This decommissioned ERA site remains active temporarily to support our final migration steps to https://ualberta.scholaris.ca, ERA's new home. All new collections and items, including Spring 2025 theses, are at that site. For assistance, please contact erahelp@ualberta.ca.
Theses and Dissertations
This collection contains theses and dissertations of graduate students of the University of Alberta. The collection contains a very large number of theses electronically available that were granted from 1947 to 2009, 90% of theses granted from 2009-2014, and 100% of theses granted from April 2014 to the present (as long as the theses are not under temporary embargo by agreement with the Faculty of Graduate and Postdoctoral Studies). IMPORTANT NOTE: To conduct a comprehensive search of all UofA theses granted and in University of Alberta Libraries collections, search the library catalogue at www.library.ualberta.ca - you may search by Author, Title, Keyword, or search by Department.
To retrieve all theses and dissertations associated with a specific department from the library catalogue, choose 'Advanced' and keyword search "university of alberta dept of english" OR "university of alberta department of english" (for example). Past graduates who wish to have their thesis or dissertation added to this collection can contact us at erahelp@ualberta.ca.
Items in this Collection
- 2Machine learning
- 1Bayesian deep learning
- 1Clinical Frailty Scale
- 1Frailty prediction
- 1Gaussian process classification
- 1Imbalanced dataset
-
Leveraging Natural language Processing and Machine Learning Techniques to find Frailty Deficits from Clinical Dataset
DownloadSpring 2023
Introduction Frailty is a syndrome that is often associated with aging. It can be identified through specific frailty scales or a comprehensive assessment by a healthcare provider. In Alberta, it appears that there are no specific billing or diagnostic codes for frailty. So, healthcare providers...
-
Fall 2018
Gaussian processes are flexible probabilistic models for regression and classification. However, their success hinges on a well-specified kernel that can capture the structure of data. For complex data, the task of hand crafting a kernel becomes daunting. In this thesis, we propose new methods...