent should be able to

deal with a stochastic reward signal in order to learn how to maximize this

sensor.

Another complication is that the robot reports raw sensor value data. None

of its sensors directly and accurately show objective information like orienta-

tion or location, and I will not convert any of these sensors to a more easily

recognizable output. So the robot’s representation of the world is not as

straightforward as an x,y position and orientation. Function Approximation

is necessary in this setting. For all these reasons learning control policies on

the robot, even if its only spinning in place, is a complex problem.

2. Demonstrate the ability of GQ(λ) to learn multiple value functions

for control in parallel

A robot that can learn many things at once would be able to understand its

sensorimotor interactions with the environment quickly. In this experiment the

critterbot will learn how to maximize various sensors from random interaction

with the world. The ability to learn multiple value functions simultaneously

is one of the advantages of learning off-policy.

5.2 Experimental Setup

There were several important choices to be made for this experiment: sensors to

maximize, behavior policy, time step duration, speed of movement, feature selection,

and feature representation. Each choice and the reasoning behind it is described

below.

5.2.1 Sensors to Maximize

In this experiment the agent will learn policies to maximize eight sensor readings

simultaneously on the Critterbot. Eight is a large enough number to show off

learning of a variety of sensors while still being small enough to allow enough time to

repeatedly test each learned policy in order to achieve statistical significance. Most

importantly, eight was the maximum number of different GQ(λ) updates that my

computer could reliably compute before the next time step (every 100 milliseconds).

The eight sensors I chose to maximize are:
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1. Wheel 0 velocity

2. Magnetometer X value

3. Infrared Distance Sensor 0

4. Infrared Distance Sensor 2

5. Infrared Distance Sensor 7

6. Infrared Distance Sensor 9

7. Infrared Beacon Sensor 0

8. Temperature Sensor 0

These sensors were chosen because they represent a wide range of sensors on

the critterbot (Appendix A.1). The light sensors were ignored for this experiment

because the amount of light in the lab changes over the course of the day (and

night), which may have skewed the results of some of the evaluations and thus

hinder comparisons.

5.2.2 Behavior Policy

In order to achieve statistically significant evaluation, it is important to have an

environment in which experiments can be easily recreated. It can be difficult to

automatically return a free-moving robot to the same starting position in order

to consistently evaluate each policy. However, if the robot’s actions are restricted

to spinning only, then it will stay in relatively the same location, and only the

orientation will have to be reset to achieve similar starting conditions. This will

allow for easier comparison of learned policy performance at different time scales

and with different parameters. The action set was simply three actions: [STOP,

SPIN LEFT, SPIN RIGHT].

An equal random behavior policy was used because it is a simple method to get

an even distribution over the state space when the state-space is a simple loop. The

experiments in Chapter 4 suggest that having an even distribution makes learning

of various policies easier. The random policy had a bias (50%) toward repeating

the same action taken on the previous time step, so that the critterbot would be

subjected to lengthier sequences of single actions more often than a policy without

repeating bias would provide. These lengthier sequences were necessary to actually
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achieve the desired velocities over the short time steps uninterrupted (Figure A.5).

A single three and a half hour trajectory of data was used, which yielded 114,000

time steps.

5.2.3 Time Step Duration

An important consideration in deciding what time scale to run this experiment at

is precision of movement. The Critterbot should operate at as small a time scale as

possible in order to achieve the best policy. If we make the time step or command

speed too large, then the robot will often shoot past its desired goal. It will lack the

precision to stop on target, instead oscillating back and forth over it.

The Critterbot reports sensor data, and takes in new actions, 100 times per

second, so 10 milliseconds is the fastest possible time step that could be used.

However, after 30 ms the off-robot agent may not have even communicated its new

action to the agent due to wireless latency times, and it takes even longer (anywhere

from 300-500 ms) for the robot to reach the full command speed passed to it (see

Figure A.4). Operating at the shortest time step will make it difficult for the agent

to realize the effect its commands have on the robot since they will constantly be

interrupted by the next action and the Critterbot may not even move at all (Figure

A.5).

Another important consideration is adherence to the Markov property, in which

each state signal must hold all of the relevant information from the past needed

to predict the next state (Sutton and Barto (1998), pp 62,63). When setting up

a reinforcement learning problem it is a good idea to adhere as closely as possible

to the Markov property. At the smallest time step it would be necessary to keep

history about the last 4 actions just to understand what action the robot is currently

processing. Adding history to our feature state would quickly grow the number of

features, which would expand the computer memory used and slow learning.

Given these considerations, for this experiment a time step of 100 ms, or one tenth

of a second, was chosen in order to compromise between having a small enough time

step in order to exhibit precise control, and a large enough time step to compensate

for the various sensor delays and inertia in movement. The last action taken was

added to the feature representation to help make the state signal more Markov—

more descriptive of the current state.
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5.2.4 Speed of Movement

The motor command sent to the critterbot was chosen to be 10 for each wheel

(out of 25), at which speed it takes the Critterbot a little less than 3 seconds to

make a full revolution. The Critterbot can spin much faster, but this speed was

chosen to balance movement speed with precision. Ideally the robot would learn to

spin as fast as possible to each direction of maximization and slow down gracefully

when necessary, but this would require a much larger discrete action set, or even

continuous actions, which is not the focus of this experiment.

5.2.5 Feature Representation

The linear function approximator chosen for this experiment was tile coding. Tile

coding is a function approximator used to partition the observation space into binary

features. Each partition is called a tiling. There is only 1 active feature or tile per

tiling. This feature is set to 1 and all other features are set to 0. Tile coding is a

popular linear function approximation technique for reinforcement learning because

it is easy to calculate, and the number of features are fixed. Having a fixed number

of features makes it simpler to set the step size values which are dependent on the

number of features. Figure 5.2 shows a gridtiling over two continuous inputs with

two randomly offset overlapping tiles. A gridtiling scheme generalizes locally, but

other tiling schemes can be used to generalize in different ways. Gridtiling is able

to represent many functions, although it uses more data than other tiling schemes

and does not necessarily generalize well.

Figure 5.2: Tile coding with 2 overlapping tilings (from Sutton & Barto, 1998, used with
permission). The x represents a sample joint data point and the active tiles are marked.
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5.2.6 Feature Selection

To learn this problem well the agent should have an idea of the robot’s orientation

and current rotational velocity. The Magnetometer value on the X axis accurately

describes the direction the robot is facing, much like a compass, except that its values

are mirrored across the north/south axis, so when the Critterbot is pointing east it

gives the same value as pointing west, northeast gives the same value as pointing

northwest, and so on. Thus the learning agent will need a hint to distinguish which

way the Critterbot is facing. The IR distance 2 sensor works well for this task (see

Figure A.3(b)). It is on the side of the Critterbot, and thus, if the Critterbot is

pointing west, the IR distance sensor would be facing the wall and would have a

high value. If the Critterbot is facing east, this sensor would be facing out towards

the rest of the pen and should have a low value. Lastly, one of the Motor velocities

was included to enrich the state space with an idea of the current rotational velocity.

Facing one way and being at rest is a much different situation than facing the same

way and rotating at full speed since the Critterbot can not stop immediately the next

time step, due to inertia. Its also important for the learning agent to understand

when the Critterbot is not moving since the optimal policies should come to rest

at the desired orientation of maximization for 7 of the 8 sensor maximization tasks.

Motor speed was chosen over the rotational velocity because the gyroscope had been

reporting odd values and did not seem like a reliable sensor to use.

The 3 sensors were tile coded together jointly. Each sensor was discretized into

eight bins and used four overlapping joint tilings, resulting in 83 × 4 = 2048 binary

features. Three binary features were added to represent the last action taken, so the

agent would have some idea of what action the Critterbot was currently processing.

Lastly, a bias unit always equal to one was added which is considered good practice

when learning linear weights. Thus there were a grand total of 2052 features.

5.2.7 Algorithm

The algorithm I used is GQ(λ) with one modification. Instead of using the actual

behavior policy probabilities in the calculation of ρ(s, a), the behavior policy was

set to always be 1.0. This was done to make the algorithm adhere closer to the

Greedy-GQ algorithm (Maei et al., 2010), which does not use a ρ parameter. Since

the value of π will always be 1 or 0 under the greedy policy (except in the case of

ties), GQ(λ) reduces to Greedy-GQ with eligibility traces if the denominator of ρ is

fixed at 1.0 and a greedy target policy is used. The algorithm used could thusly be
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called Greedy-GQ(λ).

Separate learning agents were used for each sensor maximization task, each with

their own weights and eligibility traces. These learning agents ran in parallel over

each subsequent observation from the trajectory. Greedy-GQ(λ) was used by each

learning agent (Figure 3.1). Accumulating traces were used, which means no limit

was put on the size of eligibility traces.

The parameter αw was set to 0.001, because in other experiments with GQ(λ),

like the one in Chapter 6, a larger second step size slowed learning. The γ value was

set to 0.98 to make the learning agent take a longer term approach to its actions. All

weights were initially set to zero. The parameter settings for αθ and λ are discussed

in the evaluation section.

5.2.8 Evaluation

To evaluate the learned control policies, each policy was run with learning turned

off for 250 time steps (25 seconds). Evaluations were run at 3 different starting

orientations for each target policy one after the other to form a group of evaluations

which I will call a trial. Ten trials were run for a total of 30 evaluations of each

target policy. The reward–the sensor value being maximized normalized between 0

and 1—was recorded every time step. From this the average reward and the average

return were calculated over all 250 time steps. Both produced similar results, so

only average reward will be discussed further.

Before each set of trials, the robot was placed in the same location near a wall.

A calibration routine was run before every trial. The ranges of each of the sensors

being maximized were recorded by running each of the three actions for 5 seconds

(the robot would spin one way more than a full revolution, stop, and spin back the

other way). These ranges were used for normalization of the rewards and for the

bounds of the tile coder. This way any slight changes in starting position or time

of day that reflected in the sensor readings would be accounted for. Ranges were

also calculated before the behavior policy was run to create the trajectory used in

offline learning.

Limited evaluations (i.e., less than 10 trials) were performed with αθ chosen from

the set [0.1, 0.25, 0.5] and λ from the set [0.2, 0.4]. From these limited evaluations

αθ = 0.1, and λ = 0.4 performed the best after one-hundred thousand time steps so

these parameters were chosen for the full study.
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Ideally if the experiments were run correctly, we would see the robot spin im-

mediately in the fastest direction to the point of maximization (if there is one) and

stop. At worst, it should oscillate around the point of maximization if it can’t find

the best point or its action set is not discrete enough to reach the best point exactly.

5.3 Results
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Figure 5.3: Learning curves for eight sensor maximization tasks.

Off-policy learning was halted at ten thousand, fifty thousand, and one-hundred

thousand time steps and evaluations were run to measure learning progress. An

evaluation was also run with no learning (time step 0). The results are shown in

Figure 5.3. After only ten thousand steps of learning, the Critterbot’s control policy

was often just to spin in place, which is why some of the rewards are lower than the

starting evaluation. After fifty thousand time steps the robot learns significantly,

and continues to learn better control policies after one-hundred thousand steps.

Time delayed pictures of sample evaluation runs learned at 114,000 steps (the

maximum amount of steps I had data for) for 4 of the 8 target policies are shown in

Figure 5.4. The starting position for the evaluation runs shown is displayed in the

first figure. The Figure named ”VEL” refers to the wheel 0 velocity, and the policy
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Figure 5.4: Time delayed photographs of the policies learned for sensor maximization.
The starting orientation is on the left.

is to simply spin in the forward direction (counter-clockwise). The other policies

turn directly to the point of maximization (sometimes overshooting and turning

back) and the final resting place is superimposed over the photographs for clarity.

In these examples it took less than 3 seconds to reach this resting position. Some

trials took a little longer to achieve a resting position but they generally performed

similarly to the trials shown.

5.4 Discussion

These results show that optimal target policies can be learned from snippets of ran-

dom behavior. They also show that GQ(λ) scales to learning multiple policies in

parallel. The polices were robust across the state space. The trials in this algo-

rithm were started from three different orientations and the policies learned always

made the robot turn in the direction which would achieve the goal most quickly.

This experiment validates the algorithm GQ(λ) as a useful algorithm for off-policy

reinforcement learning on real-world linear function approximation problems.

After I performed these experiments, the code was optimized so that the learning

agent ran 10 times faster. With the current code, I could learn 80 or more control

problems simultaneously in real time if memory would allow. Since GQ(λ) uses

an amount of memory linear in the number of features, memory constraints are

not as much of a concern as learning algorithms like LSTD (Boyan, 2002), that

require enough memory to hold the number of features squared. Although, I ended

up running the off-policy experiment offline so that I could learn with different

parameter settings on the same trajectory of data, it is important to realize that

this experiment could have been done on-line while the robot was running. When

learned offline, the number of optimal policies that can be learned from the data is

basically unbounded, because the data can be reused for each separate problem and

there are no real time constraints.
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The next step is to use GQ(λ) to learn temporally abstract models like options

(Sutton et al., 1999) or TD networks (Sutton et al., 2006; Rafols, 2006). Then these

temporally-abstract actions could be combined for use on larger problems, and so

on. From this enormous potential of off-policy learning with linear methods, we

have the seeds of a learning agent that could learn general knowledge about its

sensorimotor experience autonomously.
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Chapter 6

GQ(λ) vs. TD(λ) with

Importance Sampling

The last step in the evaluation of the GQ(λ) algorithm in this thesis is to compare

it to the previous off-policy method that is stable with function approximation that

most closely resembles it. The second order methods are excluded because they are

not O(n) in time and space complexity. The residual gradient algorithm is excluded

because it is not practical on most real-world algorithms where the dynamics of the

MDP are not known since it requires multiple samples at each state. This leaves the

TD(λ) with importance sampling algorithm (Precup et al., 2001), which I will refer

to as TD(λ) IS for the remainder of this chapter. This algorithm is stable for off-

policy learning with linear function approximation on episodic problems of bounded

length. The main drawback of TD(λ) IS is that it is subject to high variance and

has been known to learn slowly. In the experiment in this chapter I compare GQ(λ)

to TD(λ) IS to determine if it performs faster than the previous algorithm.

This chapter will also highlight the difference between the two algorithms in terms

of the objective function each tries to estimate. Whereas GQ(λ) estimates the value

function for the target policy with respect to the behavior policy’s distribution,

TD(λ) IS estimates the value function for the target policy with respect to the

target policy’s distribution. This is an important difference. Importance sampling

is trying to learn about a target policy as if it had behaved this way from the

beginning of time. GQ(λ) is trying to learn about the target policy in terms of an

excursion from its normal behavior.
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6.1 Experimental Setup

In order to do this comparison I evaluated GQ(λ) on a problem from the Precup et al.

(2001) paper which TD(λ) IS was previously evaluated on. The problem domain,

which is depicted in Figure 6.1, is an 11x11 grid world. This is an episodic problem.

The MDP is deterministic and there are four actions, [down, up, left, right].

The reward on every transition is zero, except for transitions into the 4 terminal

states at each corner. Actions that would take the agent beyond the borders of the

gridworld, such as down from the bottom row, instead, leave the agent at the same

spot. The initial state is in the center and the initial action is chosen randomly to

be right or left.

Figure 6.1: Gridworld environment from Off-Policy Temporal-Difference Learning with
Function Approximation (Precup et al., 2001, used with permission)

Linear function approximation is used in this problem. The features are thirteen

overlapping vertical stripes of horizontal width three. Three of the thirteen features

are active (set to one) at all times, and the other features are set to zero. These

features make it so that the agent’s vertical location is indistinguishable. Thus I

will call it the indistinguishable vertical location problem.

The behavior and target policies at every state are summarized in the following

table:

down up left right

Behavior 10% 40% 25% 25%

Target 40% 10% 25% 25%

They differ only in that their up and down action probabilities are flipped. The
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behavior policy can well be thought of as an upward-drifting policy and the target

policy as a downward drifting policy. Under the downward drifting target policy the

features on the right side should be positive because the agent will tend to reach the

bottom right terminal state, and the features on the left side should be negative,

whereas under the upward-drifting behavior policy, the situation is reversed.

In this experiment I generated new results for GQ(λ) on the indistinguishable

vertical location problem and compare them to the previous results of TD(λ) IS

from the Precup et al. (2001) paper. The authors of that paper set γ to 1, so I did

the same. In the Precup et al. (2001) paper, the incremental version of importance

sampled TD(λ), was used with λ values of 0 and 0.9. I used two settings for λ, 0

and 0.5. These two parameter settings will be referred to as GQ(0), and GQ(0.5)

respectively. I used a different range of alpha values for each λ setting. For λ = 0,

I used αθ from 2−5 to 2−1 in powers of 2 divided by the number of active features

3. For λ = 0.5, αθ varied from 2−12 to 2−3 in powers of 2 divided by the number of

active features 3. I divided each alpha setting by the number of active features, 3, as

is common practice to minimize divergence. For both λ settings, I chose η from the

set [0, 0.25, 0.5, 1, 1.5]. η is the ratio between the αθ step-size and the αw step-size:

η =
αw
αθ

αw = ηαθ

θ values were set to 0 initially in both the new and old experiment.

6.2 Results

I ran the experiment 50 times for 20,000 episodes each with λ = 0. GQ(λ) used the

same trajectory of actions for learning with all 25 α and η combinations. The error

measure was the root mean squared projected Bellman error averaged over all 20,000

episodes. Figure 6.2(a) shows the GQ(0) parameter study on the gridworld problem.

The best parameter setting over all alpha values is with an η of zero. When η is set

to zero, the second set of learning weights w is zeroed out, and GQ(λ) reduces to

TD(λ) with linear function approximation and updates based on expectation over

all possible actions. There were two parameter settings statistically tied for the best

performance by this measure, αθ = 2−4

3 and αθ = 2−3

3 , both with η = 0.
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Figure 6.2: GQ(λ) parameter studies on 11x11 gridworld problem
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(a) TD(λ) IS from Precup et al., 2001, used
with permission
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(b) GQ(λ) with step size αθ = 2−3

3
, η = 0

Figure 6.3: Weight value estimates of the leftmost and rightmost features for the down
action from a single run. Note the scale for the number of episodes importance sampling
used to learn is significantly higher.

I ran the GQ(0.5) algorithm for 50,000 episodes, because the problem took longer

to learn with this setting. Figure 6.2(b) shows a parameter study of GQ(0.5) over all

50 α and η combinations. Again, a setting of zero for η gave the best performance

in almost every case except for αθ = 2−5

3 and αθ = 2−6

3 , where it was statistically

tied with the next smallest η value, 0.25.

In order to compare the speed of learning of GQ(λ) and TD(λ) IS, the learning

curve generated by TD(λ) IS from the Precup et al. (2001) paper is shown in Figure

6.3(a). This figure shows the objective values of two θ parameters, denoted by the

dashed lines, and their estimates over time from a sample run of the algorithm. It

takes about 350,000 episodes for the estimates from TD(λ) IS to settle near the

correct values. By contrast, GQ(λ) learns its objective function much faster. Figure

6.3(b) shows a sample run using GQ(0) with one of the best parameter settings. It

takes about 5000 episodes for GQ(0) to settle near its objective function. GQ(λ)

learned its value function using 70 times less data then TD(λ) IS in these sample

runs.

When you consider that the upward-drifting behavior policy reaches one of the

bottom exit transitions less than 1 out of every 5000 times, and the downward-

drifting target policy exits at the bottom 99.98% of the time, it becomes clear why

the TD(λ) IS algorithm learns the target policy so slowly on this MDP. If the agent

only exits out of the bottom row once every 5000 episodes, than it will rarely be

exposed to the fact that the rewards for these exit transitions are reversed. Because

learning relies on experience, learning about the exit transitions of the downward

drifting policy will take much longer on this problem. Notice the spikes in the GQ(λ)
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θ value plots in Figure 6.3(b). These signify an episode that ended in the bottom

area of the grid, which changed the weights dramatically, but then they creeped

back up to the fixed point values. Notice that there are only two of these in 10,000

episodes on this run.

6.3 Analysis of Results

GQ(λ) is faster at learning its objective function than TD(λ) IS is on this prob-

lem. However, notice that the parameter values that each is trying to converge to,

displayed in Figure 6.3, have reversed signs. The value of the rightmost down θ∗

parameter which TD(λ) IS converges to is positive, while the same θ∗ parameter

GQ(λ) is trying to converge to is negative. Under the target policy the agent will

spend most of its time in the lower section of the grid and thus we would expect the

rightmost parameters to be of positive value, which TD(λ) IS eventually discovers

(see figure 6.1).

Why does GQ(λ) converge to a negative value for the rightmost down θ∗ value?

Perhaps this is a fluke. To check this out I calculated the TD fixed point that

GQ(λ) approximates at λ = 0.5, as well as the on-policy TD fixed points of both

the behavior and target policies for comparison. The V ∗ values for each column

of the gridworld are shown as heat graphs in Figure 6.4. The V ∗ values for the

downward drifting policy with the downward-drifting distribution, the target policy

in this experiment, are shown on the top left in Figure 6.4. This is the value function

that TD(λ) IS approximates. The V ∗ values for the upward drifting policy with the

upward-drifting distribution, the behavior policy in this experiment, are shown on

the top right. Lastly the V ∗ values for the downward drifting policy given the

distribution of the upward drifting policy are shown on the bottom, which is the

value function that GQ(λ) approximates in this experiment. Remarkably, this value

function looks more like the value function calculated on-policy using the behavior

policy than it does of the value function calculated on-policy using the target policy.

This has to do with the objective function that GQ(λ) approximates, the global

minimum of the projected Bellman error (equation 3.3), which takes the distribution

of the behavior policy into account. The distribution of the behavior policy for this

problem is shown in Figure 6.5. As the figure reveals, the agent spends the majority

of its time in the top row of the grid and very little time at all in the bottom half of

the grid. Perhaps these squares are close enough to the corners on the top that the

target policy would exit out of them more often than from the bottom even though
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Figure 6.4: Heat graphs of the exact values, V ∗, for the downward drifting policy used
as the target (top left), upward drifting policy used as the behavior (top right), and the
downward drifting policy given upward drifting policy distribution which GQ(λ) learns
(bottom). Darker shades indicate higher reward. The learned GQ(λ) value function look
more like the behavior values than the target they are trying to learn .

the target policy is downward-drifting. Then it would make sense that GQ(λ) would

give negative value estimates on the right side of the grid and positive ones on the

left side.

To test if this is true, I ran simulations from several different locations near the

top of the gridworld. Starting from the top middle square of the grid, the location

of highest distribution under the behavior policy (the location labeled 1 in Figure

6.5), I ran one million episodes with the target policy and found that the agent

exited out of the bottom row of the graph 98% of the time. I performed a similar

test with the square directly below the top right corner (location 2); and in this

case, the agent exited out of the bottom 81% of the time and accumulated positive

reward. I tried the square to the left of the top right corner (location 3) and found

the agent still exited out of the bottom a majority of the time but accumulated

negative reward. The square directly to the left of that (location 4), accumulated

positive reward. In fact, location 3 and the corresponding square on the left side
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Figure 6.5: The distribution of the behavior policy

were the only squares with a large distribution of visits by the behavior policy whose

estimated reward from starting at that square had the same sign as the TD fixed

point V ∗ values. Under the target policy the agent would exit out of the bottom

squares more often even if starting from the squares where the behavior policy is

most heavily distributed. As a result, the agent would accumulate positive reward

at the rightmost features and negative reward at the leftmost features which is the

opposite of the TD fixed point values at lambda = 0 or lambda = 0.5 for this

off-policy experiment.

I tried calculating the TD fixed point with different behavior policies and the

same target policy to see if a more even distribution would cause the value function

to look more like the on-policy value function. It turns out that to get the signs

of the rightmost and leftmost features to switch at λ = 0.5, the behavior policy

probabilities for up and down actions would have to be nearly even. The behavior

policy would have to choose down .235% of the time or greater.

It may be that using a larger λ would reverse the signs, because a larger λ

would put more importance on longer trajectories and it takes longer on average

for the agent to reach the bottom states. I tried using λ = 0.9 with replacing

traces, because the experiment consistently diverged with accumulating traces, but

the values learned were very similar to those learned at λ = 0.5 even after 100,000

time steps.

If this were the tabular case, then GQ(λ) would converge to a value function
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Figure 6.6: Heat graph for value function V π(s) for tabular case

that is similar to the target policy’s value function, shown as a heat graph in Figure

6.6. When every state is represented discretely, the TD fixed point under the target

policy is the same regardless of what distribution it is taken from, as long as the

distribution visits all of the states. It is not even necessary to have a tabular case

as long as the function approximation can jointly discriminate which corner the

agent is closest to. In this experiment, since the function approximation obfuscates

the vertical position, the behavior policy’s state-action distribution becomes more

important, and GQ(λ) converges to a solution that could lead to negative reward.

For example, if an agent was made that chose up and down actions at the same %

that the target policy chose them, 10% and 40%, but greedily chose left and right

actions based on the value function given by GQ(λ) this agent would be lead to the

bottom left corner of this gridworld where it would accumulate negative reward.

This shows that the GQ(λ) objective may give odd results for certain episodic

off-policy tasks in which the function approximation yields poor generalization and

the behavior policy rarely visits locations that the target policy regularly visits. In

order to learn a value function the same way that an on-policy learner would, one

should use TD(λ) IS instead.

One conclusion to be drawn from this is that GQ(λ) does not supersede TD(λ)

with importance sampling. The older algorithm still has value, because it can be

used off-policy to learn about a policy with respect to the policy’s own distribution.
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Chapter 7

Conclusion

In this thesis we set out to learn more about the GQ(λ) algorithm and off-policy

learning, and both were achieved.

We employed a modified version of the GQ(λ) algorithm, which we called Greedy-

GQ(λ), to learn a real-world off-policy function approximation problem: making

a robot simultaneously learn many precise ways to interact with its world. Using

Greedy-GQ(λ), the robot learned optimal policies to maximize eight different sensor

values from simple random actions. The robot spun back and forth randomly like a

newborn cycling its legs and arms, but learned how to stop at the exact moment so

that it would come to rest several time steps later at an orientation that maximized

the sensor value, like facing a wall, the dock, or magnetic north. It learned these

near perfect policies despite all the problems inherit to the mobile robot domain like

inertia, sensor delays, and wheel slippage. Though thousands of features were used

to approximate the state space, it was possible to run this experiment in real time (at

10 hertz) because GQ(λ) is linear in the number of features. This was the first control

experiment performed with any of the gradient based TD methods. It showed that

GQ(λ) scales to real-world problems with linear function approximation. It showed

that the RMSPBE objective can be used to approximate optimal extended policies

from randomly generated data.

Despite great success with the mobile robot experiment, GQ(λ) had difficulty

with a gridworld problem featuring indistinguishable vertical locations. GQ(λ)

learned its value function much faster than TD(λ) with importance sampling, an

older off-policy TD algorithm, learned its objective. However, the value function

GQ(λ) approximated on this problem was the opposite of the value function that

an on-policy TD learner would approximate, due to a feature representation that

hid the vertical location and the fact that the agent spent most of its time in states

that the target policy would not visit.
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This was a disappointing result. Though it was on a specific gridworld problem,

which was set up to make the TD(λ) with importance sampling algorithm look good,

one could imagine a similar situation arising in other problems. If the agent spends

more time in one state represented by certain features and not as much in another

state represented by the same features then the reward received at states it spends

more time in will dominate the value for those features.

This may have negative repercussions on the usefullness of this algorithm. For

instance, trying to enhance a value function learned on-policy with off-policy up-

dates from GQ(λ) could actually weaken the value function. Learning many value

functions simultaneously might not be as useful as learning each sequentially on-

policy. Learning worked in the robot experiment, but in that experiment, care was

taken to use features that represented the possible states well and the distribution

of state-actions was relatively even as well. There are advantages to running GQ(λ)

off-policy in terms of exploration, but given these results, there may be big disad-

vantages as well. More research needs to be done to determine if these negative

repercussions are real or imagined.

That said, perhaps it is asking too much of GQ(λ) to learn perfectly in situations

with very poor function approximation and behavior distributions that are skewed

towards areas of negative reward. The fact is that this algorithm was able to learn

multiple policies with precise movements from a trajectory of only random actions.

Unlike an online ε-greedy learner, which figures things out along the way and is

then able to practice them over and over to perfect them, this algorithm was able

to piece together extended actions from random snippets of movement. Learning

policies in this way made them robust across the state space. This experiment

showed promising results for both off-policy learning in general and the GQ(λ)

algorithm, and will hopefully encourage further use of these in concert.

As for off-policy learning, we can make a few modest statements. We learned that

in a prediction setting, it may be better to learn off-policy than on-policy, by using

a behavior policy that is slightly more even distributed than the target policy. We

also showed in a small domain, that if the affects of the distribution are accounted

for, learning suffers as the disparity between the behavior and target policies grows.
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7.1 Strengths and Weaknesses of GQ(λ)

GQ(λ) was used in all of the experiments in this thesis. What follows are some

strengths and weaknesses of working with the algorithm.

GQ(λ) is a good out-of-the-box off-policy algorithm, because it has target and

behavior policy probabilities built into the algorithm (the ρ variable), and it can

be used on any off-policy problem without diverging (given the correct parameter

settings). It also reached an answer within a reasonable time frame in all of the

experiments.

GQ(λ) can be frustrating to use because there are not one, but two step sizes

to consider, plus the lambda parameter. Setting one step size is a frustrating part

of dealing with incremental methods. Having two step sizes to set only adds to

the frustration. It would be helpful if an auto-stepsize adaption was made for both

parameters. However, setting the second step size above 0 is typically unneccessary

and can be harmful to learning rates. In most cases where the problem does not

diverge, it is best to simply set the second step size to 0. A second step size of 0

performed the best or statistically tied with the best in the gridworld experiments.

The second step size was set to a very small value of .001 in the robot experiment. It

appears for some reason that the second set of weights, which is used to project the

value onto the function approximation space, slows learning. Lastly, GQ(λ) learns

value functions with respect to the behavior distribution. This can cause odd value

functions in some off-policy experiments as shown in Chapter 6.

7.2 Future Directions

There are many more experiments that should be done to fully evaluate the GQ(λ)

algorithm. For example, it would be interesting to try learning multiple policies

on-policy, while also learning every other one off-policy using GQ(λ) to see if this

helps or hinders learning. It would be interesting to robustly compare learning

policies sequentially versus learning them in parallel. It would also be good to find

a gridworld task that GQ(λ) excels at, perhaps something in a continuous setting.

The robotic experiment from Chapter 5 showed a robot learning many things

about its sensorimotor interaction with the environment through random behavior.

One future direction to take would be to explore intrinsic motivation (Singh et al.,

2005) or curiosity (Schmidhuber, 2005) or other behavior policy algorithms that
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might achieve better performance on learning many targets than a simple random

policy would. Then it might be easier to learn on the robot with a larger action set

and freedom to move anywhere.

It would also be possible to greatly expand the number of target policies be-

ing learned to give the robot greater knowledge about its environment. The next

step would be to combine these value functions somehow to make the robot even

smarter, perhaps by learning hierarchically time-extended actions such as options

(Sutton et al., 1999), or TD Networks (Rafols, 2006). From the seeds planted by

this experiment we could see a tree of general knowledge and interaction grow.
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Appendix A

The Critterbot

The Critterbot is a custom-built mobile robot (see Figure A.1), that was expressly

designed for reinforcement learning experiments. It a comma-shaped frame with a

hooked tail that facilitates object interaction. It is driven by three omni-directional

wheels (see Figure A.2. Each wheel has tiny black rubber tires on it so that it can

slide sideways but grip in the forward and backward wheel directions.

The robot has been designed to withstand the rigors of the reinforcement learning

experience. It can drive into walls repeatedly without damaging itself. To keep

the motors from overheating, the critterbot engages current limiting, which kicks

in whenever the motors are running but the wheels aren’t spinning (i.e. when

it’s pushing against a wall). The robots three sets of batteries allow it to run for

extended periods of time; more than 8 hours continuously without recharging. When

the batteries get low, there is a docking routine we run to autonomously dock itself

to the charging station. The charging station has an array of IR lights that emit a

beacon of light every half second, which the robot can detect to help find it’s way

to the dock.

A.1 Sensors

The Critterbot has a diverse set of sensors for relaying sensory information to the

learning agent.

1. Wheel Speed (3)
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Figure A.1: The Critterbot

Figure A.2: The Critterbot’s omnidirectional wheels
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(a) Light Sensor Orientations (b) IR Distance Sensor Orientations

Figure A.3: Various sensor locations and there orientations on the Critterbot

2. Motor temperature (3)

3. Motor current (3)

4. Rotational Velocity (gyroscope) (1)

5. Acceleration (x,y,z) (3)

6. Magnetic fields (x,y,z) (3)

7. Infrared Distance Sensors (10)

8. Light Sensors (4)

9. Infrared Beacon Sensors (8)

10. Temperature Sensors (8)

Most of the sensors are located around the top ring of the robot. The light

sensors detect light in each of the cardinal directions starting from the critterbots

nose (between the black pegs) counterclockwise as in Figure A.3(a). The robot

detects obstacles with its infrared distance sensors. The infrared sensors are located
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around the robot as in Figure A.3(b). It can use the Magnetic field sensors like a

compass. The temperature sensors could be used to detect humans or computers or

help detect the time of day or season.

The other sensors are proprioceptive sensors that provide information about how

its moving and how its parts are functioning. The critterbot reports this information

as raw sensor values without adjusting them to be easily consumable by humans.

For example, a given temperature range in a day might be between 14592 and

15101 which roughly translates to around 19-22 degrees celsius, but instead we

use the raw values. Another example is that the magnetometer x value is not

translated to compass headings but instead mixes information about the global

compass heading—magnetic north, with local information about strong magnetic

fields nearby.

Sensor readings are read in at 100 hertz and sent out to nearby computers wire-

lessly in what is called a StateDrop. A program called Disco handles distribut-

ing this information to various clients (including the reinforcement learning agent).

The agent sends back commands for each wheel, ControlDrops, to the Critterbot

through Disco. There is also a 500mhz cpu on the critterbot capable of running

complicated agents, so that the robot could run reinforcement learning agents as

one self-contained unit.

A.2 Timing Delays

The robot has a considerable amount of inertia in its movements and delay in its

sensor readings as well. Figure A.4 shows the latencies involved after sending a spin

command at timestep 0 over a full second. From this Figure we can see that it takes

between 3 and 4 hundredths of a second for the command to reach the critterbot due

to wireless transmission times. Then the controller used to match motor commands

limits the commands for a few timesteps. Finally about 8 timesteps later the full

motor command is reached. It takes 45 timesteps for the motor speed to reach the

command and the PID controller seems to have troubles maintaining that speed

thereafter.

These delays can cause troubles for a reinforcement learning agent, especially

one that is operating under a random policy. To illustrate this Figure A.5 shows a

random policy executed on the Critterbot at three different timescales. The critter-

bot chooses amongst three actions, stopping and spinning left and right at a speed
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Figure A.4: Average latencies from the robot when given a command to spin from rest,
and the effect on the motor command, current, speed, and a light sensor value over time
since the command was sent. (courtesy of Thomas Degris)
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of 21. Actions taken at 10ms barely cause a blip in movement. In fact the robot

sat still, because the critterbot does not have enough time to attain any speed at

this time scale before switching to something else. At 100ms, the robot starts to

move but does not reach the velocity hoped for. Only at 500ms is the full command

realized in terms of wheel velocity.

All of these various sensor inputs, delays from wireless transmission times, and

movement inertia combine to make learning on the Critterbot a rich but challenging

testbed for reinforcement learning algorithms.
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(a) 10ms actions
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(b) 100ms actions
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(c) 500ms actions

Figure A.5: Random Exploration at different time scales showing how the inertia in wheel
movement. At each time step an action is chosen randomly from [0, -21, 21] as shown by
the blue line. Actions taken at 10ms barely cause a blip in movement, and only at 500ms is
the full command realized in the wheels. (courtesy of Thomas Degris)
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