Theses and Dissertations

This collection contains theses and dissertations of graduate students of the University of Alberta. The collection contains a very large number of theses electronically available that were granted from 1947 to 2009, 90% of theses granted from 2009-2014, and 100% of theses granted from April 2014 to the present (as long as the theses are not under temporary embargo by agreement with the Faculty of Graduate and Postdoctoral Studies). IMPORTANT NOTE: To conduct a comprehensive search of all UofA theses granted and in University of Alberta Libraries collections, search the library catalogue at www.library.ualberta.ca - you may search by Author, Title, Keyword, or search by Department.
To retrieve all theses and dissertations associated with a specific department from the library catalogue, choose 'Advanced' and keyword search "university of alberta dept of english" OR "university of alberta department of english" (for example). Past graduates who wish to have their thesis or dissertation added to this collection can contact us at erahelp@ualberta.ca.

Items in this Collection

Skip to Search Results
  • Spring 2014

    Zarnani, Ashkan

    employed in concert with fitting appropriate probability distributions to obtain statistical models that can dynamically provide PIs depending on the forecast context. Second, a range of quantile regression methods (including kernel quantile regression) are studied that can directly model the PI boundaries

    arranged on a three-dimensional grid. However, there is always some level of error and uncertainty in the forecasts due to inaccuracies of initial conditions, the chaotic nature of weather, etc. Such uncertainty information is crucial in decision making and optimization processes involved in many

    as a function of influential features. In the third class, we focus on various time series modeling approaches including heteroscedasticity modeling methods that can provide forecasts of conditional mean and conditional variance of the target for any forecast horizon. iv All presented PI computation

1 - 1 of 1