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Abstract 

Weather forecasting is one of the most vital tasks in many applications ranging from 

severe weather hazard systems to energy production. Numerical weather prediction 

(NWP) systems are commonly used state-of-the-art atmospheric models that provide 

point forecasts as deterministic predictions arranged on a three-dimensional grid. 

However, there is always some level of error and uncertainty in the forecasts due to 

inaccuracies of initial conditions, the chaotic nature of weather, etc. Such uncertainty 

information is crucial in decision making and optimization processes involved in many 

applications. A common representation of forecast uncertainty is a Prediction Interval 

(PI) that determines a minima, maxima and confidence level for each forecast, e.g. [2°C, 

15°C]-95%.  

In this study, we investigate various methods that can model the uncertainty of NWP 

forecasts and provide PIs for the forecasts accordingly. In particular, we are interested in 

analyzing the historical performance of the NWP system as a valuable source for 

uncertainty modeling. Three different classes of methods are developed and applied for 

this problem. First, various clustering algorithms (including fuzzy c-means) are employed 

in concert with fitting appropriate probability distributions to obtain statistical models 

that can dynamically provide PIs depending on the forecast context. Second, a range of 

quantile regression methods (including kernel quantile regression) are studied that can 

directly model the PI boundaries as a function of influential features. In the third class, 

we focus on various time series modeling approaches including heteroscedasticity 

modeling methods that can provide forecasts of conditional mean and conditional 

variance of the target for any forecast horizon.  



All presented PI computation methods are empirically evaluated using a developed 

comprehensive verification framework in a set of experiments involving real-world data 

sets of NWP forecasts and observations. A key component is proposed in the evaluation 

process that would lead to a considerably more reliable judgment. Results show that PIs 

obtained by the ARIMA-GARCH model (for up to 6-hour-ahead forecasts) and Spline 

Quantile Regression (for longer leads) provide interval forecasts with satisfactory 

reliability and significantly better skill. This can lead to improvements in forecast value 

for many systems that rely on the NWP forecasts. 
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Chapter 1                                                 
Introduction 

This chapter lays a starting point into the study conducted in this thesis. 

1.1. Forecasting and Uncertainty 

Weather prediction has numerous applications in various domains. Weather forecasts 

are typically made and reported in the form of an expected value for the attribute of 

interest in a particular time and location. Numerical weather prediction (NWP) models 

are advanced computer simulation systems that provide such expected value forecasts for 

a number of attributes. They capture physical atmospheric processes to model the 

atmospheric behavior. Although the deterministic interactions of these physical 

simulations yield real numbers (with even third decimal places) of different weather 

attributes in the mid-range future, such forecasts are uncertain due to the inaccuracy of 

initial conditions, low spatial resolution, and various simplifying assumptions 

 [48] [61] [62]. Yet, such uncertainty information is not available in the immediate outputs 

of the system. 

Thus, while the NWP deterministic outputs are real numbers, they will have an 

unavoidable level of uncertainty. As an example an NWP model may predict the 

temperature to be -3.8°C for a specific location both in the next hour and the next week. 

However, the uncertainty level of these forecasts would be clearly different although the 

single value (point) predictions are equal. 

In many applications, it is desirable that forecasts be accompanied by the 

corresponding uncertainties. Information about forecast uncertainty may be as significant 

as the forecast itself. Such information can have important role in the planning and 

decision making processes that utilize the forecasts  [16] [72]. For instance, the expected 

accuracy of NWP wind speed and temperature forecasts can have crucial impact on the 
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optimized operational planning and management of power grids using Dynamic Thermal 

Rating (DTR) systems  [42]. 

The uncertainty of a forecast is typically formulated and communicated using 

prediction intervals (PIs) that are accompanied by a percentage expressing the level of 

confidence (nominal coverage rate) (e.g., T = [2°C, 14°C] conf = 95%)  [16] [29] or 

simply expressed as -3.8±6, when as typical the units and confidence levels are assumed 

invariant for all PI forecasts of a particular system and application. The confidence level 

specifies the expected probability of the actual observation to be inside the PI range. This 

form of forecast (sometimes called a central credible interval forecast or forecast 

interval) may be harder for a non-specialist to interpret and evaluate, but it provides the 

user with a more complete description of the predicted phenomenon compared to a point 

forecast. Chatfield  [17] classifies forecasts of real valued variables into point forecasts, 

interval forecasts and full density forecasts. In contrast to point forecasts, interval 

forecasts supply the likely uncertainty in the prediction and are therefore preferred. In 

spite of the clear value of PI forecasts, this format of forecast “…has been largely 

overlooked by meteorologists and would benefit from some attention…”  [39]. 

When the PIs of a forecasting system take different widths depending on the forecast 

context dynamically  [17]  [68], they are called Conditional PIs as opposed to a static 

interval forecasting system that has the same width in any occasion. Assuming a fixed 

confidence level for the output PIs of a system, a forecast case with a lower level of 

uncertainty would in effect be narrower compared to a more uncertain forecast (e.g. -3.8±3 

vs. -3.8±6). 

In a deterministic forecasting system, PIs can be achieved by theoretically 

formulating the error behavior of the model. Such approaches are mostly infeasible due to 

the high degree of complexity in input data, model elements and non-linear relations 

between the different factors  [16] [20]. In many cases such error formulations turn out to 

be too rough and misleading  [16] [66]. 

A major category of solutions for uncertainty analysis and prediction interval 

estimation, especially in meteorology, is based on ensemble prediction  [20]. In this 

method, individual predictors as members of an ensemble of forecasters, are run with 

different parameters and/or initial conditions  [72] [81]. The degree of uncertainty for a 

forecast is then associated with the extent of spread among these members. However, 

ensemble executions of an NWP model incur a very high computational cost making the 
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ensemble approach infeasible in many applications especially when new uncertainty 

analysis is required in short temporal intervals. Moreover, the ensemble approach may 

not be the best choice when the user is interested in the forecast uncertainty of a few 

points rather that a whole spatial domain. 

PIs can also be obtained by statistical modeling of forecast error using the historical 

performance of forecasts made by the system  [17] [29] [39] [40]. In this approach, the 

characteristics and dynamics of the forecast uncertainty will be essentially learned from 

the recorded accuracy of past forecasts which are available for many deterministic 

forecasting systems today. In the current study, we focus on this approach as a potentially 

efficient method that has received relatively less attention in the literature. 

The weather research and forecasting (WRF) model  [67] is the NWP system used in 

many meteorological applications. As this model is based on deterministic formulations, 

it provides predictions in the form of point forecasts values of various weather attributes 

such as temperature, wind speed, wind direction, and liquid water content  [48] [67]. 

However, past forecasts made by this system (e.g. for few years) can be recorded and 

later augmented by actual weather observations. As it consists of forecasts and 

observations made at different times and locations, this historical forecast performance 

data can provide valuable knowledge for uncertainty analysis.  

It is a well-known fact that, the extent of forecast uncertainty varies with the weather 

situation  [62]. For example, low pressure systems are known to be less predictable than 

the more stable high pressure systems. It is expected that such patterns of dependency of 

uncertainty on the forecasted attributes can be discovered from the historical performance 

of the NWP forecasts  [48] [59] [69]. 

In  [47] [48] and  [49], such dependencies are discovered by clustering the performance 

records into separate groups and characterizing the attributes of their error distribution 

individually. However, this useful analysis is not practically used and evaluated for the 

purpose of deriving PIs from a deterministic forecasting system. In another series of 

studies  [66] [68], wind energy forecast records are grouped by an expert-driven manual 

partitioning of space of variables that are believed to be associated with the forecast error 

(influential variables). Due to the low scalability of this manual records grouping method 

only two variables are used to define four classes of forecast weather situation. PIs are 

then computed using the empirical quantiles of the error distributions in each group by 

using the fuzzy membership values of a new forecast in each of the predefined groups. 
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Experimental evaluation of the resulting PIs demonstrated applicability of the historical 

forecast grouping approach as it provides skilful and relatively reliable PIs from the 

initial point forecasts. Yet some drawbacks of this method which motivate the proposed 

research are discussed in the next chapter. 

The application of intelligent post-processing techniques to analyze and model the 

uncertainty of weather forecasting systems is considered as a significant and attractive 

direction in probabilistic forecasts. Such methods can efficiently enrich many existing 

forecasting systems by providing valuable information about the uncertainty of 

predictions using the performance history widely accessible for these systems. In this 

project, we investigate the application of different learning methods to obtain effective 

forecast uncertainty models. 

1.2. Motivation and Problem 

Long records of point forecast accuracy are available in many areas specifically in 

NWP applications. The characteristics and dynamics of the forecast uncertainty can be 

essentially learned from this database of past forecasts. It is a well-known fact that, the 

extent of forecast uncertainty varies with the weather situation and is dependent on many 

factors. Such patterns of connection between forecast uncertainty and various factors can 

be potentially discovered in the performance history of the system.  

Upon obtaining an effective model that can predict the uncertainty of NWP forecasts 

we can extend these forecasts as prediction intervals that can communicate such 

uncertainty information and provide these interval forecasts in situations when ensemble 

models are unavailable or infeasible. This uncertainty information is of critical 

significance in many decision making and optimization applications such as Dynamic 

Thermal Rating and energy markets just to name a few. Hence, the problem focused in 

this research is: “Learning and evaluation of prediction interval models of uncertainty 

from the historical performance of NWP forecasts.” 

In particular, to improve the quality of the resulting PIs and also to alleviate the 

problem of manual grouping of the weather forecasts we investigate the application of 

automatic objective-based clustering algorithms to achieve optimally defined forecast 

record groups that follow the inherent structures in data. We suggest that, as these 

clusters will be based on the actual similarities between the past forecast situations they 

will lead to PIs of higher quality. Moreover, we will not be bound to the limitations of 

expert-based definition of partitions which becomes a daunting task with increased 
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dimensionality of the influential variables. In this process, we examine the application of 

crisp clustering algorithms i.e. K-means, CLARA and Hierarchical Clustering and assess 

the resulting PIs. Also Fuzzy C-means clustering is applied as a natural alternative to the 

crisp allocation of forecast records to a specific cluster only. The PI analysis follows a 

preceding step which involves the fitting of an appropriate probability distribution 

function to the actually observed error distribution in each cluster. We examine statistical 

techniques in this regard and consider the required modifications when the fuzzy 

approach is used. 

As another alternative for learning uncertainty models, the application of Quantile 

Regression algorithms will be studied for the explicit and direct learning of appropriate 

quantile functions from the historical errors of the NWP system.  In addition, time series 

modeling methods are investigated to account for the temporal qualities of the forecast 

error in the uncertainty modeling process. Inherent in all of these models, is the dynamic 

calibration of forecasts by modeling and removal of the “situation-based” forecast bias.  

The applicability and quality of the resulting PIs in practical scenarios is investigated 

in this research. The results can provide insight into the role of different aspects such as 

clustering algorithms, number of clusters, feature sets, distribution fitting algorithms and 

their appropriate choice in the uncertainty modeling process. In addition, better skill and 

quality of the output PIs compared to some baseline PI approaches and raw point 

predictions of the WRF NWP system would prove the advantages and actual value of the 

proposed models. Some major research directions are also recognized to improve the 

interval forecasts by developing more appropriate learning methods.  

1.3. Contributions 

Major contributions of this work can be summarized as follows: 

(I) We propose a new approach consisting of clustering and distribution fitting 

to learn models of forecast uncertainty from the NWP performance history. 

(II)  As a very critical aspect, we introduce a novel evaluation framework which 

considers sampling uncertainties in the assessment of prediction intervals in 

testing experiments.  

(III)  We develop and apply a hybrid clustering and kernel quantile regression 

modeling approach to the NWP prediction interval forecasting problem. 
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(IV)  We study the application of time series modeling methods that focus both on 

expected conditional mean as well as the conditional variance 

(Heteroscedasticity) of the forecast target. 

(V) The last contribution of this thesis is the broad set of experiments and 

analysis for the application and evaluation of a wide range of available and 

proposed methods for forecast uncertainty modeling using real-world large 

size data sets. 

1.4. Organization of the Thesis 

In the next chapter, basic definitions and background for the focused problem are 

provided. Also various approaches and previous related work is reviewed. Chapter 4 

describes the various proposed clustering methods of prediction interval modeling 

including fuzzy C-means. To assess the quality of prediction interval forecasting models 

various measures and scores are incorporated into a framework described in Chapter 3. 

This evaluation framework is utilized in the experimental studies conducted in Chapter 4 

and other chapters as well. In Chapter 5, various methods of quantile regression are 

studied as methods of prediction interval modeling. As a rather different approach, 

various time series modeling methods are investigated as an alternative solution for the 

problem of prediction interval modeling in Chapter 6. The experimental results and 

analysis of each of these groups of methods are provided within the corresponding 

chapter. Finally, in Chapter 7 general conclusions and future research directions are 

discussed. 
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Chapter 2                                                           
Background and Related Work 

Basic definitions and related previous works are reviewed in this chapter.  

2.1. Prediction Interval Definition 

An NWP model or any other deterministic forecasting model (e.g. neural network, 

decision tree, etc.) provides forecasts as single values for every prediction instance. For 

an NWP system these forecast values are in the form of time series g8C.h1^, i, f3 for each 

weather attribute (e.g., temperature, wind speed) and for each location on a three-

dimensional grid 1^, i, f3. For simplicity, the location coordinates are omitted in the 

following text. However, in a probabilistic forecasting model the prediction is supplied as 

a Probability Distribution Function (pdf) 46�7 as an estimation of the true pdf 4�j  where 8. 
is the target variable of interest.  In fact, it is expected that the actual observation 8. 
would be a sample following the prediction distribution 46�7. 

A point forecast (8C.) is in effect a single value from the full prediction distribution 

which is often selected to be the mean of this distribution as the expected value for 8.. 
Figure  2.1 demonstrates the distinction between a probabilistic forecast versus a 

deterministic forecast. 
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Figure  2.1. A sample probabilistic forecast reports 46�7 while the deterministic forecast provides 8C. 

only 

The relation between the forecast 8C. and its observation 8. can be described as: 

8. � 8C. k -.       ( 2.1)    

i.e., each observation can be decomposed to the predicted value 8C. for time t, and an error 

term -. for the specific forecast instance. 

Based on a probabilistic forecast, the probability density function (pdf) 46�7 and the 

cumulative distribution function (cdf) 9:�7  are explicitly available and are estimations of 

the true pdf and cdf functions of the observations 4�j  and 9�7 . Thus, an D-quantile of 8. 
can be defined as  [29] [66] [68]: 

   H�7
1$3 � 9�7Pl1D3    ( 2.2) 

which implies the main quantile statement: 

   m n8. o H�7
1$3p � D    ( 2.3) 

The prediction interval q.$  is defined as (1 r D)-confidence interval into which 

observation 8. is expected to fall with probability 1 r D. Therefore, it can be described as 

a range satisfying  

  m18. s q.$3 � m18. s tB.$ , _.$u3 � 1 r D     ( 2.4) 

where B.$  and _.$  are, respectively, the lower and upper bound of prediction interval q.$  

defined by the corresponding distribution quantiles as: 

B.$ � H�7
$vw1$ R⁄ 3 � 9�7Pl1D 2⁄ 3     ( 2.5)   
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  _.$ � H�7
$yw1lP$ R⁄ 3 �  9�7Pl11 r D 2⁄ 3        ( 2.6) 

For instance, with D � 0.05, the prediction interval has a 95% confidence level 

bounded by quantiles B.W.WY � H�7W.WRY and _.W.WY � H�7W.XzY as DQ � 0.025 and D{ � 0.975. 

The above equations are also expected to be correct for the estimations 46�7  and 9:�7  that 

are provided by a probabilistic forecaster. The corresponding quantiles for the predictive 

distributions would hence be B:.$  and _̀.$  [66] [86].   

In practice, 46�7  has to be predicted at time \́ � \ r ~ using all of the information 

available at time \́ and the probabilistic forecaster would accordingly provide q6.$ as the 

prediction interval for the target value in k temporal steps (e.g. hours) ahead. 

2.2. Forecast Uncertainty Modeling 

When a forecasting system is not functioning based on fitting probability models, 

output forecasts have no guidance about their accuracy. In this situation, the uncertainty 

dynamics of the predictions have to be analyzed in a secondary procedure  [7] [16] [47]. 

This is a condition holding for the WRF NWP forecasts which are originally 

deterministic.  

The ensemble execution approach is the common approach applied in this situation 

for weather forecasting. A number of different NWP setups (e.g. 50) with various initial 

conditions and/or parameters are run as the ensemble members for the same location and 

horizon in the future. In fact, this approach is a Monte-Carlo method to approximate the 

stochastic dynamics of the NWP system due to uncertainties in the model and initial 

conditions  [86] [72] (Figure  2.2). 

 
Figure  2.2. Anomaly correlation of 500 hPa height over Europe for individual ensemble members 

as a function of days ahead. From Molteni et al. (1996) 
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As a result, when the forecast values of the ensemble members have a wide spread 

the forecast is estimated to be more uncertain compared to situations where there is lower 

dispersion among the members. To obtain each ensemble member a single run of an 

NWP model is needed. This incurs a considerable amount of computational cost when 

running multiple members in an ensemble approach and specifically for very short-term 

forecasts (e.g. few hours) the members will not have enough time to adjust and spread 

from their initial perturbations. 

It is known that the extent of forecast uncertainty varies with the weather situation 

 [62]. For example, low pressure systems are known to be less predictable than the 

generally more stable high pressure systems. The historical performance of an NWP 

system is a valuable source of information about such patterns and can be efficiently used 

in a post-processing method to model the behavior of the system’s forecast uncertainty.  

Lange et al.  [48] [49] use a historical performance dataset of wind speed predictions 

to study the uncertainty in different meteorological situations. The authors cluster wind 

speed, wind direction, and pressure data into six separate classes of meteorological 

conditions. The characteristics of these clusters are analyzed to ascertain practical 

dissimilarities in their forecast uncertainties  [47]. The results  [48] [49] confirm that 

uncertainty in the forecasted wind speed depends on the forecast weather situation. 

However, the results of this analysis are not practically considered as a method of 

obtaining conditional PIs for wind speed forecasts. 

A practical application of weather classification to obtain PIs is proposed in Pinson et 

al.  [68] [69] where two predicted variables, wind speed and wind power, are used to 

categorize the situations into four manually defined classes. For each class, or situation, 

the error distribution of its members from the past forecasts would be different. The error 

distribution of a new forecast case is then expected to follow the distribution of past 

forecasts with the most similar situations. The distribution of error for a new forecast is 

thus constructed by bootstrap sampling. The fraction of samples drawn from each class is 

determined based on the fuzzy membership of the new case in that class. The prediction 

interval of a new case is then computed based on this reconstructed estimation of error 

distribution using the empirical statistical quantiles. Therefore, the PIs are practically 

computed by the categorization of prediction conditions. These resulting intervals are 

then analyzed and evaluated in a set of experiments. The main shortcoming of this 

approach is that the classification of the forecast conditions is performed manually by 

simply discretizing the variables into equal bins (two bins for wind speed and three bins 
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for wind power). Such simple manual grouping of the prediction outputs does not provide 

optimal grouping of data points that have high similarity to each other within a group. 

Hence, the quality of the computed PI is not optimal either. This issue will be even more 

significant when a larger number of variables/features may have influence on forecast 

uncertainty. Please note that more detailed background study is provided in each of the 

individual following chapters as various chapters focus on different areas of uncertainty 

modeling. 

In  Chapter 4, we propose more advanced methods both to provide optimal clustering 

of the historical performance data set and to learn explicit quantile functions. Yet, in the 

current section, the general process of modeling uncertainty from accuracy records is 

elaborated.  

The systematic characterization of forecast error can simply lead us to the modeling 

of forecast uncertainty for the target variable. This can be achieved by considering -. in 

Equation ( 2.1) as an instance of the random variable e and associating 9.; (or its 

estimation 9:.;) as its cumulative distribution function, i.e., 

B:.$ � 8C. k HC;,.1$ R⁄ 3 ,   HC;,.1$ R⁄ 3 � 9:.;Pl1D 2⁄ 3  ( 2.7) 

_̀.$ � 8C. k HC;,.1lP$ R⁄ 3,   HC;,.1lP$ R⁄ 3 � 9:.;Pl11 r D 2⁄ 3 ( 2.8) 

where HC;,.1$3 is the estimated D quantile of “error” based on the estimated forecast error 

distribution 46.; . The distribution of 8., and hence the desired quantiles, are not explicitly 

known. Therefore, to find the q6.$ prediction interval of 8., the quantiles of - (i.e., the error 

associated with the forecast) are estimated and added to the predicted value 8C. to obtain 

the lower and upper bounds for the original variable  [68]. Thus, by finding quantiles over 

the forecast error distribution, one can find the quantiles over the forecast value that is 

expected to enclose the target observation.  

2.3. Forecast Evaluation 

The evaluation of PI forecasts and generally probabilistic forecasts is a more complex 

process compared to point forecasts  [57]. To empirically put our proposed approaches 

into test, we apply the developed PI models into two real-world data sets. Detailed 

background and discussions on PI forecast evaluation is provided in  Chapter 3. In that 

chapter we also develop a comprehensive evaluation framework that covers the major 

measures from the PI evaluation literature and also brings some new insight to the PI 
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verification process leading to more reliable judgments. This framework is extensively 

used in the experimental study of different models in the following chapters. 
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Chapter 3                                                                
An Evaluation Framework for Prediction 
Interval Forecasts 

Various measures for the assessment of prediction interval models are discussed in 

this chapter. Also arguments on the evaluation of the skill of interval forecasts are 

provided. An uncertainty bound is proposed to incorporate sampling uncertainty in the 

measurement of forecast skill score. 

3.1. Basic Verification Measures 

Generally, prediction intervals are better understood and easier to use compared to a 

full probabilistic distribution function (PDF) of a predicted variable  [17] [86]. However, 

the probabilistic nature of interval forecasts complicates their verification compared to 

deterministic forecasts. The verification of PI forecasts can determine the quality of a 

forecaster and lead us to proper selection or modification of a forecasting system. 

Atmospheric science has been the field with most developments in forecast verification 

processes among others  [86]. However, verification analysis of probabilistic and PI 

forecasts in particular are still under ongoing development  [9] [12] [86]. The Brier score is 

a classical and still widely used verification score for probabilistic forecasts  [8]. 

However, this score is appropriate for dichotomous variables  [39] [65]. An extended 

version of the Brier score for multi-category probabilistic forecasts is the Ranked 

Probability Score (RPS)  [56] which is widely in use. Yet, the inappropriateness of this 

score is a known fact as it does not penalize vague forecasts i.e. wide intervals  [86]. 

Another version of this score developed for probabilistic forecasts of continues variables 

named Continuous Ranked Probability Score (CRPS)  [33] can only provide a measure for 

the match between the forecast full PDF and that of the observation  [86]. Hence, these 
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measures are not appropriate for PI evaluation either since they are not sensible to 

interval width or do not match the double quantile format of PI forecasts. 

Other analytical tools such as rank histograms  [2] are commonly used for the 

examination of ensemble forecasts but do not provide a quantitative measure for 

objective verification of PIs  [65]. Recently, information theory approaches have also 

been studied as a verification tool for probabilistic forecasts. Although the basic idea of 

using the logarithm of probabilities was proposed in  [27], an information theory 

verification measure named “ignorance score” was first developed in  [73]. This score 

measures the joint entropy of the forecasted probabilistic distribution with the observed 

distribution. More recently, a new alternative information theoretic measure is proposed 

in  [65]. This measure, called the “information gain”, alleviates the tendency of the 

previous ignorance and CRPS scores to infinity. Although all of these measures can 

provide proper scores  [9] [26] for continuous variable probabilistic predictions they are 

not widely used  [12]. One reason for this can be the low intuitiveness and low power of 

these scores for communicating the forecast skill to the decision makers. It should also be 

mentioned that these scores can be applied for the verification scenarios where both the 

predicted and target probabilities are provided in the form of a full probability 

distribution. Hence, they cannot be directly employed for the evaluation of prediction 

interval forecasting systems. Instead, efforts have been made to quantify the skill of 

prediction interval forecasts using more relevant measures. Specific measures for 

evaluation of “reliability”, “sharpness” and “resolution” aspects of PI forecasters have 

been proposed in  [7] [67] [68]. These measures reflect individual quality aspects of PI 

forecasters and do not provide a single score for a concluding verification.  

The major expectancy from a set of PI forecasts is that their empirical coverage of the 

observations in a test setting is as close as possible to the required confidence level. This 

primary property of a PI forecaster M is called “reliability” noted as L-A#$ .  [68]: 

a*b � � 1         �4 B:�C7$ � 8. � _̀�C7$
0                      V\T-Ki�M-,�      ( 3.1) 

 L-A#$ � a"#b� r 11 r D3     iT-K-    a"#b� � l
� ∑ a*b��*wl     ( 3.2) 

where T is the number of PIs in the test data set used for the evaluation of PI forecasts 

and a*b is an indicator of hit if the observation is within the PI boundaries, otherwise it 

will express a miss by being set to zero. Hence, L-A#$  simply accounts for the difference 
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between average hit of the forecasts over the whole test cases and the required nominal 

coverage defined for the PI. For an ideal case we should have L-A#$ � 0 when a"#b� � 1 r
D. Note that we assume, without loss of generality, that all of the forecasts in the tests are 

provided with a constant confidence level.  

A forecasting system that provides PIs with less vagueness expressed by the width of 

a PI is clearly preferred. This is due to the fact that lower uncertainty in the PI forecasts 

would lead to a higher value for the exploitation of the predictions. This leads to the 

second major aspect of PI forecast quality called “sharpness”  [59] [68]: 

���\T*$ � _̀�C�$ r B:�C�$     ( 3.3) 

 STU#$ � ���\T���������#$ � l
� ∑ ���\T*$�*wl     ( 3.4) 

where ���\T*$ is the width of the i th prediction interval. Note that the sharpness measure 

has a negative orientation as we prefer forecasts with lower values of average PI width.  

Another important quality aspect of a PI computation method is its ability to provide 

intervals of variable width, depending on the forecast situation. A method with high 

“resolution” L-M�$ is capable of distinguishing low uncertainty forecasts versus high 

uncertainty ones and assign wider intervals to forecasts with high uncertainty and 

narrower intervals to forecasts with low uncertainty. The standard deviation of PI widths 

is a natural choice to measure the method’s resolution  [66]: 

 L-M#$ � � l
�Pl ∑ �_̀&$ r B:&$ r STU#$ �R�&wl ���

     ( 3.5) 

It should be noted that the resolution measure is not dependent on the observations. 

Thus, it can be hedged and is not a significant measure individually. However, when the 

two first major measures of reliability and sharpness are equal for two competing 

methods, the one with higher resolution may be preferred.  

3.2. Forecast Skill Measure 

Having a single scalar summary measure of forecast quality is always attractive and 

useful for objective comparison of various methods, as any such measure would simplify 

the evaluation of the complete performance profile of a forecaster. The most common 

prediction interval skill score is the Winkler’s score proposed in  [87] and is widely used 

as the concluding objective evaluation measure for PI forecasting methods including in 

 [6] [59] and  [69]. A comprehensive study done by Gneiting and Raftery  [26] proved that 

this score is “strictly proper” and would hence give the maximum score to a forecast that 
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is actually the true belief of the forecaster and cannot be “hedged”. This would mean that 

only a PI that follows the true distribution of the target can obtain the maximum score. 

Using the notations and assumptions defined here, this skill score can be expressed 

as: 

 a*� � �1                �4 8. � H0              V\T-Ki�M-�      ( 3.6) 

 SS)VK-# � ∑ ��a*
�:���� r 1D 2⁄ 3� �8* r B:�C�$ � k �a*

�̀���� r 11 r D 23⁄ � �8* r _̀�C�$ ���*wl    ( 3.7) 

 

                (a)                              (b)                                                (c) 

Figure  3.1. Skill score over different observations achieved by a PI of [-5, +5]-conf = 95% for (a) 
the lower quantile, (b) the upper quantile, (c) the whole PI 

Note that the minus of the same objective is minimized as a loss function (error) in 

the applications of quantile regression for prediction interval analysis, using only one of 

the terms in the brackets as each quantile is modeled separately  [6] [59]. To better 

understand the behavior of this score we algebraically simplify it by considering cases of 

hits and misses. B:*  and _̀* are used instead of B:�C�$  and _̀�C�$  for simplicity. When a “hit” 

happens for forecast PI of case i, we have a*�: � 0 and  a*�̀ � 1.  By substituting these 

values in (13) and multiplying the terms we have: 
 SS)VK-* 1 *.3 � r $

R 8* k $
R B:* k $

R 8* r $
R _̀* � r $

R �_̀* r B:*� � r $
R ���\T*$   ( 3.8) 

In the other case, when an observation is “missed”, it is either on the right or the left 

side of the area outside the PI boundaries. In this case, the values of (a*�:  and a*�̀) will be 

equal to (0,0) or (1,1), respectively. When the missed observation is on the right side of 

the interval it would have a positive distance of !*  from the upper boundary _̀*, the score 

of this particular case can be calculated by using Equation ( 3.7): 
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SS)VK-* 1¡*¢ .P£*==3 � �0 r 1D 2⁄ 3��_̀* k !* r B:*� k 10 r 11 r D 23⁄ 3�_̀* k !* r _̀*� 

� r $
R _̀* r $

R !* k k $
R B:* r !* k $

R !* � r $
R �_̀* r B:*� r !* � r $

R ���\T*$ r !*   ( 3.9) 

For a miss happening on the left side of PI, an equal score will also be gained as 

calculated by Equation ( 3.9). As 11 r a"#b�3 will be the overall miss rate, the total score 

gained by a PI forecasting method M over the whole T cases in the test set will be: 

 SS)VK-# � [ nr $
R ���\T���������#$ r 11 r a"#b�3!"#$ p � r[ n$

R ���\T���������#$ k %"#$ p   ( 3.10) 

where !"#$  is the average distance of an observation from the PI boundaries among the 

missed cases and %"#$  is the average of this distance among all of the test cases owing to 

the fact that %"*$ is equal to zero for hit cases and !* for miss cases. 

 Figure  3.1 depicts the value of this score for different observation values for a 

sample PI of [-5, +5]-conf=95%. As can be seen the value of the score will be equal for 

any case where the observation is inside the PI. The score linearly decreases as the 

observation gets far from the PI boundaries. By multiplying a 2 D⁄  term to this score, 

which does not change the actual comparison among different methods, the equal 

verification measures of Winkler’s score and Gneiting’s score can be easily retrieved. 

Hence, it is shown here that all of these scores are essentially equivalent and simply use a 

weighted sum of the two major aspects of PI quality, namely sharpness and reliability, for 

verification. However, the reliability aspect of the PI forecaster is here measured by the 

distance of observations to boundaries (%"#$ ). 

It is shown in the next subsection that this score must be accompanied by an 

uncertainty analysis on its own evaluation as with limited number of test samples (which 

naturally happen in real-world scenarios) it can give misleading results. 

3.3. Uncertainty of Skill Score Measurements 

The described PI skill score can provide a measure for evaluation of a group of PI 

forecasters. This way, the best forecaster can be chosen for the application at hand among 

many potential choices.  

Due to the limited availability of test samples, such skill score measurements are 

subject to sampling variations. Therefore, it is crucial to assess whether the observed skill 

is due to chance, or if it is a true attribute of the forecasting system. Joliliffe and 

Stephenson  [39] point out: “It has been unusual in weather forecast verification studies 

for any attempt to be made to assess this sampling uncertainty, although without some 
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such attempt it is not possible to be sure those apparent differences in skill are real and 

not just due to random fluctuations”. In this work, by decomposition and statistical 

analysis of the skill score measurements, we consider such variations in the evaluations 

and hence offering a much more reliable and fair comparison for the user. 

A close look at the empirical evaluation study conducted in this work reveals this 

issue as the mere calculation of the SScore measure using a test data set results in 

misleading evaluations. Since the number of real-world test cases is always limited, the 

“measurement uncertainty” of SScore using the available test data set must also be 

accounted for. This issue is of a greater importance when there are fewer test cases 

available to measure SScore in each cluster as the number of clusters increases. 

To analyze the uncertainty of the skill score, we take a closer look at its components. 

The terms that are dependent on the method under verification are ���\T���������¤¥  and %"#$ . 

These terms are essentially a weighted sum of their measured values in the K different 

clusters: 

  SS)VK-¦ # � r[ n$
R ���\T���������#$ k %"#$ p � r ∑ §[&§ n$

R ���\T���������#$,& k %"#$,&p&̈wl    ( 3.11) 

where [& is the set of test cases that are assigned to cluster j. The measured SScore is 

denoted as SS)VK-¦ # , since it is a sample statistic from a single sample set only.  

���\T���������#$,& is calculated as the average of PI widths among these test cases in cluster j. As 

the PIs in a single cluster are obtained based on the same fitted error distribution, it 

follows that 

���\T*$,& � ���\T���������#$,&   ©� s [&       1 3.12) 
Hence, the width term of the skill score is constant in each cluster, and there is no 

uncertainty when this statistic is measured using a sample data set in model test 

evaluations. However, the %"#$,& term is the mean statistic of the random variable «%*$,&| � s
[&¬ which is measured using a set of sample values with [& members, and thus it is subject 

to sampling variations. 

With limited number of test cases and high nominal coverage rates of PIs, it may 

happen that in cluster j=1 only a few test cases (e.g. |[l| � 400) are assigned to a cluster 

and a fewer number of them (e.g. 30) would lead to non-zero values of %*$,l. The 

measured value of %"#$,l for this cluster may be equal to %"#$,R of another cluster j=2  which 

has significantly more test cases (e.g. |[R| � 6000). Although these two statistics are 
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equal, the uncertainty of %"#$,R is much smaller than the uncertainty of %"#$,l since for 

cluster two, the measure has been evaluated using a much larger sample set. 

To analyze the uncertainty of SS)VK-¦ ¤, %"#$,& must be considered not as a single 

estimate over the test cases, but as a one-sided confidence interval that provides an upper 

bound over this measure with a specific confidence level. After using this upper limit for 

all clusters, a lower limit on the SS)VK-# with the desired confidence level can be 

determined: 

  m �%"#$,& o %"#$,&®� � �     1 3.13) 
  m1SS)VK-# ¯ SS)VK- #® 3 � �    ( 3.14) 

where � is the desired confidence level over the measure expressed as a percentage. As 

an example for � � 0.95, SS)VK-#W.XY is the lower boundary of which the true skill score 

of method M  is expected to be at least equal to with a 95% confidence.  

To find the confidence interval over %"#$,&, its sampling distribution (providing the 

probability distribution that describes the batch-to-batch variations of this statistic) has to 

be considered. Bootstrap resampling is a method for building a collection of artificial data 

batches with the same size as the original sample set with replacement  [88].  

An example of a sampling distribution of %"#$,z and its confidence bound for a sample 

cluster of test cases for a quantile regression model using spline-basis functions (this 

method is described in  Chapter 5) is shown in Figure  3.2.  
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Figure  3.2. Bootstrap distribution of average delta for a sample cluster - #test cases=588, 
#misses=26 

The computed statistic over these batches effectively provides an estimation of the 

sampling distribution  [86]. For the purpose of this study, as many as 2000 bootstrap 

samples were constructed for each cluster and the %"#$,'(  measure was calculated for each 

sample set. The distributions defined over these measurements are then used to compute 

the desired quantile based on the confidence level �. Intuitively, there should be less 

uncertainty associated with %"#$,'(  when increasing number of test cases in cluster j are used 

in the bootstrapping process. Using the upper limit %"#$,&®
 in Equation ( 3.11) leads to the 

lower limit of the final skill score in SS)VK- #® . This measure, which considers the test 

sample uncertainties, is preferred for fair verification of PI forecasters. 

3.4. Other Related Measures and Statistical Tests 

From the statistical point of view, the modeled error distribution can be evaluated in 

comparison to the observed error. Goodness-of-fit tests can assess the hypothesis that the 

observed data has been drawn from a reference probability distribution. In the PI 

computations problem, the reference distribution is the fitted error distribution in the 

training model and the observed forecast errors can be compared to this hypothesized 

distribution.  

Chi-Square Test. The Chi-Square test is a common goodness-of-fit test that 

compares the frequencies of points in discrete classes of the probability distribution and 

is hence more appropriate for discrete random variables. When applied to a continuous 

variable, the data has to be assigned into discrete bins. The test statistic compares the 

expected and observed frequencies in each of the classes  [86]: 

  °R � ∑ 1#²³=;¡´;µP#¶·¸;¹.;µ3�
#¶·¸;¹.;µ³*c=     ( 3.15) 

With a good fit, the actual number of observed samples in a bin is very close to the 

expected number of samples based on the fitted probability distribution. The test statistic 

would have a sampling distribution of the °R distribution with degrees of freedom equal 

to (#bins-#fit parameters-1). This is obtained under the null hypothesis that the observed 

data were drawn from the originally fitted distribution  [86]. 
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Kolmogorov-Smirnov (K-S) Test. Unlike the chi-squared test which compares the 

pdfs of the fit and observation, the K-S Test focuses on the cdfs of these data samples. 

This test is more proper for continuous variables. The test statistic would be: 

  + � Gº»·|9¼³=1»3 r 91»3|   1 3.16) 
where  9¼³=1»3 is the empirical cumulative density function of the observations (refer to 

Equation 1 4.8)) and 91»3 is the theoretical reference cdf of choice. Hence D is essentially 

the largest difference between the empirical and fitted cdfs over any possible value of x. 

In order to assess the rejection of the null hypothesis the critical values of the D statistic 

are obtained from a table usually constructed by statistical simulations. 

It should be noted that the goodness-of-fit tests do not provide quantitative 

verification scores for forecasts in the form of prediction intervals and can only be 

applied to full probabilistic distribution cases. Yet, they are a powerful tool to statistically 

analyze the agreement between the observational and estimated full distributions that are 

modeled within the PI computation process. Such tests have been adapted and used for 

the evaluation of conditional coverage in PI forecasts  [18]. However, Pinson et al.  [69] 

argue that due to the temporal and persistent nature of weather the independence 

assumption of PIs would be loose and hence the significance levels by statistical tests can 

be misleading. 

In addition to the various measures discussed above, there have been efforts made to 

develop probabilistic forecast evaluation scores that are more comprehensible and 

plausible for a non-expert audience such as  [28]. 
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Chapter 4                                                   
Clustering Approaches to Weather Forecast 
Uncertainty Modeling 

This chapter proposes the application of clustering methods in the context of NWP 

forecast uncertainty modeling. Various clustering methods including Fuzzy C-means and 

density estimation methods work in combination to learn prediction interval models from 

performance history. Experiments practically apply the proposed models in a realistic set-

up and measure the quality and accuracy of the resulting interval forecasts. 

4.1. Introduction 

With the notion of the dependence of forecast error on the forecast situation  [62] in 

mind, a fine grouping of situations can lead to clusters of forecast cases with a similar 

error behavior. Simultaneously, the error behavior in a cluster would be distinct from 

cases in other clusters. Such groupings can be found by clustering all available cases 

using the relative influential variables as the features. Subsequently, the prediction 

interval analysis described in the previous section can be applied to each cluster 

separately. This way, different PIs can be found for the different discovered forecast 

situations. In other words, rather than considering all cases as equal, the error distribution 

within each cluster determines the prediction interval of that cluster only. Characteristics 

of the error distribution for each cluster are found using the past performance of the 

forecasting system in that cluster (which represents a weather situation) only. 

The steps of this PI computation process and their generic input and output are 

depicted in Figure  4.1. In the first step, the forecast history undergoes the clustering 

process and the result will be clusters of forecast records. Note that these clusters are 

determined by the influential features only and the forecast errors are not used in this 

phase. In the next step, the recorded errors of forecasts in each cluster are modeled by 
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density fitting algorithms which would provide the density models. Finally, these density 

models are utilized to calculate the desired prediction intervals that can be used in any 

application and would also undergo the evaluation and skill analysis process. 

 
Figure  4.1. The process of uncertainty modeling for PI computation and evaluation 

In this study, we apply four different clustering algorithms for the grouping of the 

NWP past forecasts. Each of these algorithms is one of the most widespread algorithms 

from a distinct class of clustering algorithms  [89] i.e. K-means from median-based 

algorithms, CLARA from medoid-based algorithms and Agglomerative Hierarchical 

clustering from hierarchical algorithms. The fourth algorithm is the Fuzzy C-means 

clustering which is described in section  4.4. 

4.2. Fitting Distributions to Forecast Error 

Gaussian Fit. The error of a point forecast at time t (-.) can be regarded as a sample 

of the error random variable e. This random variable e would have its own probability 

distribution which can be characterized by its bias (E;) and standard deviation (N;). Let 

g-.h be a series of random samples of the error variable e. Then, the values of sample bias 

and sample standard deviation can be calculated by the following sample statistics: 

Ê; � l
¾ ∑ -.¾.wl     ( 4.1) 

NC; � � l
¾Pl ∑ 1-. r Ê;3R¾.wl ���      ( 4.2) 

where ¿ is the size of the sample series  [17]. A simple yet popular method to find the 

boundaries of q6.$ is based on the assumption that the error (46.;) follows a Gaussian 

distribution. Many studies do confirm that the forecast error of many weather attributes 
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follow a Gaussian distribution  [46] [47] [48]. For a Normal distribution ¿1E; , N;R3 with 

known parameters one can calculate the PI quantiles  [40] in Equations  ( 2.7) and  ( 2.8): 

_̀.$ � 8C. k E; r f$ R⁄ . N;    ( 4.3) 

B:.$ � 8C. k E; k flP$ R⁄ . N;    ( 4.4) 

where f$ R⁄  and flP$ R⁄  are the quantiles with 1D 23⁄  and 11 r D 2⁄ 3 of the standard 

normal distribution À10,13, respectively. In the case of a PI of 95% (D � 0.05), f$ R⁄  

and flP$ R⁄  are equal to 1.96  [29] [40]. This method is parametric, as it assumes a normal 

distribution for the error. Figure  2.1 shows the error distribution of temperature forecasts 

in various locations in the province of British Columbia (BC), Canada for Summer 2008. 

The matching normal distribution and the quantiles for the 95% intervals (D � 0.05) are 

also shown.  

 
Figure  4.2. Temperature error distribution and corresponding normal distribution based on E;and N; of the entire available dataset. 

Depending on the prediction method in use, different ways to estimate the error 

distribution parameters in ( 4.3) and ( 4.4) have been proposed  [26]. Some of them have 

been shown to be unjustified (e.g.,  [43]), and many others are not applicable here as our 

prediction model is NWP and not a time series learning model  [17]. An alternative is to 

estimate the error distribution and its quantiles using a dataset of past performance of the 

forecast model. Prediction interval calculation methods of this type use the observed 

distribution of errors in the historical records of the system. They are known to provide 

reasonably good results when theoretical formulas cannot be applied  [17]. To obtain PIs 
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for the NWP forecasts using this method, a dataset of past predictions and associated 

observations must first be constructed. Subsequently, the prediction interval can be 

determined by first fitting a Gaussian distribution to the data (i.e. g-.h) and then using 

Equations ( 4.3) and ( 4.4) to find the quantiles. By using the simple method of moments 

for the fitting step one can apply Equations ( 4.1) and ( 4.2) to calculate Ê; and NC; using 

sample statistics of the empirical dataset. Hence, as these parameters are estimates, the 

boundaries of the prediction interval are determined using the following equations 

 [40] [88]: 

B:.$ � 8C. k Ê; r \1D 2⁄ , ¿ r 13. NC; . 1l
¾ k 13l RÁ     ( 4.5)  

_̀.$ � 8C. k Ê; k \111 r D 23⁄ , ¿ r 13. NC; . 1l
¾ k 13l RÁ     ( 4.6) 

where \1D, ]3 is the quantile of the Student’s t-distribution for confidence level D and ] 

degrees of freedom. The quantiles of t-distribution and the multiplier term are used since 

the moments of the real distribution are unknown. Rather, they are estimated based on 

samples from the historical performance dataset  [40]. 

 
Weibull Fit.  Investigations into actual forecasts accuracies show that in many cases 

the forecast error distribution does not fully follow a symmetrical normal distribution 

shape. This is often viewed in target attributes that follow non-Gaussian distributions 

such as wind speed  [66]. To achieve a better fit and consequently better PIs for such 

cases with skewness, Weibull distribution can be a potentially proper choice. Weibull 

distribution has two parameters k and λ as follows: 

41»; @, ~3 � n5
Ãp n·

Ãp5Pl exp År n·
Ãp5Æ    ( 4.7) 

where ~ ¯ 0 is the shape parameter and @ ¯ 0 is the scale parameter of the distribution 

and the value of function is zero for » o 0. To find the fitting distribution parameters for 

a set of x values, the method of Maximum Likelihood Estimation (MLE) is used  [86]. 

Using MLE the distribution parameters are tuned into values that the expectation of 

drawing the sample data from the fitted distribution would be maximized. 
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Figure  4.3. Wind speed (m/s) error distribution and a its Weibull distribution fit (curve) for a 

sample subset of NWP forecasts 

The cdf of this fitted Weibull distribution (9:.;) can then be used to compute the error 

quantiles of the PI when used in Equations  ( 2.7) and  ( 2.8). It must be noted here that the 

error values in the fitting process have to be shifted to right so that the minimum value 

for the random variable would be zero. This can be done by adding the magnitude of the 

worst possible error for the target to all entries of the error set. Figure  4.3 depicts an 

example of fitting Weibull over a set of wind speed errors.  

 
Empirical Distribution.  Another alternative for the analysis of error distribution is 

to not assume any predefined type of distribution over the samples. The error distribution 

and the respective PIs in such cases can be derived from the actual distribution of the 

sample data at hand. This means that the empirical cumulative distribution function of 

sample errors is used as a direct estimate of the true population distribution  [66] [68]. This 

empirical cdf is defined as: 

9:.;1H3 � l
¾ #g-. s ,|-. o Hh    1 4.8) 

where E is the set of errors in the available sample. By this approach the term 9:.; in 

Equations   ( 2.7) and  ( 2.8) will be computed differently ultimately leading to different 

PIs. Because there has not been any assumption made on the forecast error distribution, 

such approach is called a non-parametric method of distribution estimation and 

probabilistic forecasting. 
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Kernel Density Smoothing. There are some potential drawbacks in the application 

of the empirical cdf method for estimation of forecast error distribution. First, the 

sampling characteristics of the data can have a dramatic impact on the cdf function. 

Second and more significantly, the domain of the pdf function will be limited to the 

minimum and maximum values existing in the sample which is not ideal for the PI 

analysis that is enormously sensitive to the tails. An alternative to the empirical pdf 

function is the kernel density smoothing method which can both provide a smoother 

function and a better estimate of the tails. Instead of considering a 0 or 1 binary value in 

the empirical pdf construction, kernel density smoothing is achieved by stacking kernel 

blocks that are centered at the data values. A smoothing kernel function is a non-negative 

function that has a unit area and hence is a proper probability density function on its own. 

In Figure  4.4 four different types of smoothing kernels are shown. The support of these 

function are [-1,1] except for the Gaussian kernel which has a support of tr∞, k∞u. 

 
Figure  4.4. Four common smoothing kernels  [86] 

Each sample would provide a stacking element equal to the smoothing kernel 

centered at the sample data value and the final pdf function would be constructed by: 

46.;1»3 � l
¾  ∑ ? n·P·�  p¾*wl    1 4.9) 

where h is the smoothing parameter which balances the smoothing intensity. A good 

choice for this parameter is critical and when using the Gaussian kernel a reasonable 

choice would be  [75]: 

T � £*c�W.X=,�ÈbÉÊË
¾� Ì⁄    1 4.10) 

where s is the sample standard deviation and IQR is the Inter-Quantile Range of the 

sample data. 
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Figure  4.5. Empirical pdf and the kernel smoothing density of a sample wind speed error set 

 

 
Figure  4.6. Empirical cdf and the kernel smoothing cdf of the sample wind speed error set in 

Figure  4.5 

In Figure  4.5 the empirical distribution of a sample subset of wind speed errors are 

shown. The curve shows the kernel smoothing density of this sample using Gaussian 

kernels. Also the cumulative distribution function of the empirical distribution and the 

kernel smoothing distribution for this sample are shown in Figure  4.6. As can be seen the 

kernel version desirably has a smoother shape and declines gradually on the edges. 

It should be noted that almost always the assumption of “perfect observation” cannot 

be made. If the observational error is not comparable with the forecast error it can be 

ignored. Otherwise, a possible solution would be to add a noise (with the variance of 
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observation error) to the forecasts  [2]. In all of the above error fitting procedures, the 

weather situation and other features (such as time and location) do not play any role. 

Thus, these PI computation methods cannot yield different intervals in the various 

weather situations. When applied to the NWP model outputs, each of these methods 

would estimate a prediction interval for the given attribute (e.g., temperature) with the 

same width no matter where and when the forecast is made and what the weather 

situation is. 

To change the above parametric and non-parametric error fitting and PI computation 

methods into a dynamic method and to make them conditional with respect to the weather 

situation, we propose the use of clustering so that the previous analysis can be applied to 

different well-distinguishable forecast situations. Later on, other learning methods are 

studied to provide dynamic PIs from error records. 

4.3. Prediction Interval Computation Using Crisp Clustering 

In crisp clustering algorithms every data point is strictly assigned to a single cluster 

and hence the partition matrix of the clustering has binary elements. In this section we 

elaborate on the crisp clustering algorithms and their application in prediction interval 

modeling. 

 

K-means. This algorithm is a simple yet powerful clustering algorithm that has been 

used in many applications  [84] including clustering of atmospheric situations and patterns 

 [35]. To find k clusters in a dataset + � gxl, xR, … , x¾h where x& � «»&l , »&R , … , »&µ¬, N is 

the total number of available forecast cases for training and d is the total number of 

influential variables. The K-means clustering algorithm iteratively updates the center 

points of the K clusters Î � g)l, )R, … , )¨h and reassigns every data point to the nearest 

cluster center. This heuristic iterative process locally minimizes the total distance of 

points to their respective cluster’s center  [41]: 

  Ï � argminÔ ∑ ∑ Õx& r )*ÕRÖ×sØ�*̈wl    ( 4.11) 

where +* is the set of points in D that are assigned to cluster i as )* is their nearest cluster 

center in C. Here, »&l..µ are the d influential features for forecast case j. We would also 

have the forecast error of case j associated with the predictand y as -&� but not used in the 

clustering. 
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Figure  4.7. 2D PCA visualization of the four identified clusters (cumulative proportion of variance 

= 0.40). 

 
Figure  4.8. Error distributions and their moments for the BC dataset (solid black) and four 

identified clusters of forecasts. 

To find clusters of NWP forecasts, each prediction can be considered a point in D. 

For each point x*, up to 25 influential variables (� = 25) are taken into account such as: 
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forecast temperature, wind speed and wind direction (at different geo-potential heights), 

surface pressure, mixing ratio, grid precipitation, hour of the day of the forecast, and the 

latitude, longitude, and elevation of the forecast location. 

The main thesis of the proposed approach is that clustering of past forecasts can 

efficiently capture the characteristics of the forecast conditions and categorize them into 

distinct classes. The forecast error behavior (represented by its distribution) is anticipated 

to follow the same pattern within a category, but the pattern will differ among categories. 

Consequently, after a set of cluster centers g)l, )R, … , )¨h is determined from past 

forecasts by applying a clustering algorithm, each cluster will have its own set of forecast 

cases +* and also its own set of errors for target y in ,*� such that: 

,*� � �-&�|»& s +* , Ù � 1. . ]*Ë , � � 1. . ?   ( 4.12) 

where ]* is the number of sample points in cluster i. The error distribution of a desired 

variable (e.g., temperature or t2) in each cluster i could be determined by considering the 

past forecasts errors of members in that cluster only. This set is defined as the set ,*.R. 

Now that the error samples are also grouped based on their forecast situation and the 

influential variables, any of the distribution fitting approaches described in the previous 

subsection can be applied on the sets ,*.R, � � 1. . ?. 

For instance, based on the Gaussian fitting method each cluster � of forecast errors 

,*ÚR will have its own estimated probability distribution 46*,.;  and sample statistics Ê;*  

and NC;*. A sample clustering for K=4 on the BC database is projected into the first two 

significant components from Principal Component Analysis (PCA) in Figure  4.7. The 

arrows show the correlations of various attributes used in the clustering process with 

these components. The Gaussian probability density functions which are fitted to the set 

of errors from these clusters are plotted along with the original single set of all past 

forecast errors in Figure  4.8. 

After the training phase is finished and a new forecast xc;d  is made, the cluster to 

which it belongs can be identified by the nearest cluster center: 

  xc;d s +* , where  � � ºKÛG�]&Õxc;d r )&ÕR
   ( 4.13) 

and boundaries of the corresponding prediction interval can be estimated: 

B:c;d$ � 8Cc;d k Ê;* r \�D 2⁄ , ]* r 1� · NC;* · 1 l
c� k 13l RÁ    ( 4.14) 

  _̀c;d$ � 8Cc;d k Ê;* k \�11 r D 23⁄ , ]* r 1� · NC;* · 1 l
c� k 13l RÁ    ( 4.15) 
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where 8Cc;d  is the attribute of interest in the forecast xÝÞß. PIs determined this way would 

be generally variant between different forecasts as they depend on the cluster of forecast 

situations to which the current forecast case belongs.  

Using the model performance history makes the proposed approach of PI 

computation efficient and applicable to forecasts obtained from NWP model outputs. To 

examine the effect of clustering algorithm on the quality of calculated PIs, two other crisp 

clustering algorithms are considered in this study: clustering for large applications 

(CLARA)  [41], and Agglomerative Hierarchical clustering  [36]. 

 
CLARA. Random sampling approach is used in the CLARA (Clustering LARge 

Applications)  [41] to handle the large number of points in recent applications such as data 

mining. The key point is that appropriate sample sizes can effectively maintain the 

important geometrical properties of the entire data set. To improve the efficiency of the 

brute force search process in the PAM clustering algorithm  [89], CLARA applies PAM to 

find the representative medoids only in a randomly drawn sample from the data set. For 

better approximation, CLARA repeats this process with multiple samples from the 

original data set. 

 
Agglomerative Hierarchical Clustering. In hierarchical clustering the data samples 

are grouped using either a top-down or bottom-up approach. In the agglomerative case, 

data rows are regarded as single clusters initially and at each step the most similar pairs 

of clusters merge into  a new single cluster in the higher level and the process is repeated 

using the new set of clusters  [41] [89]. Hence, at the end of this bottom-up process we will 

have a tree structure of clusters (dendrogram) which has the whole data set as a single 

cluster in the root. Unlike the other two algorithms this algorithm does not require the 

number of clusters as an input. Instead the resulting dendrogram can be cut into any 

desired number of clusters based on the order of similarities between the clusters. Further 

details of these clustering algorithms are available in  [89]. 

4.4. Prediction Interval Computation Using Fuzzy Clustering 

The clustering algorithms described in the previous section assign each sample point 

into a single cluster only. Therefore, the membership of a forecast case in any cluster 

(x& s +*) is a binary value. In a possibly more natural approach, the forecast cases can be 

associated with the clusters by different levels of membership. This varying degree of 
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membership is fundamentally supported by fuzzy set theory  [63]. Such partial 

membership of samples can potentially improve the modeling of forecast situations when 

analyzing the patterns of forecast history records. In this way, a forecast case can be 

simultaneously considered as members of various forecast situations. Many weather 

conditions such as transitional phases of weather can be better explained by this 

approach.  

Fuzzy C-means is one of the most widely used clustering algorithms that can 

discover cluster patterns based on the fuzzy membership assumption. In this algorithm 

the membership values of data points (rows) in the various clusters (columns) are 

represented by a matrix that can have fractional value in the entries rather than only 

binary values in the case of crisp clustering algorithms. The objective function of the 

clustering process is changed accordingly  [4] [64]: 

  Ï � ºKÛG�]à ∑ ∑ ^*&£Õx* r )&ÕR5&wl¾*wl    ( 4.16) 

where ̂ *& represents the degree of membership of the point x* in cluster j and ∑ ^*Q �5Qwl
1. G ¯ 1 is the fuzzification factor that controls the balance between membership values 

of close to 0 or 1 and the values in between. 

The objective function can be minimized using Gradient Descent in an iterative 

process where the membership matrix and the cluster centers will be updated by: 

   ̂ *& � 1 ∑ �ÕÖ�P¹×Õ
áÖ�P¹vá�R £PlÁ5QwlÁ     ( 4.17) 

This iterative optimization process will repeat until none of the ̂  matrix entries 

changes are bigger than â (convergence). 

Finally, these fuzzy patterns of historical forecasts can be used for the modeling of 

forecast error. Unlike the binary clustering approach that each error sample contributed to 

a single cluster in the next distribution modeling step, the output of the fuzzy clustering 

process will determine the contribution of each error sample to all of the k clusters. After 

applying a binary clustering algorithm, the set of past error samples for target y, ,*�  could 

be achieved by Equation ( 4.12). However, since the samples in the training phase of the 

clustering process have fuzzy levels of membership for each single cluster, the ,*� set 

cannot be determined as before. In addition, any new forecast case xc;d  is now going to 

be associated to all of the clusters but with different degrees of membership and Equation 

( 4.13) will not be appropriate anymore as the error sample set should be independently 
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defined for any new forecast case according to its own membership levels. Hence, we 

should devise a new method to determine the sample error set ,Öãäå
�  that can describe the 

forecast error characteristics of each new forecast independently. When  ,Öãäå
�  is made 

available, any of the distribution fitting approaches described in Subsection  4.2 can be 

applied to this set in order to provide the estimated forecast error distribution 46;  which 

can then be used in Equation   ( 2.7) and  ( 2.8) to get the prediction interval quantiles of 

choice. 

The process of determining ,Öãäå
�  is essentially a probability distribution combination 

problem. Here we apply the bootstrapping approach which is a resampling method that 

tries to get a better estimate of a population parameter by measuring the estimate over 

multiple representative samples  [86]. The ,Öãäå
�  set of errors would have ¿ members (i.e. 

the number of past sample errors for every new forecast is equal to all available past 

forecast samples.). Out of these N samples ̂ Öãäå&. ¿ would be drawn from ,&� with 

replacement. Hence, when xÝÞß has a higher level of membership in cluster j, more 

samples from ,&� would contribute to ,Öæçè
� . 

It should also be noted that ,&� is a fuzzy set on its own where the vector ^*& , � �
1. . ¿ determines its members. This implies that the process of sampling ̂Öãäåé. ¿ points 

from ,&� is not uniform and is performed by the weighted probability vector of ̂ *& for 

cluster j. 

Once the described sampling process provides the set ,Öæçè
� , the distribution fitting 

methods can then be applied just as in the binary clustering case. The fitted probability 

density function 46Öãäå;  would then be used to obtain the cumulative distribution function 

and the desired quantile values as explained in Subsection  2.1. The PI quantiles B:c;d³,$  and 

_̀c;d³,$  would be achieved by a single run of the bootstrapping process where ê � 1. . ë. 

After repeating the process for B times the final PI would be achieved by: 

  B:c;d$ � l
ì ∑ B:c;d³,$ì³wl    ( 4.18) 

  _̀c;d$ � l
ì ∑ _̀c;d³,$ì³wl    ( 4.19) 

where B is the number of bootstrap samples and q6ÝÞß¥  can be finally available for usage 

and evaluation purposes. 
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As an alternative to the bootstrapping process to obtain a single fitted error 

distribution for any new forecast, a two phase process can be used. In the first phase, a 

distribution can be fit for each cluster involving all training samples, using a weighting 

scheme based on each sample’s degree of membership in that cluster. In other words, the 

training samples that are more associated with a cluster contribute more to the formation 

of that cluster’s pdf: 

,&� � «-*� , G&�-*�� | G&�-*�� � G&1»*3 � ^*&, � � 1. . ¿, Ù � 1. . ~ ¬   ( 4.20) 

Hence, when applying the kernel density smoothing method to fit a probability 

distribution over the error set of cluster j, ^*í determines the vector of weights for the 

samples in the fitting process. In the second phase (forecasting), any new forecast case 

xc;d  is now associated with all clusters, but with different degrees of membership. 

Therefore, the PI boundaries computed for each cluster’s fitted distribution are 

consolidated using membership level of the new forecast in each of these fuzzy clusters 

 B:c;d$ � ∑ ^c;d,&B:c;d&,$5&wl ,    _̀c;d$ � ∑ ^c;d,&_̀c;d&,$5&wl    ( 4.21) 

where ̂ c;d,& � G&1»c;d3 is the membership level of »c;d  in cluster j. This provides a 

normalized weighted mean of the individual quantiles calculated for each cluster. Hence, 

for example, when the new forecast belongs to cluster 1 with a much higher degree 

compared to cluster 2, its prediction interval is determined with much stronger 

contribution from quantiles of cluster 1 rather than cluster 2. This method is in essence a 

distribution combination process. 
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Figure  4.9. Steps of fuzzy prediction interval modeling and forecast 

The general steps of the process of training and using a prediction interval forecasting 

system using fuzzy clustering is provided in Figure  4.9. 

4.5. Experimental Results 

4.5.1. Data Sets and Method Set-ups 

We experimentally evaluate the applicability and performance of the described 

uncertainty analysis models to obtain PI forecasts from the WRF Numerical Weather 

Forecasting model  [80]. Two different hindcast data sets of hourly predictions are 

accompanied by the respective observations from weather stations from the National 

Center for Atmospheric Research (NCAR) data repository. By joining the relevant 

observation for each forecast and deriving the associated forecast error, the two data sets 

can be considered as two repositories of the NWP model’s historical performance. The 

WRF v3 simulations were run in three nested grids with resolutions of 10.8 km, 3.6 km 

and 1.2 km. The outermost domain covered an area of about 15595 km2 with a 38×38 

grid. The nearest grid point to the observation station was assigned as the associated 

forecast grid. 

The first data set is for the forecasts and observations of the summer of 2008 in 60 

different weather stations in the province of British Columbia, Canada. This data set 

(referred to as BC) contains about 13,000 records of forecast history. For this data set, 10 

major weather, location and time attributes were used as the influential variables: 
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predicted wind speed, wind direction, temperature, surface pressure, mixing ratio, grid 

precipitation, altitude, latitude, longitude, and hour-of-day.  

The second data set covers a much longer period of time i.e. three years of 2007, 

2008 and 2009 for two stations in BC. This data set (referred as AG) contains about 

51,000 records of historical performance. There are a total of 33 features available in this 

data set as listed in Table  4.1. For both of these data sets the observations are used to 

derive the forecast error for two meters temperature and ten meters wind speed forecasts 

and the described PI computation methods are applied to achieve PIs over the forecasted 

temperature and forecasted wind speed. Please also note that since the features of wind 

direction and hour of day are periodic, we substitute them with their sine and cosine 

transformations with the appropriate periods (i.e. 360 and 24, respectively) in the best 

setups of fuzzy clustering and quantile regression (next chapter).  

 

Table  4.1. Available influential variables for the AG historical data set 

t2 (temperature at 2m), ws10 (wind speed at 10m) 
wd10 (wind direction at 

10m) 

psfc (surface pressure) 
pg1/3/6/12 (pressure gradient – 

current value compared to 
1/3/6/12 hours before) 

td2 (dew temperature at 2m) 

psl (sea-level pressure) rh2 (relative humidity) 
temperature at 

950/925/850/700/500 
pressure levels 

horizontal wind speed at 
950/925/850/700/500 

pressure levels 

vertical wind speed at 
950/925/850/700/500 pressure 

levels 

wind direction at 
950/925/850/700/500 

pressure levels 
Hour of day station - 

  

Table  4.2. Feature sets used for uncertainty modeling of the BC data set  

 Features 

Feature Set 
10 Basic 

Feats 
pg1, pg3 

pg6 
PCA 

BF1 ●   
BF1PG ● ●  
PG  ●  
BF1PGPC4 ● ● ● 
BF1PGPC6 ● ● ● 
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Table  4.3. Feature sets used for uncertainty modeling of the AG data set  

 Features 

Feature Set 
10 Basic 

Feats 

Pressure 
levels 
Feats. 

pg1, pg3 
pg6, pg12 

PCA 

BF1 ●    
BF2 ● ●   
BF1PG ●  ●  
BF2PG ● ● ●  
PG   ●  
BF1PC4 ●   ● 
BF2PC4  ●  ● 
BF2PC8  ●  ● 

BF2PC12  ●  ● 
BF1PGPC4 ●  ● ● 
BF1PGPC8 ●  ● ● 
BF2PGPC4 ● ● ● ● 
BF2PGPC8 ● ● ● ● 
BF2PGPC12 ● ● ● ● 

 

For the BC data set five different subsets of the available features are defined to 

investigate the role of influential variables and to select the optimal set for PI forecasts. 

These feature sets are describes in Table  4.2. Note that the features starting with “pg” are 

new derived temporal features from the forecasts as they represent the gradient of surface 

pressure between the current forecast and the forecasts made in one, three and six hours 

ago for the same location. It is expected that these features would provide valuable 

information about the temporal stability of the forecasted weather for the uncertainty 

model.  Also, Table  4.3 lists the 14 different feature sets used for the AG data set. The 

feature set which excludes the pressure gradient and pressure level attributes is called the 

basic set here. As the number of features would be extensively high for some setups such 

as BF2PG and this can have negative impact on the quality of the clustering algorithm the 

Principal Component Analysis (PCA) technique is applied on some of the feature sets to 

use the C-most important components in the analysis rather than all of the dimensions. 

The number after PC in these feature set names represents how many of the first 

significant components were used. 

For the evaluation of the various PI forecasting methods each data set is split into a 

train set and a test set in every experiment. Only the train set is applied for the modeling 

phase of the process when the clusters of weather forecast situations are discovered and 
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their error distributions are modeled. After the training phase, the test data which has 

never been seen is fed into the model to obtain the PIs. These forecasted PIs are then 

subject of the verification measures as described in  Chapter 3. 

The available data sets are split randomly into 5 different folds to perform a 5-fold 

cross validation process to better evaluate the methods. At each step 4 folds of the data 

are used for training and the 5th fold (which was not applied in the training process) is 

used in the test phase. In another evaluation setup the AG data set is split into 3 folds 

based on the temporal sequence of the records. That is at each fold run, two years of data 

are used for training and the third year of data is used for test. For example the 2007 and 

2008 data are used to train the model and then the 2009 data is used to verify the trained 

PI forecasting model. Monthly split of the data records in the BC data set would also 

yield to 3-fold cross validation. 

Here we focus on the 95%-confidence level PIs (i.e. α � 0.05) for temperature and 

wind speed. Due to the availability of alternative choices for the various steps in the PI 

training phase many different models will be defined by the combination of these 

options: 

• Feature Sets: as listed in Table  4.2 and Table  4.3. 

• Clustering algorithm: K-means (5 random starts), CLARA (300+4K random 

samples) and HClust (Euclidian distance and Ward’s agglomeration method), 

Fuzzy C-means (FCM) (m=1.2 for BC and 1.1 for AG)  

• Number of clusters (K): from 2 to 200 with increasing intervals 

• Fitting Method: Gaussian, Weibull, Empirical and Kernel density smoothing 

In the test phase the trained model is used to compute the PIs for the forecasts made 

in the test data set and the resulting PIs are provided as inputs to an evaluation procedure 

that would determine all of the explained quality measures and scores for the verification 

of PI forecasts. Each measure is evaluated in every fold test run and its average over all 

of the folds is considered as the overall estimate of that measure for a method. 

To compare the various proposed methods with a baseline method, some simple 

approaches are considered. The first possible baseline method is the climatological 

approach that considers all of the past error samples together (i.e. K=1) and computes the 

PI based on these samples. Note that any of the fitting methods can be used for its error 

distribution modeling. Other baseline methods considered in this study would follow 

manual categorization of past forecast records based on an attribute. Here, we consider 
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methods that simply use forecast hour-of-day, month and temperature as the categorizing 

attribute (i.e. K=24, K=12 and K=10).  

 
Figure  4.10. Temperature error distributions for various years (in AG data set) with different bias 

and variances and the width of a Gaussian fit PI   

 
Figure  4.11. Standard deviation of temperature error in each month for different years in the AG 

data set 

To have an initial look at the forecast error attributes in the data Figure  4.8 shows the 

temperature error distribution in the BC data set. Also in Figure  4.10 and Figure  4.11 the 

sd. of temperature error (as a key aspect in PI analysis) is plotted for different months and 

years in the AG data set. As can be seen there clearly is some regular pattern of forecast 

uncertainty in the different months that can be exploited for obtaining conditional PIs. 

Similar patterns can be observed for the wind speed forecast errors as well (Figure  4.12). 
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Figure  4.12. Wind speed error distributions for the two different stations (in AG data set) with a 

notable difference in bias and variances and the width of a Gaussian fit PI   

The above analysis confirms the hypothesis that the forecast error behavior would 

follow different patterns and attributes in various forecast conditions which can be 

exploited by the PI computation methods to achieve PIs that are dynamic based on these 

situations. 

4.5.2. Crisp Clustering PI Forecasting Methods 

The methods that achieved the five best SScore for temperature PIs as defined in 

Equation ( 3.11) among the entire possible PI forecasting methods (as described in the 

previous subsection) are listed in Table  4.4. Please note that for simplicity, SScore values 

are divided by r[ so the measure is independent from the number of test samples 

between different experiments and it is also negatively oriented (as in error measures). 

The best performing methods have used the maximum number of clusters for the 

clustering process which is counter intuitive as with very large number of clusters there 

will be very few samples available in each cluster to effectively learn the uncertainty 

model of the weather situation represented by that cluster. The same issue is evident in 

the best methods in the AG data set with the yearly cross validation experiments as 

reported in Table  4.5 and also in the wind speed error PI methods (not reported here). 
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Table  4.4. Top five methods and the detailed measures for temp. in BC data set based on SScore in 
5-fold cross validation 

Algorithm  K Fit Features Sharpness Coverage Resolution SScore 
SScore 
Rank 

K-means 200 Kernel BF1 11.45 95.79 3.12 0.3233 1 
Clara 200 Kernel BF1 11.61 95.45 3.08 0.3302 2 

HClust 200 Kernel BF1 11.30 95.04 3.24 0.3359 3 
K-means 150 Kernel BF1 11.77 95.73 2.92 0.3366 4 
K-means 200 Empirical BF1 9.84 90.00 2.82 0.3372 5 

Table  4.5. Top five methods and the detailed measures for temp. in AG data set based on SScore 
in 3-fold (yearly) cross validation 

To have a closer look at the role of K in the SScore evaluations the trend of this score 

with increasing number of clusters is provided in Figure  4.13 and Figure  4.14. These 

figures show the SScore trend for the best temperature PI setup using each of the 

clustering algorithms for the BC and AG data set. The ever improving trend is in 

contradiction with the statistical nature of the training process. 

 
Figure  4.13. SScore trend of best temperature PI methods over increasing number of clusters in the 

BC data set 

Algorithm  K Fit Features Sharpness Coverage Resolution SScore 
SScore 
Rank 

K-means 200 Kernel BF1 9.99 94.02 1.94 0.3125 1 
K-means 150 Kernel BF1 10.16 94.24 1.83 0.3145 2 
K-means 200 Kernel BF2PG 9.97 93.92 2.26 0.3161 3 
K-means 200 Normal BF1 9.64 93.12 1.89 0.3164 4 
K-means 100 Kernel BF1 10.58 94.81 1.78 0.3171 5 
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Figure  4.14. SScore trend of best temperature PI methods over increasing number of clusters in the 

AG data set 

 
Figure  4.15. The trend of detailed forecasted PI quality measures with increasing number of 

clusters 

The reason for this optimistic measurement of SScore in methods with higher number 

of clusters is that the measured SScore is a sample statistic over the available test 
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samples. Yet, as argued in subsection  3.3, the uncertainty bounds for this measure will be 

further away from this estimation with small number of samples. By using the 95%-

confidence level bound for the SScore verification score as defined in ( 3.14) we can make 

sure that the judgments are not mislead by the low number of available test samples. As 

Figure  4.15 shows sharpness and the average delta (as the comprising elements of the 

skill score) have improving trends when the number of clusters increases. However, the 

95% bound on the average delta measure does not follow such trend. The observed 

nominal coverage, its 95% bound and the resolution measures are also depicted in this 

figure. Figure  4.16 and Figure  4.17 show the trend of SS)VK-W.XY (that uses the delta 

bound rather than its sample value) for the best setups of the clustering PI methods. As 

can be seen, this score accounts for the uncertainty of the SScore measurement using the 

available test set and shows a decrease in forecast skill (increase of SScore) with large 

number of clusters as expected. 

Consequently, SS)VK-W.XY is used to rank the various methods and the results are 

reported in Table  4.6 and Table  4.7. Also, the best ranks achieved by the various baseline 

methods are listed in these tables. In the BC data set, the K-means clustering algorithm 

with 6 clusters and kernel density estimation provides PI forecasts with the average width 

of 13.42 while the Base-Temp baseline method would provide PIs for the same forecasts 

with an average width of 14.23. The paired-t test over the skill scores of these two 

methods confirms that their estimated means are statistically significantly different (p-

value=0.014<0.05). The difference between the skill score of the best clustering and the 

best baseline method is also statistically significant (p-value=0.0001). In addition, the K-

means algorithm PIs would have a standard deviation of 1.20 degrees in the forecasts, 

while this value is equal to zero for the climatological baseline approach that provides 

constant width PIs. 

Also in the AG data set, the best K-means setup with the kernel fitting method over 

the BF2 feature set can achieve an SScore which is less than 0.3485 with a 95% 

confidence. This value would be equal to 0.3774 for the climatological baseline and 

0.3704 for the best baseline which is the month-based grouping method (p-value<0.005). 

Such improvement in forecast skill is achieved as the PIs of the K-means setup have less 

width (less vagueness) and higher coverage of observations (reliability).  
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Table  4.6. Top five methods and the detailed measures for temp. in BC data set based on SScoreW.XY in 5-fold cross validation 

Algorithm  K Fit Features Sharpness Coverage Coverage0.95 Resolution RMSE SScore 
SScore 
Rank 

SScore0.95 SScore0.95 

Rank 
K-means 6 Kernel BF1 13.42 95.37 93.05 1.20 3.41 0.3946 1034 0.4245 1 
HClust 4 Kernel BF1 13.79 95.66 93.86 0.73 3.40 0.4014 1194 0.4251 2 

K-means 9 Kernel BF1 13.26 95.58 92.68 1.29 3.37 0.3879 818 0.4253 3 
K-means 10 Kernel BF1PGPC4 13.12 95.73 92.60 1.33 3.32 0.3837 610 0.4254 4 
K-means 7 Kernel BF1PGPC4 13.48 95.52 92.96 0.95 3.39 0.3928 998 0.4256 5 

Base-Temp. 10 Kernel Temp. 14.23 95.59 92.59 1.10 3.65 0.4071 1314 0.4423 451 
Base-Clim. 1 Kernel - 14.99 95.19 94.32 0.00 3.80 0.4394 1895 0.4514 782 
Base-Ws. 10 Kernel Ws. 14.49 95.61 92.89 0.92 3.67 0.4235 1487 0.4621 1001 
Base-Hour 24 Kernel Hour 13.72 95.77 90.21 1.09 3.47 0.3972 1111 0.4679 1098 

Table  4.7. Top five methods and the detailed measures for temp. in AG data set based on SscoreW.XY in 3-fold (yearly) cross validation 

Algorithm  K Fit Features Sharpness Coverage Coverage0.95 Resolution RMSE SScore 
SScore 
Rank 

SScore0.95 SScore0.95 

Rank 
K-means 50 Kernel BF2 10.78 94.96 92.74 1.87 2.80 0.3254 56 0.3485 1 
K-means 45 Kernel BF2 10.86 94.89 92.78 1.87 2.83 0.3273 78 0.3492 2 
K-means 40 Kernel BF2 10.89 94.82 92.85 1.84 2.83 0.3303 114 0.3499 3 
K-means 50 Kernel BF2PG 10.94 94.87 92.60 2.20 2.87 0.3281 89 0.3506 4 
K-means 70 Kernel BF2PG 10.64 94.75 91.98 1.95 2.78 0.3226 33 0.3509 5 

Base-
Month 

12 Kernel Month 12.21 95.12 94.10 1.91 3.12 0.3601 2541 0.3704 1671 

Base-Temp. 10 Normal Temp. 11.70 94.44 93.57 0.98 3.04 0.3620 2809 0.3725 2193 
Base-Ws. 10 Kernel Ws. 12.12 94.91 94.17 1.20 3.12 0.3664 3037 0.3754 2681 

Base-Clim. 1 Normal - 12.17 94.78 94.49 0.00 3.11 0.3740 3985 0.3774 2845 
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Figure  4.16. SM)VK-W.XY trend of best temperature PI methods over increasing number of clusters 
in the BC data set for (a) K=2..200 clusters (b) K=2..25 clusters 

 
Figure  4.17. SM)VK-W.XY trend of best temperature PI methods over increasing number of clusters 

in the AG data set 

Achieving better scores by bigger number of clusters in the AG data set compared to 

the BC data set can be a result of the availability of more data samples and features both 

in the train and test phases as this would increase the complexity of the learning space in 

the training phase and decrease the uncertainty of the skill score evaluations in the test 

phase. In the Coverage0.95 column of the measure tables, the 95%-confidence level lower 

bound for the measured nominal coverage is provided. This estimate is the weighted 

average of the binomial test lower bound of nominal coverage in individual clusters 
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based on the number of test cases in each cluster. There is a notable difference observed 

between the sample measure of nominal coverage and its 95%-confidence level lower 

bound due to the availability of rather few test samples with bigger number of clusters. 

Moreover, the Root Mean Squared Error (RMSE) of the forecasts is listed in these 

tables. This important point forecast performance measure is calculated for the forecasted 

PIs based on considering the median of the PI as the new revised point forecast. The 

notable improvement achieved by the proposed methods compared to the baseline 

methods is due to the dynamic calibration of forecast bias in the forecast groups 

discovered by the clustering algorithms. Here the forecast bias is estimated from the 

accuracy records in a dynamic fashion depending on the forecast situation characteristics.  

To have a general comparison between the various comprising elements of a PI 

forecasting method we aggregate and summarize the performance measures of the three 

clustering algorithms over all of the combinations they can have with number of clusters, 

feature sets and fitting methods. The same aggregation is performed for the feature set 

and fitting method elements. Figure  4.18 shows the box plot of skill score of the 

clustering algorithms for the BC and AG data sets. This figure shows the better 

performance of the K-means clustering-based PI forecasts in both data sets. Due to the 

low scalability of the HClust algorithm for the AG data set, a randomly selected subset 

with half of the size of the original data set was used in the training phase of this 

algorithm. This seems to be the reason for the reduced skill of HClust PIs in the AG data 

set.  

Figure  4.19 shows the statistics of SScore0.95 for the five feature sets in the BC data 

set. It shows that the BF1 and BF1PGPC4 feature sets achieve the best temperature PI 

quality. Also comparison of the fitting methods reveals that the Kernel density smoothing 

method achieves the best scores. For temperature error distribution, the Normal 

distribution outperforms the Weibull fit but still both methods are not as good as the 

Empirical method. Very similar results were obtained from the 5-fold cross validation 

evaluations in the AG data set. The role of AG data feature sets for temperature PIs is 

investigated in Figure  4.19 and Figure  4.20 and they generally suggest that (lower 

whiskers reaching to smaller SScore0.95 – better skill) the pressure level features (included 

in BF2) are relevant and helpful for the temperature error modeling and PI computation.  

As for the PIs of wind speed forecasts, the clustering algorithms had practically the 

same comparison as in temperature PIs. Yet, the Weibull fitting method leads to better 

results here (Figure  4.21). The feature set BF0 is introduced here for wind speed analysis 
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specifically. After initial results revealed that the simple baseline methods (using only 

one or no features) performed better that the defined feature sets, a new feature set BF0 

was defined that comprises of the predicted wind speed and surface pressure only. As 

shown in Figure  4.21 and Figure  4.22, BF0 would lead to better wind speed PIs both for 

BC data set and AG data set. Also the pressure level features in BF2 lead to wind speed 

PI forecasts with better skill compared to the basic features in BF1.  

 

 

  
Figure  4.18. SScore0.95 of the three clustering algorithm for temperature PIs in (left) BC data set 

(5-fold cross validation) and (right) AG data set (Yearly cross validation) 

 
 

Figure  4.19. SScore0.95 of (left) the six different feature sets for temperature PIs in BC data set (5-
fold cross validation) and (right) the four different fitting methods in AG data set (Yearly cross 

validation) 
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Figure  4.20. SScore0.95 of 14 different feature sets for temperature in AG data set (Yearly cross 

validation) 

  
Figure  4.21. Comparison of (left) fitting methods and (right) feature sets for the wind speed PI 

methods for the BC data set 
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Figure  4.22. Comparison of 15 different feature sets for the wind speed PI methods for the AG 

data set 

Table  4.8. Top five methods and the detailed measures for wind speed in AG data set based on SscoreW.XY in 3-fold (yearly) cross validation 

Algorithm K  Fit Features Sharpness Coverage Coverage0.95 Resolution RMSE SScore 
SScore 
Rank 

SScore0.95 SScore0.95 

Rank 
K-means 35 Empirical BF0 8.99 94.73 92.83 1.91 3.03 0.2742 18 0.2915 1 
K-means 25 Empirical BF0 9.22 94.67 93.10 1.84 3.10 0.2782 28 0.2918 2 
K-means 30 Empirical BF0 9.09 94.78 93.05 1.81 3.04 0.2764 25 0.2921 3 
K-means 30 Kernel BF0 9.37 95.89 94.32 2.02 3.02 0.2772 26 0.2928 4 
K-means 35 Kernel BF0 9.29 95.99 94.29 2.11 3.00 0.2754 23 0.2928 5 
Base-Ws. 10 Empirical Ws. 10.43 95.03 94.28 0.78 3.35 0.3038 394 0.3119 51 

Base-Clim. 1 Kernel - 12.63 95.03 94.75 0.00 3.23 0.3924 4392 0.3973 2984 
Base-Temp. 10 Kernel Temp. 12.81 95.15 94.33 0.97 3.20 0.3908 4015 0.4032 3557 
Base-Month 12 Kernel Month 12.51 94.71 93.66 1.37 3.22 0.3881 3629 0.4038 3621 

 
The detailed measures for the top five wind speed PI forecasting methods are given 

in Table  4.8. Here the baseline method that groups the forecast cases by wind speed bins 

is ranked as the 51st method among all. Yet the best skill score is achieved by K-means 

clustering over the newly defined simple BF0 feature set. The RMSE of wind speed 

forecasts would be decreased to 3.03 from 3.35 in the best baseline method after using 

the top clustering method. 

To have a closer look at the PIs forecasted by the best temperature PI method in the 

BC data set, which is K-means clustering with Kernel density smoothing and K=6, Table 

 4.9 provides the details of PIs from each of the six clusters for a sample fold of test 
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results. As expected, the method is able to provide PIs with dynamic width. The third 

column of this table shows the average distance of a missed case from the edge of the 

forecasted PI. It is also worth to note that for cluster number one where there are fewer 

test cases available, the difference between the measured coverage and SScore and their 

respective 95%-confidence level boundaries are bigger compared to other clusters. The 

Kolmogrov-Smirnov goodness-of-fit test results in the last two columns also suggest that 

the hypothesis that trained error model and the observed test error follow the same 

distribution is not rejected on the 10% level for five out of six clusters. 

Table  4.9. Cluster-level measures for the best temperature PI method in BC (K-means, Kernel, 
K=6) 

Cluster 
No. 

Width  îïðñ,ò
 

Test 
Cases 

Missed CoverageCoverage0.95 SScore SScore0.9 
K-S Test 
Statistic 

K-S Test 
P-Value 

1 10.98 0.73 175 9 94.86 91.20 0.3119 0.3507 0.06 0.56 
2 12.11 1.85 317 14 95.58 93.18 0.3844 0.4287 0.04 0.82 
3 12.68 1.44 292 12 95.89 93.43 0.3763 0.4118 0.05 0.48 
4 12.71 2.13 248 9 96.37 93.75 0.3950 0.4507 0.11 0.00 
5 13.33 1.13 396 24 93.94 91.58 0.4021 0.4288 0.05 0.30 
6 14.85 1.18 538 21 96.10 94.43 0.4172 0.4389 0.04 0.29 

 

 
Figure  4.23. Histogram of forecasted temperature PI widths (total counts and miss cases) for the 

top method in AG. 
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Figure  4.24. Sample temporal trends of upper (red) and lower (blue) boundaries of prediction 

intervals for temperature error and the actual observations (black) 

 
Figure  4.25. Examples of eleven different confidence level prediction intervals for temperature 

forecasts in 2009 

For the best temperature PI forecasting method in the AG data set i.e. K-means 

clustering with kernel fitting and K=50, Figure  4.23 provide information on how variant 

the forecasted PIs were in terms of their width. This figure also shows the distribution of 

the PIs that actually missed the observed value. It is clear that the forecasted PIs have a 
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dynamic property and are sharper compared to the static PIs of 12.17 in the 

climatological baseline method. Also, it is evident that the PI forecasting system has been 

able to maintain a stable level of coverage in interval forecasts with different level of 

uncertainty (~94% in the leftmost bin and second biggest bin).   

An example of PI forecasts for temperature made for 2009 by the best PI method in 

AG data set is depicted in Figure  4.24 for the Agassiz station over 100 consecutive hours. 

The horizontal lines represent the PIs of the climatological baseline method. This figure 

clearly shows the dynamic change of the estimated forecast uncertainty for the different 

predictions. PIs as narrow as 8 degrees and as wide as about 16 degrees are estimated by 

this method. The higher sharpness of the clustering method forecasts (i.e. smaller average 

PI width) is also evident in this graph. Figure  4.25 shows a fan chart of 11 different 

confidence level PIs (i.e. 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 0.95) by the best 

method along with the observed value for temperature (not temperature error). Again the 

conditional nature of forecast uncertainty based on forecast situation is apparent in the 

forecasted PIs. 

4.5.3. Fuzzy Clustering PI Forecasting Methods 

In the application of fuzzy clustering both bootstrapping and distribution averaging 

methods of error density estimation are implemented. The obtained prediction intervals 

were very similar using either of these two methods. However, the latter is preferred due 

to a notably better efficiency. This is due to the fact that a whole process of bootstrapping 

and error estimation is required for every single test case in the first option. Hence, we 

only report the distribution averaging results here. 

Figure  4.26 plots the fitted error distribution of three different fuzzy clusters obtained 

over the AG data set using BF2 feature set. Note that each distribution is attained by 

kernel density estimation using all of the samples in the AG data set along with weights 

from that fuzzy cluster’s membership values. Using the FCM algorithm, the forecast 

situations are defined as fuzzy sets using the training data. As a consequence, the forecast 

cases are not associated with only one cluster but have different levels of membership in 

all clusters. The three best-performing fuzzy and non-fuzzy setups are listed in Table  4.10 

and Table  4.11. 

FCM was applied to the BC data set using the best-performing feature sets and fitting 

method for this data set based on the non-fuzzy model evaluations described in the 
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previous subsection (i.e. BF1, BF1PGPC4 and kernel fitting). The results show a modest 

improvement of PI verification score using the fuzzy approach (0.4194 vs. 0.4245). 

 
Figure  4.26. Forecast error distribution in 3 clusters of 2007 and 2008 AG data and the 

corresponding fitted kernel density distribution 

Table  4.10. PI verification measures for top methods of temp. PI in BC data set based on 5-fold 
cross validation 

Algorithm  K Fit Features SharpnessCoverageCoverage0.95 ResolutionRMSESScore
SScore 
Rank 

SScore0.95SScore0.95 

Rank 
FCM 5 Kernel BF1 13.63 95.82 93.80 0.77 3.39 0.3934 1059 0.4194 1 
FCM 8 Kernel BF1PGPC4 13.35 95.74 93.00 0.97 3.34 0.3866 796 0.4206 2 
FCM 11Kernel BF1PGPC4 13.12 95.70 92.35 1.04 3.29 0.3803 551 0.4213 3 

K-means 6 Kernel BF1 13.42 95.37 93.05 1.20 3.41 0.3946 1087 0.4245 13 
HClust 4 Kernel BF1 13.79 95.66 93.86 0.73 3.40 0.4014 1248 0.4251 14 

K-means 9 Kernel BF1 13.26 95.58 92.68 1.29 3.37 0.3879 865 0.4253 15 
Base-
Temp. 

10Kernel Temp. 14.23 95.59 92.59 1.10 3.65 0.4071 1368 0.4423 489 

Base-Clim. 1 Kernel - 14.99 95.19 94.32 0.00 3.80 0.4394 1955 0.4514 829 
Base-Ws. 10Kernel Ws. 14.49 95.61 92.89 0.92 3.67 0.4235 1487 0.4621 1001 
Base-Hour 24Kernel Hour 13.72 95.77 90.21 1.09 3.47 0.3972 1111 0.4679 1098 

 

A similar skill improvement was observed for the AG data set using BF2 and BF2PG 

feature sets and the kernel density smoothing method. PIs obtained by the FCM algorithm 

(with K=45) have the best skill score and the least RMSE when considering point 

forecasts. By transforming the periodic variables of wind direction and hour of day as 

explained in subsection  4.5.1, the FCM can further improve SScore and SScore0.95 into 

values of 0.3173 and 0.3401, respectively. The FCM-based PIs have rather smaller values 



55 
 

of resolution. This is expected as in these models the error characteristics of every 

forecast case are affected by all discovered situations although with different intensities. 

However, the presented empirical evaluation study confirms that the proposed clustering-

based methods improve the skill of forecasted PIs compared to baseline methods. 

Table  4.11. PI verification measures for top methods of temp. PI in AG data set based on 3-fold 
(yearly) cross validation 

Algorithm K Fit Features SharpnessCoverageCoverage0.95Resolution RMSESScore
SScore 
Rank 

SScore0.95SScore0.95 

Rank 
FCM 45Kernel BF2 10.62 94.89 92.77 1.59 2.77 0.3220 27 0.3432 1 
FCM 30 Kernel BF2PG 10.91 94.93 93.26 1.65 2.86 0.3285 106 0.3452 2 
FCM 50 Kernel BF2PG 10.67 94.78 92.49 1.79 2.81 0.3231 41 0.3459 3 

K-means 50Kernel BF2 10.78 94.96 92.74 1.87 2.80 0.3254 64 0.3485 13 
K-means 45 Kernel BF2 10.86 94.89 92.78 1.87 2.83 0.3273 87 0.3492 15 
K-means 40 Kernel BF2 10.89 94.82 92.85 1.84 2.83 0.3303 128 0.3499 16 

Base-Month 12Kernel Month 12.21 95.12 94.10 1.91 3.12 0.3601 2588 0.3704 1719 
Base-Temp. 10Normal Temp. 11.70 94.44 93.57 0.98 3.04 0.3620 2809 0.3725 2193 
Base-Ws. 10 Kernel Ws. 12.12 94.91 94.17 1.20 3.12 0.3664 3037 0.3754 2681 

Base-Clim. 1 Normal - 12.17 94.78 94.49 0.00 3.11 0.3740 3985 0.3774 2899 

4.6. Conclusions 

Forecast uncertainty plays an important role in many practical applications of 

meteorology. In this study, the historical performance of WRF NWP model is used as a 

source of information for uncertainty modeling. The proposed approach allows dynamic 

analysis of uncertainty based on context, i.e., predicted weather situation. Contexts of 

weather forecasts are established by automatically discovered clusters and then used to 

derive conditional PIs through statistical analysis. The effectiveness of the proposed 

approach has been empirically evaluated using two data sets of weather hindcast and 

associated observations.  

Several feature sets were applied to group weather situations using four different 

clustering algorithms (K-means, Clara, HClust and Fuzzy C-means). To assess the 

proposed PI computation methods, we created a comprehensive evaluation framework 

based on a proper skill score metric. The assessment results confirmed the applicability of 

the proposed PI computation methods and showed that the resulting PIs have high 

sharpness and skill. 

Comparisons to various baseline methods confirm an average 8% improvement in PI 

forecast skill when using the proposed dynamic methods based on Fuzzy C-means 

clustering. As a result of their nature, the proposed methods also intrinsically remove 

bias, decreasing the RMSE of point forecasts by up to 10%. The proposed PI modeling 
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methods can be used in real world applications to enhance point forecasts of NWP 

systems with information on prediction uncertainty. 
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Chapter 5                                                        
Quantile Regression Approaches to 
Uncertainty Modeling 

In this chapter a range of quantile regression methods are investigated as tools for 

learning forecast uncertainty models. Specifically, for the first time a hybrid approach of 

clustering and kernel quantile regression is applied in the context of weather forecast 

uncertainty modeling. The prediction intervals obtained from all of the quantile 

regression models are practically examined and then compared to the clustering methods 

using a real data set of NWP forecasts. 

5.1. Introduction 

The degree of uncertainty in the forecasts of a Numerical Weather Prediction (NWP) 

model can potentially have an enormous impact on the decisions that are made based on 

these forecasts. Wind power production and marketing  [66], Dynamic Thermal Rating 

(DTR) systems used by power transmission utilities  [34] [71], and extreme weather event 

prediction systems  [70] are just few example applications where the forecast uncertainty 

is often regarded as significant as the expected forecast value itself  [37] [53].  

NWP models are advanced computer simulation systems that provide expected 

values of various weather attributes, on a three dimensional spatial grid and at certain 

forecast horizon  [80]. These systems do not provide any information about the 

uncertainty of the forecasts. However, there is always some level of error associated with 

forecasts and the degree of this inaccuracy is known to be variable for different 

predictions  [48]. Imprecision of initial conditions, parameterization of sub-grid scale 

processes, and various simplifying assumptions incorporated in the NWP system are 

regarded as some major reasons for forecast inaccuracies  [61].  



58 
 

Although the raw outputs of an NWP system provided as point predictions can be 

easily understood and evaluated, the probabilistic nature of the forecasts (which can 

represent the prediction uncertainty) is dismissed. Prediction Intervals (PI) are a 

prominent form of forecast uncertainty communication. They are defined as a value 

interval accompanied by a confidence level for actual observations to be inside this 

interval (e.g. T = [-3°C, 10°C], conf = 95%)  [16] [29] [68]. 

There is a large body of literature on obtaining such uncertainty information from 

NWP models using ensemble forecasting systems  [20] [72] [60] [81]. However, ensemble 

predictions may incur large computational costs, making them infeasible in some cases. 

Additionally, instant availability of historical performance data sets for many existing 

forecasting systems and potentially useful uncertainty patterns hidden in them has made 

post-processing approaches to uncertainty modeling an increasingly attractive topic  [3] [7] 

 [59] [69]  [68]. 

Error distribution fitting and clustering methods have been studied recently as major 

methods towards learning forecast uncertainty models from historical system accuracy 

data sets  [68]. These methods rely on the known fact that different forecast situations 

typically exhibit different levels of forecast uncertainty, and that such patterns can be 

potentially found from the system performance record  [48]. Hence, the forecasts of the 

system are first clustered into similar groups using related attributes regarded as 

influential variables. Next, the historical error distribution of each cluster is modeled by 

fitting either a parametric (e.g. Gaussian) or a non-parametric (e.g. empirical) 

distribution. The desired quantiles of a new forecast are then calculated from the fitted 

error distribution of the cluster which the new forecast case belongs to. Hence, these 

approaches can provide uncertainty information for a point forecast in the form of a full 

probability distribution. The distribution can then be used to obtain prediction intervals 

with any desired level of confidence. 

In quantile regression based methods, on the other hand, each individual quantile is 

modeled independently and there are no assumptions on the distribution of the forecast 

error  [59] [90]. These methods can learn a direct relationship between the target quantile 

and the set of available influential attributes through an optimization process. Various 

quantile regression methods have been proposed and applied to forecast uncertainty 

modeling. Bremnes  [6] proposed the application of local quantile regression to obtain 

non-linear models of quantiles for wind power forecasts. In another study, Nielsen et al. 
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 [59] applied an additive quantile model by using spline basis functions. In both works, 

the resulting prediction intervals were evaluated in terms of their inter-quantile range and 

actual observation frequencies, as compared to the forecasted quantile. Yet, the skill of 

the prediction interval forecasting system was not evaluated in an objective framework. A 

few statistical models including local quantile regression were compared in a study by 

Bremnes  [7] as quantile forecasting models for wind power from NWP outputs. 

Sharpness and reliability measures were evaluated for different setups of these models 

but forecast skills were not verified. Pinson and Kariniotakis  [68] demonstrated a novel 

fuzzy inference model based on grouping of forecasts and adapted resampling for 

distribution fit. A detailed comparative study of this method and one quantile regression-

based method was provided in Pinson et al.  [69]. An improved version of this approach 

using fuzzy clustering and error distribution fitting was introduced in  Chapter 4. 

Additionally in the domain of statistical methods, time-adaptive kernel density estimation 

methods were proposed by Bessa et al.  [3]. In this research, we aim for a comprehensive 

comparative study for the application of some major quantile regression methods and 

recently proposed distribution fitting methods. In addition, the relatively new kernel 

quantile regression method  [51] is also investigated in the context of weather forecast 

prediction interval modeling in this study. Due to performance issues a hybrid clustering-

quantile regression approach is proposed for application of this method. A comparative 

study is performed using a large, real-world NWP data set with a focus on forecast skill 

as a significant measure for essential conclusive comparisons between prediction interval 

forecasting systems. As discussed previously, skill score measurements are extended by 

considering sampling uncertainties in the test experiments as explained in  Chapter 3. This 

approach also offers a good foundation to investigate the role of different parameters 

involved in these methods.  

5.2. Linear and Non-linear Quantile Regression for PI Modeling 

In linear regression tasks, a target variable is estimated by a linear combination of a 

set of related features. The unknown coefficients of this linear equation are tuned by an 

optimization process using an objective function (e.g. squared error in real value 

regression). The same approach can be used to find a linear relationship between a set of 

features and a specific “quantile” of a target variable. The  -quantile of the target 

variable y denoted as HC�� is formulated as  [44] [45]  [54]: 
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 HC�� � 41x3 � �W¥ k �l�»l k �R�»R k ó k �µ�»µ    ( 5.1) 

where »& , Ù � 1. . � are the d influential variables for modeling the  -quantile of y, and 

�&� , Ù � 1. . � constitutes the ��� vector of coefficients for the target  -quantile. This 

vector is estimated using the following optimization objective  [44] [90]: 

 �6�� � ºKÛG�]® ∑ B� n8* r ��W� k �l�»*l k ó k �µ�»*µ�p¾*wl    ( 5.2) 

where i� 1. . ¿ is the number of recorded pairs 18* , x*3 in the data set, and B� is the loss 

function of a  -quantile target defined as: 

   B�1!*3 � ô !*                 !* õ 01 r 13!*      !* o 0�    and   ( 5.3) 

!* � 8* r HC���    ( 5.4) 

The optimization task formulated in Equation ( 5.2) is then solved using linear 

programming techniques  [44] [54]. In order to obtain q6c;d$ , quantiles of target error, HC;�v  
and HC;�y  are separately modeled by linear quantile regression using the data set of 1-* , x*3, 

where -* represents the recorded error of forecast case i, and x* is the vector of 

explanatory influential variables. This yields the optimizer vectors of �6;�v  and �6;�y  that are 

then used to compute the (1 r D)-confidence level prediction interval of target y for any 

new forecast xc;d : 

HC��
�v � ��6;�v  , xc;d� k 8C*,  HC��

�y � ��6;�y , xc;d� k 8C*      ( 5.5) 

where �. , . � represents the dot product of the two vectors. Note that an entry of 1 should 

be added as the leftmost element of newx  to be multiplied by the �6W$ term as the intercept. 

As opposed to the methods described in Chapter 4, there is no distribution fitting process 

required in further steps when using quantile regression. This also means that a new 

model has to be trained for any new quantile of interest.  

The model optimized and stored in �6�� describes a linear relationship between the 

error quantile and the influential features in x. However, using a non-linear 

transformation basis function 01x3 to derive new features from the currently available 

features, one can in effect learn non-linear relationships by still using the linear 

formulation in Equation ( 5.2). For instance, to learn nth degree polynomial functions in 

quantile models, one can extend features in x by adding 01x3 � txR, xö, … , xcu and then 

perform the same process of optimizing the linear relationship between the new feature 
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set and the target quantile. More complex forms of non-linear relationships can also be 

represented and optimized using other basis functions such as the sigmoid and sin1x3 etc. 

In the experiments, we use the second and third degree polynomials along with the sine. 

We use NLQR to refer to the prediction interval modeling methods that use these 

transformed features, while LQR refers to the methods that use the original vector x. 

5.3. Quantile Regression with Spline-basis Functions 

Additive quantile models are another technique used by Nielsen et al.  [59] to learn 

non-linear models of weather forecast quantiles. Spline functions are the most frequently 

used basis functions  [3] [54]. Since it is expected that the relationships between forecast 

values and forecast errors are of a non-linear nature, spline-basis can provide a suitable 

transformation. 

This relationship can then be approximated by a linear combination of basis functions 

of the influential attributes  [32]: 

 HC�� � �W� k ∑ ∑ �&,5� 4&,5�»&�µ÷×5wlµ&wl    ( 5.6) 

where 4&,5 is the cubic B-spline basis function used for feature j using �4&  degrees of 

freedom. Note that assuming a constant df-degree of freedom for all basis functions, there 

will be �4 ø � features in the final model to be optimized by the linear optimization task 

formulated in Equation ( 5.2). The appropriate value for this parameter has to be 

determined based on experiments involving the training data set. 

5.4. Local Quantile Regression 

Unlike spline additive models of quantile regression, in local quantile regression 

(LocQR) there is no effort made to learn complex non-linear models for a quantile. 

Instead, it is assumed that, in the close neighborhood of a given x, the relationship 

between x and the target quantile is simple enough to be modeled linearly. Rationally, 

data points that are closer to x should have more impact on this linear model than those 

further away from it. This can be formulated as the following optimization problem  [91]: 

 �6;,Ö� � ºKÛG�]® ∑ B� n8* r ��1xù r x3p i1xù, x3¾*wl     ( 5.7) 

where �6;,Ö�  is determined for input x by considering a set of training samples that are 

centered around x and weighted using  [6]: 
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 i1xù, x3 � ú�1 r náÖ�PÖá
µû1Ö3 pö�ö

 0         otherwise       if  0 � áÖüPÖá
µû1Ö3 o 1�   ( 5.8) 

where �Ã1x3 is the distance from x to its @¿-th nearest neighbor among training samples 

xl..¾ and áx* r xá is the Euclidian distance between the two vectors. Based on this 

definition, 11 r @3¿ data samples have zero weight and hence have no impact on the 

quantiles optimized at point x.  

Note that using LocQR, two new models have to be optimized for each new forecast 

(x) to compute the upper and lower quantiles of the prediction interval for that specific 

forecast. This is in contrast with the scenarios of applying other regression methods 

described above, in which these models are learned only once and then utilized to provide 

prediction intervals for any future forecasts.  

5.5. Kernel Quantile Regression 

To learn arbitrarily complex nonlinear models, the optimization process can be 

performed in reproducing kernel Hilbert spaces (RKHS) leading to kernel quantile 

regression (KQR)  [51] [76]: 

 �6�� � ºKÛG�]®  Î ∑ B��8* r ��»� k¾*wl l
R á�áR     ( 5.9) 

where the last term is obtained from the RKHS norm of function g (
2

.
H

) and f=g+ �W�, 

where function g only contains �l..µ�  so that here the constant offset is not regularized in 

the above objective. The regularizer penalizes more complex functions to avoid 

overfitting. C is the cost factor that balances the total loss over this penalization. The 

above formulation is very similar to the well-known primal form of support vector 

regression  [83], except for the loss function that has been redefined to optimize for the 

conditional quantile of interest rather than the conditional mean or median.  

This formulation also allows obtaining a dual form of the optimization problem using 

Lagrange multipliers that would represent the model by vector of weights (D* , � � 1. . ¿) 

over samples (rather than features in the primal problem)  [77]. Since the dual form only 

uses the vector products of the input vectors, we only need to consider the kernel function 

(k) which would provide an inherent Ф-mapping of inputs into a new feature space: 

  DC�� � ºKÛG�]$ l
R D�?D r D�8ý  M^êÙ-)\ \V Î1 r 13 � D* � Î  4VK ºAA  1 � � �

¿ º]� 1þý�D � 0   ( 5.10) 
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 ?*& � ~�»* , »&� � �Φ1»*3,Φ�»&��    ( 5.11) 

where the kernel matrix K is positive-semidefinite. Note that Φ1»*3 does not appear 

explicitly in the objective function and only the inner products of the transformed vectors 

(represented as ?*& entries in the kernel matrix) are used. The above dual form can be 

solved using quadratic programming and the f function can then be recovered.  A 

common choice for the kernel function is the Gaussian kernel  [77]: 

 ~�»* , »&� � -»U nrÕ»* r »&ÕR 2NRÁ p    ( 5.12) 

where σ 0>  is the kernel width parameter and should be tuned.  

Because of the low scalability of this method (the kernel matrix is N by N), we 

propose a two-step process where the training data is first clustered into K partitions 

using the same feature set and kernel quantile regression is applied independently to each 

partition. In the test phase, a new forecast is first assigned to its closest cluster and then 

passed to the learned model for that cluster to obtain the quantiles. 

5.6. Experimental Results 

5.6.1. Data Sets and Method Set-ups  

The data set used in this set of experiments is the AG data set described in subsection 

 4.5. Also the utilized feature sets (other than new feature sets defined in this section) are 

defined in subsection  4.5. 

Table  5.1. feature set definition in PI models using combinations of basic features 

Feat Set m d h t2 ws wd sp pg 

C1    ● ●    

C2    ● ●  ●  

C3   ● ● ●  ●  

C4  ●  ● ●  ●  

C5 ●   ● ●  ●  

C6 ● ● ● ● ●  ●  

C7 ● ● ● ● ● ● ● ● 

 

Table  5.1 describes seven new combinations from the basic features and pressure 

tendency. These feature sets are defined to perform a more detailed analysis on the role of 

basic attributes, specifically month, day and hour. Three-fold cross validation was used 

by splitting different years into folds. For instance, the 2007 and 2008 data was used to 

train the prediction interval model and then prediction intervals for 2009 obtained by this 
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model were evaluated for their quality and skill. Random-based 5-fold cross validation 

experiments were also conducted. However, due to the similarity of the obtained results, 

only year-based cross validation results are reported here.  

5.6.2. Forecast Evaluation Results 

In quantile regression models, the forecasts are clustered using different numbers of 

clusters in the range from 2 to 100 for projection of the skill score sampling variance 

analysis and confidence bound computation. The role of number of degrees of freedom in 

spline-basis as an important parameter of the spline quantile regression (SPQR) models is 

depicted in Figure  5.1. The curves show the change of SS)VK- #W.XY using K=50 clusters 

for models using different feature sets. The number of degrees of freedom by which a 

model achieves its best score is encircled. Note that K=50 is chosen as it was the number 

of clusters which best represented the forecast groups in experiments involving 

clustering-based methods. 

 
Figure  5.1. Projection of SS)VK- #W.XY for spline quantile regression models over different degrees 

of freedom using various feature sets  
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Figure  5.2. Projection of SS)VK- #W.XY for spline quantile regression models over different degrees 

of freedom using various number of clusters used in skill score uncertainty analysis 

BF2 and BFPG feature sets provide the best models using the SPQR method by a 

considerable margin compared to the other feature sets. These models achieve the best 

skill using 4 degrees of freedom. In Figure  5.2 different curves show the trends of skill 

score over degrees of freedom when using different number of clusters in skill score 

uncertainty analysis. This figure shows that the SPQR model with four degrees of 

freedom achieves the best score for all alternative numbers of clusters used in sampling 

analysis. 

In local quantile regression (LocQR) models the role of  @ is investigated. As 

previously mentioned, there is essentially no offline training phase involved in LocQR 

and two quantile models have to be optimized for every single test case. Experiments 

revealed that a rather long computational time is required for the evaluation of the whole 

test data set due to these characteristics. As an alternative approach, the LocQR model 

was trained for a limited number of points (knots - rather than every test point) randomly 

selected from the training samples. In the test phase, rather than training a new model for 

every test case, the model already trained for the nearest knot to the current test case is 

applied to compute the prediction interval for that test case. Different numbers of knots: 

10, 100, 1000, 3000 and 20000 (indicating original LocQR with no knot selection used) 

were examined. The skill score of prediction interval models using BF2 and C3 feature 

sets are plotted in Figure  5.3 and Figure  5.4. These figures show that for BF2 feature 

space, that has a higher dimensionality, a larger neighborhood (@ � 0.7) is preferred by 
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the LocQR model. In contrast, a smaller neighborhood (@ � 0.1) is preferred for the 

lower dimensionality feature space of C3. Results of this set of experiments also confirm 

that by using a limited number of knots (e.g. 3000), the training and evaluation phase can 

be performed much faster without significantly compromising the accuracy of the model. 

For KQR algorithm, the Gaussian kernel was chosen as the best kernel function. 

Tuning of this method is performed using a grid search over the two parameters σ and C. 

Figure  5.5 shows two curves as a sample of the grid search results that project the skill of 

prediction intervals over one of these parameters, while keeping the other constant. Note 

that due to the very large size of the Kernel matrix (N×N) used in KQR, Cholesky 

decomposition is applied to compress this matrix into a lower rank matrix which has a 

feasibly computable size  [23]. 

To explore the impact of different feature sets on the trained prediction interval 

models, Figure  5.6 summarizes the distribution of skill scores obtained by different 

models using these predictor sets. The BF2 feature set clearly provides better skill 

prediction interval models on average (lower SScore0.95). The two feature sets of BF2 and 

BF2PG include the horizontal and vertical wind speed elements at five pressure levels. A 

possible explanation for obtaining better uncertainty models using these feature sets is the 

availability of relevant information describing the instability of the forecast atmospheric 

situation. Among the newly defined basic combinations, C3 attains the best score 

emphasizing the significance of temperature, wind speed and hour-of-day attributes. 

 
Figure  5.3 Skill score diagrams of LocQR models as a function of lambda and number of knots for  

BF2 feature set 
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Figure  5.4. Skill score diagrams of LocQR models as a function of lambda and number of knots 

for C3 feature set 

 

 
Figure  5.5. Tuning the sigma parameter in the KQR kernel function 
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Figure  5.6. Box plot of skill score for different feature sets used by the various quantile regression 

methods 

The details of prediction interval quality measures from (yearly) 3-fold cross 

validation of different methods are reported in Table  5.2. The first four columns 

determine the best model among each of the different quantile regression, clustering-

based and baseline methods. Basic quality measures are reported in the next five 

columns. The 95% confidence lower bound of the coverage measure is also calculated 

using one-sided Binomial test. Thus a cluster with 90% coverage (hit rate) in 1000 test 

cases has a bigger lower bound (i.e. Coverage0.95=88.3%) as compared to a cluster with 

the same 90% coverage, but with only 200 test cases (i.e. Coverage0.95=85.8%). 

Moreover, Root Mean Squared Error (RMSE) is reported as a key measure for point 

based forecast evaluations. Note that the median of each prediction interval is considered 

as the new point forecast of the trained model. It should also be noted that since the upper 

and lower quantile models are learned independently in quantile regression approaches, 

they may cross one another in some cases.  Although there were only few such cases (e.g. 

about 61 for 20% confidence level in NLQR), they were substituted by the climatological 

baseline prediction interval to keep a balanced judgment between different models. 

The best prediction interval model is SPQR with four degrees of freedom using BF2 

feature set. It is followed by LocQR, NLQR, KQR and LQR, respectively. All of the 

quantile regression models outperform the best fuzzy clustering based method with 45 

clusters and kernel density smoothing (in terms of SS)VK- #W.XY). Yet, all of these learning-

based models surpass the baseline methods (p<0.0005). The quantile regression models 
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provide significantly sharper prediction interval forecasts (lower average prediction 

interval width) but with about 3% less reliability. However, refereeing to skill score that 

summarizes the overall performance of a model, one can conclude on the higher quality 

of prediction interval forecasts by these models. By using transformed features for the 

cyclic attributes of wind direction and hour of day in SPQR, the SScore and SScore0.95 

measures improve to the values of 0.2119 and 0.2314, respectively. Figure  5.7 takes a 

detailed look at the width of forecasted prediction intervals by the different models. The 

constant width of climatological baseline model is shown as the horizontal line. This 

figure shows the sharpness of forecasts provided by quantile regression models, and 

specifically the SPQR model.  

A fan chart showing SPQR (df=4) temperature prediction intervals with a range of 

confidence levels for a specific time frame and station is provided in Figure  5.8. One can 

notice the dynamic change of estimated forecast uncertainty depending on the various 

forecast situations. 

 

 
Figure  5.7. Empirical width distribution of forecasted 95% prediction intervals (horizontal line 

shows the best baseline model) 
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Figure  5.8. Trends of various confidence level prediction intervals and the actual observations 

 

Table  5.2. Prediction interval verification measures for top models of different methods based on 
3-fold (yearly) cross validation 

Algorithm K Features 
Fit/ 

Params 
Sharpness 

(°C) 
Coverage

% 
Coverage0.95 

% 
Resoluti

on 
RMSE SScore SScore0.95 

SPQR (50) BF2 df=4 6.68 93.56 91.10 1.76 1.92 0.2125 0.2323 
LocQR (50) BF2 @=0.7 6.92 93.46 90.97 1.73 2.00 0.2202 0.2406 
NLQR (50) BF2 - 6.92 93.15 90.62 1.79 2.00 0.2264 0.2492 

KQR (50) BF2 
σ=0.0042 

C=4 
7.16 93.09 91.51 1.85 2.05 0.2362 0.2561 

LQR (50) BF2PG - 7.91 94.39 92.05 1.64 2.17 0.2438 0.2640 
FCM 45 BF2 Kernel 10.62 94.89 92.77 1.59 2.77 0.3220 0.3432 

Base-Month 12 Month Kernel 12.21 95.12 94.10 1.91 3.12 0.3601 0.3704 
Base-Temp. 10 Normal Temp. 11.70 94.44 93.57 0.98 3.04 0.3620 0.3725 
Base-Clim. 1 - Normal 12.17 94.78 94.49 0.00 3.11 0.3740 0.3774 

 

Finally, Figure  5.9 depicts curves of SS)VK- #W.XY for increasing number of clusters. 

This figure also confirms that the differences between skills of the best-performing 

models are not due to chance and that the prediction intervals obtained by SPQR are truly 

superior to other models. As a counter example, this is not the case between LocQR 

models with @ � 0.5 and 0.7. Although the first model has a better skill score in the 

ordinary test results, its skill score confidence bound is increasingly worse than the 
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second model when taking sampling variations into account within increasing number of 

clusters.  

 
Figure  5.9. Trends of SS)VK- #W.XY for the top quantile regression models  

In other words, the better skill of the first model in the initial test results is most 

probably merely due to chance (by providing good prediction intervals in the areas that 

insufficient samples are available to evaluate the model). This example signifies the role 

of skill score uncertainty analysis for real-world evaluations and decisions. 

It is also important to note that by modeling the median forecast error dependent on 

the available set of attributes, the point forecast performance is considerably improved as 

a side effect of prediction interval modeling. This can be considered as dynamic 

elimination of forecast bias in these models. The results of this study also conform to 

results obtained by  [69]. Yet, the improvement obtained by quantile regression models 

over clustering based models is considerably greater in the experiments conducted here.   

5.6.3. Confidence Level Results 

To perform a more comprehensive evaluation on the introduced prediction interval 

modeling methods, we provide the results for a range of major confidence levels, i.e. 0.1, 

0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 0.95. Figure  5.10 depicts the trends of Reliability 

and Figure  5.11 depicts the trends of Reliability0.95 (which uses Coverage0.95 rather than 
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the initially measured Coverage). In addition, a detailed report of observed coverage 

measures for three confidence levels of 10%, 50% and 95% is provided in Table  5.3. The 

first column in each section of the table reports the average distance between a missed 

case and the edge of its forecast interval (! as defined in subsection  3.2). There is no 

considerable bias observed in results regarding the occurrence of missed forecasts on the 

left or right side of the intervals. 

Figure  5.12 shows the change of prediction interval width obtained by various 

models using a range of confidence levels. To perform the final skill score evaluations, 

one should note that the reliability would have to be measured in terms of the average 

distance of observations to the prediction interval boundary (i.e. %"¤¥ ). Hence, in Figure 

 5.13 this measure is projected. Finally, in Figure  5.14 the overall skill of the various 

methods are compared over the selected range of confidence levels. 

 
Figure  5.10. Comparison of Reliability between various methods over confidence levels 

 

 

 

 

 



73 
 

 

 
Figure  5.11. Comparison of Reliability0.95 between various methods over confidence levels 

 
 

Table  5.3. Detailed coverage and miss ratio observations in test for three confidence levels  

 (1 r D)=0.95 (1 r D)=0.5 (1 r D)=0.1 

Algorithm 
Avg. δ 
(°C) 

Miss 
(left)% 

Hit 
(center)% 

Miss 
(right)% 

Avg. δ 
(°C) 

Miss 
(left)% 

Hit 
(center)% 

Miss 
(right)% 

Avg. δ 
(°C) 

Miss 
(left)% 

Hit 
(center)% 

Miss 
(right)% 

SPQR 0.70 3.3 93.6 3.2 1.06 25.8 48.9 25.3 1.35 45.5 9.9 44.6 
LocQR 0.75 3.4 93.5 3.2 1.11 26.8 49.2 24.0 1.41 46.8 10.0 43.2 
NLQR 0.78 3.4 93.2 3.4 1.12 25.8 48.9 25.3 1.42 45.3 10.0 53.7 
KQR 0.82 3.4 93.1 3.5 1.20 28.4 46.2 25.4 1.55 46.3 11.2 42.5 
LQR 0.82 2.8 94.4 2.9 1.22 25.2 49.7 25.1 1.55 45.1 10.0 54.0 
FCM 1.08 2.7 94.9 2.4 1.62 24.8 50.3 24.9 2.03 44.9 10.0 45.2 

Base-Month 1.11 2.5 95.1 2.4 1.82 24.6 50.7 26.6 2.32 44.8 10.3 44.9 
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Figure  5.12. Comparison of prediction interval width between various methods over  

 

 
Figure  5.13. Comparison of Δï¤¥  between various methods over confidence levels 



75 
 

 
Figure  5.14. Comparison of SScore¤W.XY between various methods over confidence levels 

The results obtained from the range of confidence levels confirm superior skill of the 

SPQR method based prediction interval forecasts. This model outperforms other methods 

both in terms of sharpness and reliability of the provided prediction intervals. 

Experiments reveal that the KQR algorithm suffers from lower reliability of 

prediction intervals although its sharpness is comparable with those of other quantile 

regression algorithms. However, it is observed in the experiments that the KQR algorithm 

ranks as the best or second best quantile regression method in terms of overall skill when 

applied to smaller feature sets including C3 and BF1. This likely demonstrates the higher 

capability of this algorithm to handle lower dimensionality quantile learning problems. 

A possible explanation for the superior performance of quantile regression models 

over clustering methods is the fact that the forecast error information is directly utilized 

(in the objective loss function) by the single phase optimization procedure involved in 

these methods. In contrast, clustering-based methods (including FCM) determine the 

clusters of forecast cases by an optimization procedure that does not exploit the forecast 

error, but is based solely on the predicted weather attributes (unsupervised learning). The 

forecast error information is used only later, in the second phase of distribution fitting. 

5.7. Conclusions  

Major quantile regression methods including kernel quantile regression and 

clustering based methods were applied for prediction interval modeling on a data set of 
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NWP forecasts. These models extend the raw point predictions of the forecasting system 

into interval forecasts that intrinsically communicate the expected forecast uncertainty to 

the users. A key analysis for skill score evaluations was taken into consideration in test 

experiments. The roles of parameters and various available features applied in quantile 

regression models were investigated in the experiments. The results demonstrated the 

superior performance of quantile regression models and specifically the spline quantile 

regression. Prediction interval models obtained from the hybrid method of clustering and 

KQR can also outperform other models when using low dimensional feature spaces but 

can only get close to the best model with higher dimensional feature sets. All QR models 

considerably outperform the clustering-based models in terms of forecast skill. However, 

it should be noted that clustering models have a higher reliability and can model the 

entire probabilistic distribution of a forecast in a single model. 
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Chapter 6                                                                             
Time Series Approaches to Uncertainty 
Modeling 

This chapter turns the attention of the uncertainty modeling problem into 

consideration of temporal features of the point forecast errors. In this regards, time series 

analysis approaches that can provide an estimation of the expected variance of the 

forecast into the future are investigated. We also consider time series models that focus 

on the variance of the density forecast rather than only focusing on the mean of this 

density for future time steps. Prediction intervals obtained from these time series models 

are then compared with interval forecasts from clustering and quantile regression 

methods discussed in the previous chapters. 

6.1. Introduction  

Weather forecast accuracy records are a valuable source of knowledge about the 

systematic and chaotic behavior of prediction error. By utilizing such information useful 

models can be obtained that are capable of predicting the uncertainty of system outputs. 

Different learning methods including clustering and quantile regression are studied as 

modeling approaches for this purpose in the previous chapters. However, due to the 

intrinsic temporal quality of the forecasts gained from Numerical Weather Forecasting 

(NWP) systems, time series modeling can be considered as a potentially suitable 

approach for uncertainty modeling. Forecast errors of different weather attributes (e.g. 

temperature and wind speed) are recorded in consecutive time steps (e.g. hourly) in each 

station which can be considered as a time series. The primary goal of the time series 

modeling performed in this study is to obtain a temporal model for forecast uncertainty 

along with the expected value of target. This model can then in turn provide prediction 

intervals for the target attribute of interest with any desired level of confidence in 
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different time steps into the future. In this work, different univariate time series modeling 

methods including ARIMA models and also heteroscedastic models for conditional 

variance are empirically investigated to obtain prediction intervals for weather forecasts. 

The quality and skill of time series uncertainty forecasts for 1-hour-ahead up to 10-days-

ahead are evaluated and also compared against clustering and quantile regression 

forecasts using the prediction interval evaluation framework. 

Time series models have been broadly studied and applied in various weather 

forecast problems such as climatological forecasting  [85] [55] and short to medium-range 

forecasting  [24] [38] [52]. As another motivation for applying statistical methods in our 

problem, Wilks  [86] notes that these methods “…are still viable and useful at very short 

lead times (hours in advance), or very long lead times (weeks or more in advance), for 

which NWP information is not available with either sufficient promptness or accuracy, 

respectively.”. Hence, we are motivated here to apply appropriate time series models for 

the purpose of uncertainty modeling and compare the accuracy of the forecasts obtained 

against the other uncertainty prediction models investigated in this study. 

In  [10] a non-structural time series modeling approach is taken to forecast daily 

average temperatures for weather derivative applications. Due to the crucial significance 

of forecast uncertainty in the weather derivative market, GARCH models are also used to 

provide estimations of target densities into the future. The accuracy of point forecasts 

obtained from this time series model is compared against benchmark methods and also an 

NWP model. Results of this study confirm better performance of the autoregressive time 

series model when compared to the benchmark methods and also show that this model 

can even outperform the NWP model in longer horizons (i.e. leads bigger than 8 days). 

The capacities of these models in terms of volatility prediction are not however broadly 

evaluated and are not compared versus other available uncertainty modeling methods.  

Franses et al.  [24] use GARCH models to capture volatility clustering and obtain a 

univariate model for weekly mean temperatures. Time series models for point and density 

forecasts of daily temperature are compared with ensemble predictions from an NWP 

atmospheric model in  [78] and  [79]. An AR-GARCH model is fitted to the series and 

utilized to provide forecasts of mean and variance for given horizons based on a Gaussian 

distribution assumption for residuals. The ensemble mean forecast outperforms the other 

methods in terms of accuracy both for point and quantile forecasting. Yet, the time series 

model can provide forecasts that are even more accurate than the NWP forecast for 
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horizons longer than 6 days. However, in this study the ensemble model-based 

uncertainty forecasts are assumed to be inaccessible and uncertainty models are obtained 

using solely the historical records of the point forecasting system. In this context, the 

study performed here is novel as it compares major time series models along with other 

uncertainty modeling methods of clustering and quantile regression by focusing on the 

historical performance of an empirical weather forecasting application. 

 Accordingly, the time series models learned from the available system performance 

history are to provide an estimate of forecast uncertainty (along with the expected value) 

which can then be reported in the format of prediction intervals. For this purpose, two 

main groups of time series models are employed. The first set of methods applies the 

theoretical statistical analysis of residual variance of seasonal ARIMA models to obtain 

variance forecasts along with expected mean predictions. In the second set, explicit 

autoregressive models of variance are employed to train time series models of conditional 

variance over the forecasts. These models are then subject to analytical and comparative 

study along with other models of forecast uncertainty, namely clustering-based and 

quantile regression-based models. 

6.2. Time Series Modeling Essentials 

Similar to other machine learning approaches, time series modeling involves learning 

a model using available training data and later evaluating the quality of the model by test 

data. However, there is a wide range of models to choose from when fitting a time series 

model in the training phase. Each of these models would be appropriate for different 

types of time series depending on the process which the data is generated from. Hence, 

the general procedure of time series modeling involves the three phases of a) model 

specification, b) model fitting and c) model diagnostics  [19]. 

As the first step “model specification” is required that investigates various 

characteristics of the time series to determine the most appropriate model to be fitted to 

data. Next, the specified model is fitted to the available time series data by estimating the 

parameters defined in the model. Classical techniques such as Least Squares Estimation 

(LSE) or Maximum Likelihood Estimation (MLE) are used for this purpose. Finally, in 

the third step the learned model undergoes diagnostic analysis to determine whether there 

has been a shortcoming in either of the two previous steps. Often, the last step would 

advise that the initially specified model should be redefined and/or fitted again for couple 

of cycles until a proper time series model is lastly obtained. In this study, we aim to 
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obtain models of “temperature forecast error time series”. After providing basic 

background and definitions in this section, major analysis and results from each of the 

above mentioned modeling steps are explained in the following sections. 

6.3. Definitions and Processes 

A time series is essentially a stochastic process consisting the sequence of random 

variables g>.: \ � 0,�1,�2,�3, … h. For the >. series there are some characteristics that 

describe major aspects of the series. These include the mean, variance and autocorrelation 

of the process:  
E. � ,1>.3    4VK \ � 0,�1,�2, …   ( 6.1)    

  <.,= � ÎV�1>. , >=3    ( 6.2) 

 I.,= � ÎVKK1>. , >=3 � <.,= �<.,.<=,=�    ( 6.3) 

where M � 0,�1,�2,�3, … and <.,= is the autocovariance function.  Function I.,= is the 

autocorrelation function which provides a unit-less measure of (linear) dependence 

between the two random variables. Hence, t and s are arbitrary time indexes that can be 

chosen to have any value in the above equations. 

Random Walk 
A “Random Walk” as the simplest form of a time series is represented as follows 

 [25]: 

 >. � >.Pl k -.   ( 6.4) 

where -. is a white noise stochastic process with zero mean and N;R variance and the 

random variables e1,e2,… are independent and identically distributed (i.i.d.). This defines 

the time series in a way that each new sample in the series is the result of a random 

change from the previous value. To investigate the above metrics for this series we have: 

 E. � ,1-l k -R k ó k -.3 � 0   4VK ºAA \   ( 6.5) �ºK1>.3 � <W � �ºK1-l k -R k ó k -.3 � \N;R   ( 6.6) 

which represent the mean and variance of the >. random variable. 

Stationarity 
A critical concept in the study of time series is “stationarity”. The idea behind this 

concept is that “the probability laws that govern the behavior of the processes do not 

change over time. In a sense the process is in statistical equilibrium”  [19]. Process g>.h is 
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“strictly stationary” if the joint distribution of >.� , >.� , … , >.ã is the same as the joint 

distribution of >.�P5 , >.�P5 , … , >.ãP5 for all choices of t and k. One common way of 

examining the stationarity of a series is to check whether its covariance function only 

depends on the time lag (i.e. k=s-t) and not the actual time positions (i.e. t or s). For 

example, the random walk series is not stationary since its covariance function: 

 <.,= � ∑ ∑ ÎV��-*, -&� � \.&wl=*wl N;R   ( 6.7) 

 I.,= � 	.
=    ( 6.8) 

suggests that the covariance (and hence the correlation) function is dependent on the 

actual time position meaning that the correlation characteristics of the series actually 

changes during time in contrary to the definition of stationarity. 

Trend in Time Series 
In a stationary process the mean function must be a constant function of time. Due to 

the regular inclination of the Northern Hemisphere toward the sun a seasonal trend is 

naturally expected for the forecasted temperature values. However, here the focus of the 

analysis is on the temperature error series which does not necessarily follow the same 

cyclical trend. By considering a seasonal trend function a possible model can be: 

   >. � E. k J.   ( 6.9) 

where E. is a deterministic annual periodic function i.e. E. � E.PlR. The general 

assumption for monthly seasonal data considers 12 constants for the expected mean value 

for each month: 

 E. � 
 �l        4VK \ � 1,13,25, …�R        4VK \ � 2,14,26, …��lR        4VK \ � 12,24,36, …
�     ( 6.10) 

Figure  6.1 shows the box plots of such seasonality trends as reported in Table  6.1, 

sometimes called a seasonal mean model, for forecasted temperature and error series. 

Error series also show some considerable level of seasonality in the trend although they 

are less substantial when compared to that of the forecasted temperature trend.  
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Figure  6.1 Seasonality trend of the (left) forecast temperature series and (right) the forecast error 
time series 

Table  6.1. Seasonal mean model parameters for forecast temperature and error 

 

 

For a detailed analysis on the accuracy of such constant mean estimation of the trend 

one can refer to subsection 3.2 of  [19]. To achieve a better smooth transition between the 

time periods the seasonal trend can be modeled with sinusoidal curves: 

 E. � �W k �l )VM12�4\3 k �R M�]12�4\3   ( 6.11) 

where the � parameters are estimated by regression. Figure  6.2 shows a fitted cosine 

trend (parameters shown) to the temperature forecast error along with the observed errors 

as points. One can notice that the general fluctuations in error are captured by the trend 

curve. Details on the reliability of the regression estimates can be found in  [25]. 

  

Month 

�� 

(temp.) 

�� 

(error) 
January 1.6 -0.97 
February 3.8 0.47 
March 5.2 0.83 
April 8.1 1.52 
May 12.3 0.91 
June 14.5 1.29 
July 19.1 1.86 

August 17.7 2.35 
September 14.8 1.67 
October 9.6 0.90 

November 6.1 -0.13 
December 0.6 -0.98 
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Figure  6.2. Cosine trend fitted to 5 days of temperature error 

When examining the residuals of a trend model we have:  

 J:. � >. r Ê.   ( 6.12) 

where J:. is the residual of the tth observation. Using a least squares fit will automatically 

result in a zero mean residual and it can be standardized by diving over the standard 

error. Residual analysis of both models described above reveals that there is dependence 

and non-normality evident in the residuals of the respective models which signals the 

need for further complex model fitting strategies discussed subsequently.    

General Linear Process 
Using this model g>.h is represented using a weighted linear combination of present 

and past white noise terms  [74]: 

 >. � -. k Zl-.Pl k ZR-.PR k ó,         ∑ Z*R o ∞�*wl      ( 6.13) 

A typical example is the case where the weights are an exponentially decaying 

sequence: 

Z& �   /& ,      r 1 o / o 1   ( 6.14) 

for this case we can easily calculate the characteristic measures as: 

  ,1>.3 � 0,      �ºK1>.3 � �ä�lP��  ,      ÎVKK1>. , >.P53 � /5   ( 6.15) 

Hence, this process is stationary and one can obtain a nonzero mean process by 

adding the E (trend element) to Equation ( 6.13). 
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Moving Average Process 
Using a finite number of non-zero weights in the general linear process the moving 

average process is obtained  [19]: 

>. � -. r  l-.Pl r  R-.PR r ó r  �-.P�   ( 6.16) 

where q is the order of the process MA(q). It can be shown by calculations that for this 
process we have: 

 <W � 11 k  lR k  RR k ó k k �R3N;R    ( 6.17) 

 I5 � ú  P��e������e������eóe������le���e���eóe���       4VK ~ � 1,2, … , H
0      4VK ~ ¯ H                                                             �    ( 6.18) 

hence, there is a cut off after lag q. 

Autoregressive Process 
When the random process is the regression of its previous values we obtain the 

definition of pth order autoregressive process as follows  [15]: 

  >. � /l>.Pl k /R>.PR k ó k /¸>.P¸ k -.    ( 6.19) 

For example, when considering AR(2), the second-order autoregressive, we have: 

 >. � /l>.Pl k /R>.PR k -.   ( 6.20) 

where -. is assumed to be independent of >.Pl and >.PR. For investigation of stationarity 

we consider the AR characteristic polynomial and equation: 

 /1»3 � 1 r /l» r /R»R � 0    ( 6.21) 

It can be shown that the process will be stationary if and only if the absolute values of 

roots for the characteristic equation exceed 1 or in other words the roots should lie 

outside the unit circle in the complex plane. To gain the autocorrelation function, we first 

obtain the autocovariance function after multiplying Equation ( 6.19) by >.PR and taking 

expectations: 

 <5 � /l<5Pl k /R<5PR   4VK ~ � 1,2,3, …   ( 6.22) 

which are usually called the Yule-Walker equations. Various values of I5 can be obtained 

by dividing this equation by <W, setting k and IW equal to 1 and calculating the 

autocorrelation values for higher lags successively. Details of these calculations and also 

methods to directly calculate the autocorrelation values are provided in  [25]. It is also 

shown that with complex root for the Yule-Walker equations the correlogram exhibits a 

sine wave shape with a damping factor which is dependent on the roots too.  
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Also note that an autoregressive model can be expressed as a general linear process 

as defined in Equation ( 6.13). By using the recursive definition of an AR model we can 

get the values for >.Pl, >.PR, etc. and by substituting these into the original equation one 

will obtain a general linear process version of the original process. 

6.3.1. Mixed Autoregressive Moving Average Process 

A more general form for a time series can be obtained by assuming a series being 

partly autoregressive and partly moving average  [19]: 

 >. � /l>.Pl k /R>.PR k ó k /¸>.P¸ k -. r  l-.Pl r  R-.PR r ó r  �-.P�   ( 6.23) 

where the process is called ARMA(p,q). It should be noted that we may get the same 

autocorrelation functions using different values of  . Hence, given an autocorrelation 

function there may not be a unique MA model for it. To address this issue of invertibility 

we first introduce the re-expression of an MA process as an infinite-order AR process by 

substituting for consecutive values of -.Pl and defining the MA characteristic polynomial 

 [19]. It can be shown that the MA(q) model is invertible if and only if the roots of the 

MA characteristic equation exceed 1 in modulus. Both stationarity and invertibility are 

required for the ARMA model. 

6.3.2. Nonstationary and ARIMA Process 

When there are not sufficient reasons to assign a deterministic trend for a series (e.g. 

just a linear increase in a segment of the series), one would have to use nonstationary 

models to fit the data which consider stochastic trends. It can be shown that using 

different sets of assumptions the first or second difference of many non-stationary 

models, leads to a stationary process  [19]. 

When the dth difference �. � �µ>. is a stationary ARMA(p,q) process, >. is 

identified as an integrated autoregressive moving average process i.e. ARIMA(p,d,q) 

where d is considered 1 or 2 practically. For d=1, �. � >. r >.Pl and for higher values 

of d this transformation is repeated d-1 times over �.. When there are no autoregressive 

or moving average terms in the process it is denoted as ARI and IMA, respectively. By 

substituting associated difference values in the ARIMA formulation the equivalent 

ARMA model can be obtained which is of course non-stationary (a unit root exists for the 

characteristic polynomial). 

To obtain stationarity in a series which has increased dispersion for higher values, the 

logarithm transformation can be used. The power (Box-Cox) transformations are another 
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alternative to obtain normality and stationarity  [86]. It can also be shown that when >. is 

a relatively stable percentage change from >.Pl, a log transformation followed by a first 

difference can provide a stationary process known as the returns series in the financial 

domain.  

6.4. Time Series Models for Temperature Forecast Error  

6.4.1. Model Specification 

For basic analysis of the time series, 5 days of hourly recorded temperature (at 2m) 

forecast errors starting from first day of June, 2007 by the WRF NWP system are plotted 

in Figure  6.3 for the a weather station in Hope, BC, Canada. Also for a broader look at 

the characteristics of this time series a 45 day long slot of the same series is depicted in 

Figure  6.4. In these figures, high autocorrelation and seasonality qualities of the series are 

evident. 

Figure  6.3. Temperature forecast error time series 

Figure  6.4. 45 days long series of temperature forecast error 

To have a detailed look at the dependency of the current temperature error and 

forecast errors in the past hours, scatter plots of different lags are represented in Figure 
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 6.5. Strong autocorrelation is apparent between the current temperature error and the 

system error observed in the previous hour. Correlation with a lesser extent is also 

observable between the current forecast error and that of the same hour on the previous 

day. However, the 12-hour lag shows a rather different behavior as there is less 

correlation when compared to the 24-hour lag. 

 
Figure  6.5. Autocorrelation of the forecast error series in different lags 

A closer look at the autocorrelation measures in various lags of 1, 12 and 24 hours is 

provided in Figure  6.6. These values are measured independently for each month rather 

than calculating them using the whole time series. Unlike the 1 and 24 hour lags, 12 hour 

lag values exhibit a considerably higher variance in different months and maintain this 

pattern through the different years. 
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Figure  6.6. Autocorrelation for three different lags (i.e. 1, 12 and 24 hours) projected over month 

Figure  6.7. Monthly mean autocorrelation for the three different lags of 1, 12 and 24 hours 

Figure  6.7 demonstrates this condition with lag 12 values fluctuating between -0.4 in 

June and 0.6 in December. Such information may suggest special considerations such as 

 



89 
 

considering two independent models for cold and warm seasons in the model 

specification phase.  

6.4.2. Sample Autocorrelation Function 

The available recorded time series data can be used to calculate the sample 

autocorrelation values for different lags: 

 K5 � ∑ 1�7P��31�7��P��3ã7����∑ 1�7P��3�ã7��    ( 6.24) 

The K5 values can then be checked to see whether they follow a characteristic pattern 

for a common ARMA model with specific parameters. For instance, for MA(q) processes 

the autocorrelation function (ACF) is zero for lags beyond q. Figure  6.8 shows the sample 

correlation function for the temperature forecast error time series in the Hope station for 

up to 72 hour lags. In this correlogram there is a high correlation observed in the first few 

lags which gradually declines reaching its minimum in the 12th hour lag and increases 

again in the next 12 hours. This pattern is maintained through the next days with a 

damped property. 

Figure  6.8. Sample correlogram for up to 2 days back 

The sample correlations are subject to sampling variation yet its properties are not 

easily obtained as it is a ratio of quadratic functions with dependent variables. Results 

from simulations provide methods for computation of the sampling distribution. For large 

n, K5 is assumed to be approximately normally distributed with mean I5 and a variance 

that is calculated using a formula defined in  [19] which is inversely proportional to the 

number of samples. Consequently, the variance of the sampled autocorrelation values can 

be obtained by these formulas and then considered for hypothesis testing purposes. 
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6.4.3. Sample Partial and Extended Autocorrelation Functions 

For an AR(p) model the autocorrelation function does not become zero after an 

specific lag. Hence a different function is required to decide about the proper order for 

AR models. Therefore the partial autocorrelation function (PACF) is defined which 

considers the correlation between >. and >.P5 after removing the effect of the intervening 

variables >.Pl, … , >.P5el. Assuming g>.h as a normally distributed series: 

 /55 � ÎVKK1>. , >.P5|>.Pl, >.PR, … , >.P5el3   ( 6.25) 

where /55  is the partial correlation at lag k. It can be shown that for an AR(p) process the 

partial autocorrelation function cuts off after lag p. For an MA(q) process the partial 

autocorrelation function will also decay exponentially to zero. 

To estimate the function based on an observed time series the following recursive 

equation can be used  [19]: 

 /55 � ��P∑ ����,×���×���×��lP∑ ����,×�×���×��    ( 6.26) 

where /5,& � /5Pl,& r /55/5Pl,5P& for j=1,2,…,k-1 and /l,l � Il. In practice, the I 

values are replaced r values. It is also shown that for an AR(p) process the sample partial 

autocorrelations at lags greater than p are approximately normally distributed with zero 

mean and variance 1/]. 

It is difficult to identify mixed ARMA models using sample ACF and PACF. The 

extended autocorrelation function (EACF) is known to be a good tool for this purpose 

with large sample sizes  [13]. This method uses a finite sequence of regressions to filter 

out the AR part of a mixes ARMA model to obtain a pure MA process that enjoys the 

cutoff property in its ACF. The EACF information is summarized by a table which 

reports the sample correlations of the autoregressive residuals (assuming different AR 

and MA orders) which are significantly different from zero  [82]. In this table an 

ARMA(p,q) process will theoretically have a triangle of zeros with the left vertex 

matching the proper orders of the model. 

Figure  6.9 shows the sample partial autocorrelation function for the temperature error 

time series. This graph is a strong indication of an autoregressive model with order 2 

since the first two lag partial autocorrelations are significantly different from zero (the 

dashed horizontal lines represent the critical values for significance test). 
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Figure  6.9. Sample partial autocorrelation function for the past two days 

The summarized analysis of the extended autocorrelation function is provided in 

Table  6.2. Entries of “x” represent autoregressive residuals whose sample autocorrelation 

is significantly different from zero. Please refer to  [19] for detailed definition of EACF. 

The upper left hand zero element which is highlighted clearly suggests that an 

ARMA(2,2) model would be appropriate for the series. 

Table  6.2. Sample EACF for the temperature error series 

AR/MA 0 1 2 3 4 5 6 7 8 9 10 11 12 13 
0 x x x x x x x x x x x x x x 
1 x x x x x x x x x x x x x x 
2 x x o x x x x x o o o x o x 
3 x x x x x o x o o o o o o x 
4 x x o x o o o o o o o o o o 
5 x x x x o o x o o o o o o o 
6 x x x x x o o o o o o o o o 
7 x x x x x o o o o o o o o o 

 

In the specification process we should be cautious that many series are nonstationary. 

The ACF of such series typically shows large values of autocorrelation that fail to die out 

as early as expected. Considering the ACF of the forecast error series in Figure  6.8 all 

values are significantly far from zero.  
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Figure  6.10. Correlogram for first difference of the monthly seasonality removed series 

The sample ACF of the first differences of this series is provided in Figure  6.10. It 

must be noted that over-differencing can result in a nonstationary or noninvertible series 

and hence must be avoided by differencing in succession and applying parsimony 

(models should be simple, but not too simple). 

6.4.4. The Dickey-Fuller Unit-Root Test 

To statistically analyze the nonstationarity of a given series hypothesis testing can be 

used. Under the null hypothesis that g>.h is difference nonstationary it can be shown that 

the AR characteristic polynomial of a properly modified equation of the series, which is 

an AR(k) process, will have a unit root  [19]. The Augmented Dickey-Fuller (ADF) test 

statistic is the t-statistic of the estimation of a coefficient named a using least squares 

regression where a=0 corresponds to the null hypothesis of difference nonstationarity 

 [14].  

The same test can be used to examine the null hypothesis of a process being linear-

trend nonstationary. This can be performed by adding an intercept term and the covariate 

time in the test’s regression model. The ADF test statistic for the seasonality removed 

temperature error series is estimated -21.7 with the p-value being 0.01 which is an 

indication (although not very strongly) of the series being stationary. 

Another method for selection of orders for an ARMA model is based on 

minimization of Schwarz Bayesian Information Criterion (BIC)  [25]: 

 ëqÎ � r2 AVÛ1Gº»�G^G A�~-A�TVV�3 k ~AVÛ1]3   ( 6.27) 

where ~ � U k H k 1 for a model with constant term which is included as a penalty 

function to prefer simple over too complex models. The process minimizing the BIC 

involves first fitting a high-order AR process with the order determined by minimizing 
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Akaike’s Information Criterion (AIC) and then using residuals as proxies for 

unobservable error terms and estimating BIC for k lags of observations along with j lags 

of the residuals from the high order autoregressive model. 

Figure  6.11. Best subset ARMA selection table based on BIC 

In Figure  6.11 the results from a BIC-based order selection process are provided. 

Each row represents a subset ARMA model with orders determined by the shaded cells. 

These models are ordered according to their BIC. The Best model includes lags 1, 3, 18, 

23 and 24 of the time series and lags 2, 3 and 23 of the error process. However, the BIC 

values are very close for the top models and it is recommended to investigate orders of 

the other models in further analysis e.g. lag 2 of the time series and lag 24 of the error 

process. 

6.5. ARIMA Model Fitting 

6.5.1. The Method of Moments 

Assuming that p and q orders for an ARMA model have been already specified, the 

parameters involved in the model have to be estimated in the next step. In the Method of 

Moments (MM) theoretical moments of the model are equated with the sample moments 

and solved to obtain the unknown parameters. For instance, in the general AR(p) case I5 

values are replaced by K5 estimates in the Yule-Walker equations to obtain estimates of 

the /l..¸ parameters. For MA and ARMA models the method is more complicated 

involving quadratic equations that have multiple solutions and only one is invertible and 

acceptable. It can be shown that this method is only efficient for AR processes and fails 

for models that have MA processes  [19]. 
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6.5.2. Least Square Estimation 

The parameters of a model can be obtained using Least Square Estimation (LSE) by 

minimizing the sum of squares of model error. For example in an AR(1) with constant 

mean Sc  [19]: 

 S¹1/, E3 � ∑ t1>. r E3 r /1>.Pl r E3uRc.wR    ( 6.28) 

is called the conditional sum-of-squares function and is minimized through setting its 

gradients relative to the parameters equal to zero. It can be shown that the conditional 

least squares estimation of the general AR model amounts to solving the Yule-Walker 

equations. 

For MA models the objective function will be nonlinear in the   parameters and 

hence derivative-based methods are to be replaced by numerical optimization methods 

such as multivariate Gauss-Newton. The same approach is used for ARMA(p,q) models 

by minimizing S¹�/l, /R , … , /¸ ,  l,  R, … ,  ��. 

6.5.3. Maximum Likelihood Estimation 

The likelihood function L is defined as the joint probability density for actually 

observing the series in hand. In ARIMA models such function has parameters of /l..¸, 

 l..�, E and N;R. By maximizing the likelihood function with respect to these parameters 

the observed data are the most likely outcome of the process. The white noise terms are 

assumed independent and normally distributed with zero mean and each error term can be 

substituted by its respective model based terms in this joint pdf to obtain the likelihood 

function. For example in AR(1): 

 41�8R, 8ö, … , 8c|8l3 � 12�N;R3P1cPl3 R⁄ -»U �r l
R�ä� ∑ t1>. r E3 r /1>.Pl r E3uRc.wR Ë  ( 6.29) 

where 8l is the observed value of the variable >l and so forth. By multiplying this 

function to the marginal pdf of >l the unconditional sum-of-squares function is obtained: 

 S1/, E3 � ∑ t1>. r E3 r /1>.Pl r E3uR k 11 r /R31>l r E3c.wR    ( 6.30) 

and then applying the logarithm over S will result in the log-likelihood function which 

can be numerically minimized to obtain parameters fitted to the observed series. Since 

S1/, E3 � S¹1/, E3 the parameter estimation should be very similar for large sample 

sizes. For details on derivation of Maximum Likelihood Estimation (MLE) functions for 

general ARMA models we refer the reader to  [74]. 
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By using the maximum likelihood theory we can obtain the sample variance 

properties of the estimated parameters. For instance in the AR(1) model we have: 

 �ºK�/:� � lP��
c    ( 6.31) 

Hence, the variance of the / estimator decreases as / approaches ±1. The analysis 

can also provide correlation between multiple estimated parameters. It can also be shown 

that the variance in the method of moments is always larger than that of the maximum 

likelihood estimation. For example for an MA(1) model with   equal to 0.9, the sd. of its 

estimation using MM will be more than 5 times larger than that of the MLE method.  

Based on the analysis of the temperature forecast error series performed in the 

previous subsection regarding the results of extended autocorrelation function and BIC 

analysis, we start fitting ARMA models with orders of 2 and 3. In Table  6.3 the results of 

parameter estimation using least squares and maximum likelihood estimation are reported 

for the Hope station. The model has been trained using the first two years of data (i.e. 

2007 and 2008) which has about 17000 observations. 

Table  6.3. LSE and MLE estimates of the favourable ARMA models for the temperature error 
series 

 ARMA(2,2) ARMA(2,3) ARMA(3,2) 

Parameters 
Conditional 

LSE 
MLE 

Conditional 
LSE 

MLE 
Conditional 

LSE 
MLE 

/l 1.63±0.04 0.21±0.45 1.64±0.04 1.63±0.05 1.72±0.15 1.44±0.46 /R -0.69±0.04 0.59±0.41 -0.69±0.04 -0.69±0.04 -0.83±0.23 -0.41±0.66 /ö - - - - 0.06±0.09 -0.11±0.24  l 0.41±0.04 -0.99±0.43 0.42±0.04 0.41±0.05 0.50±0.15 0.23±0.46  R 0.11±0.02 -0.25±0.79 0.11±0.02 0.11±0.02 0.08±0.06 0.17±0.10  ö - - 0.01±0.02 0.01±0.02 - - 
intercept -0.07±0.13 -0.07±0.18 -0.07±0.13 -0.07±0.13 -0.07±0.13 -0.07±0.14 N;R 0.99 1.01 0.99 0.99 0.99 0.99 

 

By starting from a more specific model of ARMA(2,3) the estimated parameters for 

the autoregressive and moving average components tend to be significantly different 

from zero (meaning that the specific terms actually play an important role in the model) 

except than  ö which is not significant and can be possibly eliminated from the model to 

obtain a simpler model. In the two left columns, the optimized parameters for the simpler 

ARMA(2,2) model are reported. Although the estimations were very close between the 

LSE and MLE estimators in the first case, here the estimations for MLE are different 

from both the LSE and the first more complex model. 
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6.6. Model Diagnostics 

To test the goodness of fit for models and to investigate appropriate modifications 

over them we analyze the residuals and over-parameterization for these models. If the 

model is correctly specified with well-estimated parameters, the residuals would be 

approximately white noise with i.i.d. normal distribution having zero mean and constant 

variance. So by looking at the residuals’ plot we do not expect to see non-zero mean or 

any trend in the series which is roughly the case for standardized residuals from our fitted 

ARMA(2,2) model in Figure  6.12. A point noticeable from this plot that still requires 

further analysis is the possible fluctuation of the variation of residuals which is critical in 

uncertainty modeling. 

Figure  6.12. Standard residuals from the LSE ARMA(2,2) model  

To assess the normality of the residuals the quantile-quantile plot of residuals are 

depicted in Figure  6.13. There is clear deviation from the theoretical normal quantiles in 

this plot. The Shapiro-Wilk normality test result also rejects the normality of residuals 

(p<0.005). The ACF of residuals can also provide valuable information about the 

independence of residuals. In Figure  6.14 the ACF of residuals from the temperature 

error ARMA(2,2) model is plotted. Although most lags confirm independence between 

residuals, the statistically significantly different from zero autocorrelations around lag 24 

are very important. This information can lead us into proper further customization of our 

model for the series. 
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Figure  6.13. Quantile-quantile plot for residuals from the ARMA(2,2) model 

Figure  6.14. ACF of residuals from the ARMA(2,2) model 

As another model specification technique, a close more general model is (over)fitted 

and the original model is accepted if the additionally introduced parameters are not 

significantly different from zero and the estimates of the original parameters are not 

dramatically changed. In Table  6.3 the basic ARMA(2,2) model is further investigated by 

trying close general forms. These forms are obtained by adding an order to either 

autoregressive or moving average components and hence considering ARMA(2,3) and 

ARMA(3,2). It can be noticed than in both cases the estimated parameter for the added 

order 1 ö in the second column and /ö in the third column3 is not significantly 

different from zero and hence the general model is rejected. 
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6.7. Forecasting 

Using the available series up to time t (forecast origin) the forecast for >.eQ occurring 

l (lead time) steps ahead is to be computed which is denoted as >:.1A3. It can be shown that 

to obtain the minimum mean square error we have  [19] [25]: 

 >:.1A3 � ,1>.eQ|>l, >R, … , >.3   ( 6.32) 

If there is a deterministic trend model involved in the process, it can be used to 

calculate the trend element in the lead time i.e. EÚe�. 
It can be shown that >.1A3 � E for large A in all stationary ARMA models. This is 

intuitive as the dependence between the forecast and observations gradually disappear 

until there is no information to improve on the naïve forecast of E. Also for the variance 

of error we have �ºK�-.113� � N;R and by using the MA(∞) form: 

 -.1A3 � -.eQ k Zl-.eQPlkZR-.eQPR k ó k ZQPl-.el   ( 6.33) 

which holds for all ARIMA models. The forecast is unbiased i.e. ,�-.1A3� � 0 and: 

 �ºK�-.1A3� � N;R�1 k ZlR k ZRR k ó k ZQPlR � � N;R ∑ Z&RQPl&wW     ( 6.34) 

meaning that with increasing lead time the error variance increases and �ºK�-.1A3� ��ºK1>.3 � <W for large A. Please refer to  [19] for details of obtaining this equation. It can 

also be shown that generally for nonstationary ARIMA processes the forecast error 

variance increases into the future for example in the random walk case we have Z& � 1 

for all j so �ºK�-.1A3� � AN;R. To further clarify the forecast process the explicit forecast 

expression for an ARMA(1,1) will be: 

 >:.1A3 � E k /Q1>. r E3 r /QPl-.    4VK A õ 1    ( 6.35) 

Also in the forecasts of A ¯ H the autoregressive portion of the forecast equation for 

this process remains only, as we have ,1-.eQ|>l, … , >.3 � 0 for j>0. 

Assuming an i.i.d normally distributed white noise terms for g-.h an ARIMA series 

will also have a normal distribution for -.1A3 and hence the prediction limits for forecasts 

can be obtained by: 

m �>:.1A3 r flP$ R⁄ 	�ºK�-.1A3� o >.eQ o >:.1A3 k flP$ R⁄ 	�ºK�-.1A3�� � 1 r D   ( 6.36) 

where flP$ R⁄  is the critical value of standard normal distribution for being 11 r D3100% 

confident that the observation at step \ k A will be within the prediction interval. Note 

that �ºK�-.1A3� is obtained by Equation ( 6.34). 
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6.8. Improved Models 

6.8.1. Daily Cycle   

In many cases when there is clear autocorrelation at seasonal lags such as previous 

day, week, month, etc. we need to incorporate such correlation in the process. As a first 

step seasonal difference of period s is an appropriate transformation for modeling 

nonstationary seasonal processes: 

  =>. � >. r >.P=    ( 6.37) 

where for example for an hourly series with M � 24 the transformed series will represent 

changes from the previous day in successive hours. Multiplicative Seasonal ARIMA 

models are the general form of seasonal processes where for g>.h an ARIMA1U, �, H3 ø
1m, +,!3= is considered for which: 

 �. �  µ =Ø>.    ( 6.38) 

is an ARMA1U, H3 ø 1m,!3= model. In addition to autoregressive terms up to p lags and 

moving average terms up to q lags this model also includes P seasonal autoregressive and 

Q seasonal moving average terms with seasonal lag of s. These seasonal terms are Φl>.P= ,ΦR>.PR= , … ,Φ">.P"= and Θl-.P= ,ΘR-.PR= , … ,ΘÉ-.PÉ= , respectively. 

Referring back to Figure  6.14  the seasonal autocorrelation is noticeable at lags 24. 

This is also confirmed by the BIC analysis as depicted in Figure  6.11. As for the possible 

differencing transformations here we apply the first difference and the seasonal 

difference (+ � 24). Using these two transformations over the forecast error series the 

resulting time series plots (for the same window shown in Figure  6.3) are shown in 

Figure  6.15 and Figure  6.16, respectively. 

 
Figure  6.15. Transformed time series of temperature error using first difference (� � 1) 
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Figure  6.16. Transformed time series of temperature error using first seasonal difference (+ � 24) 

The choice between different transformations is made based on the seasonality 

removal ability of the transformation and its power to obtain a simpler yet accurate model 

for the series. 

6.8.2. Cross-correlation  

It is often the case that the target time series under analysis is related or impacted by 

other covariate series. Better models of forecast are expected to be obtained once such 

relevant covariates are incorporated. Assuming J � gJ.h as a covariate time series for 

> � g>.h,  the cross-correlation function (CCF) between X and Y at lag k is defined as: 

 I51J, >3 � ÎVKK1J. , >.P53 � ÎVKK1J.e5 , >.3   ( 6.39) 

where X and Y are jointly (weakly) stationary if their means are constant and their cross-

covariance <.,=1J, >3 is a function of \ r M. The sample cross-correlation function 

K51J, >3 can be used to empirically investigate the lags at which a covariate series has 

influence on the target. The critical value for significantly different from zero sample 

cross-correlations magnitudes is 1.96/√] based on the assumption that X is independent 

of Y and hence ¿10,1/]3 is the distribution for K51J, >3. However, due to the 

autocorrelations present in X and Y this variance turns out to be inaccurate. In the case of 

stationary X and Y independent series  [19]: 

 �ºK�K51J, >3� � l
c t1 k 2 ∑ I51J3I51>3�5wl u    ( 6.40) 

which can be much larger than 1/n with autocorrelations in X and Y. For non-stationary 

data the sample distribution will not be even normal. Hence, spurious cross-correlation 

can be easily detected even between independent series. It can be noted that the variance 

is 1/] if X and/or Y is a white noise process. This can be achieved by replacing the series 
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by the residuals from a fitted ARIMA model in practice. An AR(∞) representation can be 

used if J. follows an invertible ARIMA(U, �, H) model: 

 J%. � 11 r �lë r �RëR r ó 3J. � �1ë3J.    ( 6.41) 

where �1ë3 is the filter which uses �* parameters and the backshift operator (B) to obtain 

J%. which is the residual at time t and hence white noise. This process is known as 

prewhitening. We can also obtain >%. using the same filter used for X and then calculate 

the CCF of J% and >% . As prewhitening is a linear operation, the original relationships will 

remain intact. The statistical significance of the sample CCF of the resulting prewhitened 

series can now be evaluated using the 1.96/√] threshold.  

Thus a general linear regression model will be: 

 >. � ∑ �&J.P& k &.£�&w£�    ( 6.42) 

where X is independent of Z and &. can be modeled using ARIMA models. The lags of X 

present in the model can be determined by cross-correlation analysis.  

In the context of modeling the temperature forecast error it seems promising to 

include relevant exogenous variables from parallel influential series such as the 

forecasted temperature (t2) and surface pressure (psf). Sample cross-correlation analysis 

results are provided in Figure  6.17 and Figure  6.18 which both confirm significant 

correlations in the zero lag. Also both series exhibit marginally significant cross-

correlation around the diurnal lag. In addition the temperature series has noticeable cross-

correlation in lag 1 too. 

 
Figure  6.17. CCF plot of error series and the t2 forecast series 
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Figure  6.18. CCF plot of error series and the surface pressure forecast series 

After performing similar analysis on the other available exogenous series (Table  4.1), 

the sixth lag of the relative humidity series (rh2) is also added to the ARIMA model 

along with the terms detected above from pressure and temperature. Sample window of 

the original forecast error series (>.) along with the exogenous linear regression series 

and its corresponding residual series (&.) are depicted for two cases of using the BF2 

feature set only and using the BF2 feature set along with lagged features having 

significant cross-correlation with the target series in Figure  6.19 and Figure  6.20, 

respectively. 

 
Figure  6.19. Residual and regression series using zero lag exogenous features of BF2 
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Figure  6.20. Residual and regression series using zero lag exogenous features of BF2 along with 

lagged features of t2, rh2 and psf 

The RMSE of the newly obtained residual series in both cases confirm higher 

accuracy of the model when exogenous variables are accounted for. In addition results 

shown in Figure  6.20 confirm that the residual accuracy will improve to 1.98 from 2.19 

when lagged variables are included in the model. Also note that the original time series is 

transformed using the seasonal mean model described in Table  6.1 as it was determined 

to be a better seasonal model in these experiments. All of these specification and 

diagnostics analysis results are in-sample and hence only use first two years of data with 

80% proportion for training and 20% for validation. More related experimental results are 

provided in subsection  6.10. 

6.9. Heteroscedasticity Modeling of Forecast Error 

Rather than modeling the conditional mean of a time series as performed in ARIMA, 

there is an increasing interest in modeling the conditional variance of the series as an 

uncertainty measure. Instead of assuming a constantly increasing variance for forecasts of 

any number of steps ahead in ARIMA (refer to Equation ( 6.34)), the conditional variance 

can be considered as a random process by itself and hence modeled in connection to the 

current and past values (Homoscedasticity vs. Heteroscedasticity). For instance in many 

financial series, periods of larger volatility are often followed by larger conditional 

variance as opposed to stable periods  [21]. 

Suppose we have noticed that recent temperature forecast errors have been unusually 

volatile. We might expect that the next hour’s forecast error is also more variable than the 

typical volatility. However, an ARMA model cannot capture this type of behavior 
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because its conditional variance is constant. So we need other time series models in order 

to model the non-constant volatility.  

Here we focus on the study of such dynamical patterns in the volatility of the 

temperature forecast error time series. The ACF, PACF and EACF results may show little 

and insignificant serial correlation in the ARIMA residual series, suggesting a white noise 

model. The sample ACF and PACF functions of the residuals from the best fitted 

seasonal exogenous ARIMA model (details in subsection  6.10) are plotted in Figure  6.21 

and Figure  6.22. Both these plots suggest an i.i.d residual (considering the fact that few 

significant correlations can happen by chance). Similarly EACF results (not shown here) 

confirm a white noise model for the residuals. 

  
Figure  6.21. Sample ACF function of the residuals from the best ARIMA model 

 
Figure  6.22. Sample PACF function of the residuals from the best ARIMA model 
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With an i.i.d. random variable for the residual series, transformations such as 

logarithms, absolute values or squaring must preserve independence. If otherwise there is 

some significant autocorrelations detected in the absolute or squared transformations of 

the original series, one can conclude on the existence of some higher-order dependence. 

Such dependence is evident in the ACF and PACF plots for absolute value of residual 

series in Figure  6.23 and Figure  6.24. Similar correlation was observed in the squared 

residual series (not shown here). 

 
Figure  6.23. Sample ACF function of the absolute residuals from the best ARIMA model 

 
Figure  6.24. Sample PACF function of the absolute residuals from the best ARIMA model 

In addition to these visual tools, the Box-Ljung test is often used to test 

autocorrelation in a series. Under the assumption that there is no AutoRegressive 

Conditional Heteroscedasticity (ARCH) present for the residuals of an ARMA model, the 

Box-Ljung statistic will have a chi-square distribution with m degrees of freedom for the 
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first m autocorrelations of the squared residual series and is called as the McLeod-Li test 

 [50]. Conforming to the autocorrelation analysis the results from this test are all 

significant at the 5% significance level as shown in Figure  6.25. 

 
 Figure  6.25. McLeod-Li test statistics for ARIMA residuals 

All of these results show that although the series is serially uncorrelated but it has a 

higher-order dependence structure which is expressed as patterns of conditional variance 

(namely volatility clustering). Here we try to capture such patterns in a series using 

Generalized AutoRegressive Conditional Heteroscedasticity (GARCH) models. 

AutoRegressive Conditional Heteroscedasticity (ARCH) proposed by Engle  [21] 

model the variance of a time series. Given the original series gK.h up to time t-1, the 

conditional variance (or conditional volatility) of K. is defined as N.|.PlR . Based on the fact 

that K.R is an unbiased estimation of N.|.PlR  one can hypothesize that a period of large 

squared values can foretell a period with large variance and on the other hand a period of 

small squared values can foretell a stable period. The ARCH(1) model is a regression 

model with the conditional variance as its target variable using lag one of the squared 

values as its feature  [58]: 

 K. � N.|.Plâ.    ( 6.43) 

N.|.PlR � ' k DK.PlR     ( 6.44) 

where ' and D are unknown parameters and â. is i.id.d with zero mean and unit variance. 

To replace the conditional variance by some observable value the following definition is 

used: 

 (. � K.R r N.|.PlR    ( 6.45) 
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where g(.h is a serially uncorrelated series with zero mean and is uncorrelated with past 

values of the original series. Using this equation in Equation ( 6.44): 

 K.R � ' k DK.PlR k (.    ( 6.46) 

Hence, under the assumption of having an ARCH(1) model for the original series, the 

squared series follows an AR(1) model. Based on the stationarity assumption of the gK.h 
series and taking expectations of the above equation: 

 NR � ' k DNR   ( 6.47) 

where NR is the stationary variance of the r series and is used for forecasting the l step 

ahead conditional variance. For l=1: 

 N.el|.R � ' k DK.R � 11 r D3NR k DK.R    ( 6.48) 

and generally N.eQ|.R � K.eQ|.R  for A o 0. As a more general approach the model can 

include q past squared terms of the series to obtain a ARCH(q) model. Also by adding  p 

lags of the conditional variance to the model the Generalized AutoRegressive Conditional 

Heteroscedasticity model is defined as GARCH(p,q)  [5] [30]: 

 N.|.PlR � ' k �lN.Pl|.PRR k �RN.PR|.PlR k ó k �¸N.P¸|.P¸PlR k DlK.PlR k DRK.PRR k ó kD�K.P�R     ( 6.49) 

With nonnegative coefficient in a GARCH model the conditional variances are 

guaranteed to be nonnegative. Yet, this constraint is not essential for obtaining positive 

variances from the GARCH model. Using Equation ( 6.45) in the above definition of 

GARCH: 

 K.R � ' k 1�l k Dl3K.PlR k ó k ��£)·1¸,�3 k D£)·1¸,�3�K.P£)·1¸,�3R k (. r �l(.Pl ró r �¸(.P¸     ( 6.50) 

where �5 � 0 for ~ ¯ U and D5 � 0 for all ~ ¯ H. Hence, for gK.h series following the 

GARCH(p,q) model, the gK.Rh series is an ARMA(max(p,q), p). Yet due to the larger 

sampling variability for higher moments, the order analysis is usually done using the 

absolute series i.e. g|K.|h. Details of stationarity conditions and proofs are discussed in 

 [19]. Finally the trained model can be used to forecast the l-step-ahead conditional 

variance. As an example using a GARCH(1,1) model and using NR � DNR k' 11 r Dl r �l3⁄ : 

 N.el|.R � 11 r Dl r �l3NR k DlK.R k �lN.|.PlR     ( 6.51) 
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thus the next conditional variance is a weighted average of the long-run variance, the last 

available squared observation and the last prediction of the variance. By assuming normal 

innovations, the likelihood function of a GARCH model can be obtained and then 

numerically optimized to estimate the model coefficients and their corresponding 

variance.  

It is evident that the GARCH model can only capture the conditional variance of the 

process under analysis. Hence, in order to model the conditional mean of the g>.h series 

the ARMA model is still needed to be utilized. In this setting the GARCH(p,q) model is 

used to model the white noise term in the conditional mean’s ARMA(a,b) model: 

 >. � /l>.Pl k ó k /)>.P) k -. r  l-.Pl r ó r  ³-.P³   ( 6.52) 

-. � N.|.Plâ.   ( 6.53) 

   N.|.PlR � ' k �lN.Pl|.PRR k ó k �¸N.P¸|.P¸PlR k Dl-.PlR k ó k D�-.P�R    ( 6.54) 

where the ARMA and GARCH orders can be determined by analyzing the g>.h and g-.Rh 
series, respectively. The parameters can then be estimated independently. After model 

diagnosis confirms the two models, they can be applied to forecast both the conditional 

mean and variance of target future values. 

The extended autocorrelation sample function of the absolute (or squared) residuals 

can provide an analysis on the order of the GARCH model. Results for the absolute 

residual series of the temperature forecast error ARIMA model in Table  6.4 suggest a 

GARCH(1,1) model. 

Table  6.4. Sample EACF for absolute residuals of the best ARIMA model 

AR/MA 0 1 2 3 4 5 6 7 8 9 10 11 12 13 
0 x x x x x o o o o o o o x x 
1 x o o o o o o o o o o o x o 
2 x x o o x o o o o o o o o x 
3 x x o o o o o o o o o o o x 
4 x x x x o o o o o o o o o o 
5 x x x o x o o o o o o o o o 
6 x x o o x x o o o o o o o o 
7 x x x x o o x x o o o o o o 

 

To accept a fitted model a major assumption to verify is whether the standard 

residuals i.e. â.̂ � K. NC1.|.Pl3⁄  are independently and identically distributed. Looking at 

the ACF of the absolute or squared standard residuals one can check for serial 

autocorrelation and volatility clustering. Figure  6.26 shows the ACF of standardized 
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residuals from the GARCH(1,1) model which was found to be the best GARCH model 

for the residuals of the best ARIMA model fitted to the temperature error series. This plot 

has the general impression that the residuals are no longer serially correlated and hence 

the volatility clustering has been well captured in the model. 

 
Figure  6.26. Sample ACF of absolute standard residuals from the fitted GARCH(1,1) model 

 
Figure  6.27. McLeod-Li test statistics for GARCH(1,1) residuals 

The results from the McLeod-Li test also confirm that the residuals do not exhibit 

serial autocorrelation anymore and hence the fitted GARCH model is a good candidate 

for the conditional variance of the original series.  
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6.10. Experimental Results 

6.10.1. Data Sets and Method Set-ups  

After performing model specification analytics in the previous subsection, here we 

focus on the practical application of time series models for the temperature forecast error 

and uncertainty modeling and prediction. We use the first two years of data (i.e. 2007 and 

2008) from the AG data set for training and diagnostics and preserve the 2009 data for 

out-of-sample forecasting and evaluation in each of the two stations. Different time series 

models are compared to the clustering and quantile regression methods in terms of both 

their point and interval forecast accuracy and skill. We also evaluate the time series 

models relative to three baseline competitors. The first baseline method is the no-change 

forecast known as the “persistence forecast” in the climatological literature (referred to as 

Persistence). The two other baselines are the best simple moving average models using 

the past 4 hours (MA-H4) and the same hour values in the past three days (MA-D3), 

respectively.  

For prediction interval forecasts of the ARIMA time series models we use the 

theoretical variance approach with a Gaussian assumption and the exponential smoothing 

multi-step-ahead error variance formula (Equation ( 6.34)). For the baseline models the 

empirical distribution of the forecast errors (in a 1000 hour window) for each lead time is 

used to obtain variance estimations. Finally, the GARCH model can provide a series of 

conditional variance forecasts (and hence prediction intervals) under the Gaussian and 

empirical distribution assumption for any lead time. The results from any of the two 

distribution assumptions were very close and in favor of the empirical distribution in rare 

cases. Hence, we only provide the results from the empirical distribution assumption 

here. Also Analytical results did not support different model specifications for different 

seasons and stations. However, independent models (with identical specification) were fit 

for each station. 

6.10.2. Forecast Evaluation Results 

We first consider the performance of the various time series models in terms of point 

(i.e. expected mean value) forecasts. The RMSE of point forecasts made for different 

forecast horizons in the two stations are provided in Table  6.5. For ARIMA models there 

are three entries ARIMA, sARIMA and sxARIMA marking the three different setups of: 

simple ARIMA (U � 2, � � 1, H � 2), Seasonal ARIMA (U � 2, � � 1, H � 2, m � 2, 

+ � 0, ! � 1) and Seasonal Exogenous ARIMA (including BF2 and lagged features as 
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described in Figure  6.20). Optimization methods of LSE and MLE yield very similar 

results with marginally better performance by LSE models. The results clearly show the 

higher accuracy of the sxARIMA model in these point forecasts. 

The average RMSE in both stations for these models are plotted in Figure  6.28. 

Considering the forecasting performance of the baseline models in the first horizons, it 

can be seen that the Persistence has higher accuracy. However, with increasing horizon 

length the Persistence forecast becomes comparatively poor. Yet, the MA-D3 model has 

a better accuracy in longer leads and is more persistent in its accuracy. As expected, the 

sxARIMA model consistently outperforms the other models in terms of forecast accuracy 

and therefore is used for the prediction interval modeling and forecasting and referred to 

as ARIMA here after. 

 

Table  6.5. Point forecast accuracy of time series models in terms of RMSE 

 1-h 2-h 3-h 6-h 12-h 24-h 48-h 

Agassiz        

Persistence 1.10 1.73 2.27 3.43 4.45 2.64 2.75 
MA-H5 2.22 2.50 2.79 3.64 4.18 2.64 2.96 
MA-D3 1.82 2.19 2.26 2.34 2.38 2.47 2.55 
ARIMA 1.00 1.48 1.86 2.41 2.59 2.61 2.76 
sARIMA 0.98 1.41 1.71 2.18 2.38 2.28 2.52 
sxARIMA 0.81 1.14 1.41 1.79 1.98 1.98 2.16 

Hope               
Persistence 1.08 1.79 2.31 3.33 4.05 3.02 3.23 
MA-H4 2.10 2.44 2.73 3.42 3.84 2.96 2.98 
MA-D3 2.06 2.47 2.62 2.70 2.66 2.71 2.87 
ARIMA 1.02 1.64 2.06 2.67 2.89 2.83 2.82 
sARIMA 1.00 1.59 1.97 2.50 2.66 2.64 2.74 
sxARIMA 0.75 1.28 1.59 1.99 2.04 2.04 2.18 
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Figure  6.28. Average of point forecast accuracy in both stations for different time series models  

Sample point and prediction interval forecasts from the ARIMA model for the Hope 

station in 2009 are plotted in Figure  6.29. As can be seen, the forecast series can catch the 

general shape of the series and matches well with the observations during the first leads. 

After longer leads (e.g. 40 hours) the forecasts start to smooth as there is less information 

available for the forecast. The prediction intervals also reflect on the increasing 

uncertainty in the forecasts as the forecast horizon increases. This is more evident in a 

closer look into the prediction interval forecasts of GARCH shown in Figure  6.30. 

 
Figure  6.29. Sample ARIMA forecast along with theoretical prediction intervals 
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Figure  6.30. Sample GARCH prediction interval forecasts  

Detailed evaluation measures for the prediction interval forecasts of the ARIMA 

model are listed in Table  6.6. Rather than having a single row in this table like the 

previous methods of clustering and quantile regression (which do not have any temporal 

awareness), the ARIMA model has an independent row for each lead time (in the forth 

column) as this has a critical role in the accuracy of the time series forecasts. As 

mentioned before this best model incorporates the BF2 and the lagged features (BF2+L) 

as regression inputs into the ARIMA time series model. The ARIMA forecasts 

outperform the best quantile regression model (i.e. SPQR) up to the 6-hour lead in terms 

of skill (SScore0.95). The time series PI forecasts have comparable performance with 

quantile regression models up to 24-hour-ahead. After this lead, the ARIMA model is 

less accurate than quantile regression but yet considerably better than FCM and baseline 

models. The ARIMA model has a better coverage measure and also has a wider 

prediction interval when compared to quantile regression forecasts except than the first 

few leads. 

In the next step an ARIMA(2,1,2)X(1,0,1)-GARCH(1,1) model is fit to the series 

meaning that the residuals of the ARIMA model are modeled by a GARCH(1,1) 

independently. This model is referred to as GARCH here. The order of the GARCH 

model is determined by the analysis performed in subsection  6.9. It must be noted that the 

point forecasts of the GARCH model are identical to that of the ARIMA model. 

However, the prediction interval forecasts are provided independently for each origin by 

the GARCH model as opposed to ARIMA where for each lead the variance will be 

approximately constant from any origin. This can be easily noted in Figure  6.31 which 
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plots the next-hour forecast of standard deviation for the GARCH target which is the 

ARIMA residual. 

Table  6.6. Prediction interval verification measures for top models of different methods for 2009 

Algorithm K Features 
Fit/ 

Params 
Sharpness 

(°C) 
Coverage

% 
Coverage0.95 

% 
Resoluti

on 
RMSE SScore SScore0.95 

SPQR (50) BF2 df=4 6.77 92.78 90.19 1.79 2.02 0.2231 0.2450 
LocQR (50) BF2 @=0.7 7.04 92.62 90.42 1.74 2.08 0.2290 0.2505 
NLQR (50) BF2 - 7.00 92.57 89.95 1.86 2.06 0.2319 0.2550 

KQR (50) BF2 
σ=0.0042 

C=4 
7.22 91.98 90.14 1.93 2.15 0.2521 0.2839 

LQR (50) BF2PG - 7.84 93.52 91.03 1.57 2.26 0.2497 0.2719 
FCM 45 BF2 Kernel 10.44 93.28 90.91 1.52 2.90 0.3413 0.3697 

Base-Month 12 Month Kernel 11.90 93.43 92.26 1.86 3.27 0.3774 0.3916 
Base-Temp. 10 Temp. Normal 11.41 93.09 92.15 0.79 3.16 0.3730 0.3849 
Base-Clim. 1 - Normal 11.89 92.95 92.62 0 3.25 0.3947 0.3993 

ARIMA (50) BF2+L l=1 3.05 93.82 91.30 0.09 0.78 0.1149 0.1334 
ARIMA (50) BF2+L l =2 4.73 94.36 91.97 0.19 1.21 0.1622 0.1828 
ARIMA (50) BF2+L l =3 5.84 94.44 92.08 0.41 1.50 0.1930 0.2141 
ARIMA (50) BF2+L l =6 7.29 94.30 91.94 0.51 1.89 0.2325 0.2531 
ARIMA (50) BF2+L l =12 7.84 94.63 92.33 0.28 2.01 0.2478 0.2698 
ARIMA (50) BF2+L l =18 7.96 95.18 92.94 0.23 2.03 0.2472 0.2692 
ARIMA (50) BF2+L l =24 8.01 94.99 92.70 0.23 2.01 0.2493 0.2716 
ARIMA (50) BF2+L l =48 8.28 94.29 91.91 0.31 2.17 0.2632 0.2875 
ARIMA (50) BF2+L l =120 8.83 94.68 92.36 0.65 2.30 0.2746 0.2980 
ARIMA (50) BF2+L l =240 9.58 95.05 92.80 1.20 2.43 0.2942 0.3192 

 

 
Figure  6.31. Sample forecast of next-hour sd. of error using GARCH(1,1) 

A detailed comparison of uncertainty forecasts from MA-D3, ARIMA and GARCH 

in different leads are provided in Table  6.7. These results also confirm better performance 

of ARIMA and GARCH versus the baseline model. In addition prediction interval 
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forecasts from GARCH outperform ARIMA in the first three hours and are very 

comparable with it in the following leads into the future (Figure  6.32). The average width 

of the prediction intervals from the moving average model are clearly larger than ARIMA 

and GARCH, with GARCH having slightly wider intervals with higher coverage as 

shown in Figure  6.33 and Figure  6.34. 

Table  6.7. Prediction interval verification measures for time series models  

 1-h 2-h 3-h 6-h 12-h 24-h 48-h 120-h 240-h 

Width          

MA-D3 7.80 9.51 9.89 10.00 10.00 10.03 10.73 11.97 12.59 
ARIMA 3.05 4.73 5.84 7.29 7.84 8.01 8.28 8.83 9.58 
GARCH 3.02 4.70 5.93 7.69 8.22 8.22 8.99 9.90 10.25 

Coverage0.95        
  

MA-D3 92.47 92.45 92.44 92.45 92.46 92.87 92.53 93.27 93.03 
ARIMA 91.30 91.97 92.08 91.94 92.33 92.70 91.91 92.36 92.80 
GARCH 91.97 91.57 91.83 92.42 93.24 93.48 93.98 94.65 94.61 

Resolution        
  

MA-D3 0.72 0.92 0.97 0.99 0.99 1.00 1.10 1.55 1.45 
ARIMA 0.09 0.19 0.41 0.51 0.28 0.23 0.31 0.65 0.61 
GARCH 0.90 1.38 1.66 1.89 1.04 0.34 0.26 0.55 0.54 

SScore0.95        
  

MA-D3 0.2663 0.3247 0.3379 0.3416 0.3415 0.3464 0.3655 0.3976 0.4334 
ARIMA 0.1334 0.1828 0.2141 0.2531 0.2698 0.2716 0.2875 0.2980 0.3192 
GARCH 0.1240 0.1793 0.2130 0.2606 0.2694 0.2689 0.2847 0.2980 0.3151 

 

 
Figure  6.32. SScore95 over increasing forecast leads up to 10 days for different time series 

forecasting methods 
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Figure  6.33. Time series forecast PI width comparison for up to 10 day-ahead forecast 

 
Figure  6.34. Time series forecast PI Coverage0.95 comparison for up to 10 day-ahead forecast 

 
Figure  6.35. Percentage change of uncertainty forecast skill of GARCH compared to ARIMA 
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Figure  6.36. Time series forecast PI resolution comparison for up to 10 day-ahead forecast 

To have a closer look at the skill of the prediction interval forecasts from GARCH 

Figure  6.35 plots the relative change of skill in GARCH compared to ARIMA in terms of 

percentage. The better skill of forecasts in the first leads is evident in this graph. There is 

also a lower accuracy of prediction interval forecasts observed in the 4, 5 and 6-hour-

ahead forecasts. This is possibly due the weaker presence of the autoregressive structure 

of variance in further leads. However, by also considering the significantly higher 

resolution of the interval forecasts from the GARCH model (Figure  6.36) this model may 

be preferred for uncertainty modeling especially for smaller leads. 

The empirical results confirm the advantage of the time series model in the 

application of weather forecast uncertainty modeling. In a practical set up the time series 

model can be utilized to provide better point and interval forecasts for up to 6 hours and 

SPQR can be employed for further leads to obtain the optimal result. 

6.11. Conclusions 

In this chapter, we looked into the application of time series models for the modeling 

of uncertainty. After basic time series analysis of the NWP temperature forecast error 

time series, different ARIMA models that incorporate seasonality, regression and cross-

correlation were fitted to the series in two stations. Rather than using theoretical relations 

for conditional variance forecasting, heteroscedastic time series models (i.e. GARCH) 

were also studied as tools of modeling forecast uncertainty. These models explicitly focus 

on conditional variance as an independent time series model. In the experiments we 

applied these approaches along with some baseline time series models into the NWP 

forecasts and computed out-of-sample forecasts of point and prediction interval. The 

results clearly confirm the better skill of interval forecasts from the ARIMA and GARCH 
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models in the first few leads when compared to the best quantile regression model (i.e. 

SPQR). The point forecast accuracy of the ARIMA model outperforms that of SPQR for 

up to 1-day-ahead forecasts. Also, the GARCH model outperforms the ARIMA model in 

terms of uncertainty forecasts in the first three hour leads. This model also consistently 

provides prediction intervals with higher resolution. It can be generally concluded that in 

a practical set up the GARCH model and SPQR can be utilized simultaneously to provide 

forecasts in the first leads and longer leads, respectively.   

As directions for future research, alternative versions of the GARCH model such as 

Asymmetric GARCH models can be investigated. Also, application and adaption of non-

linear time series for the modeling of NWP forecast uncertainty is of interest. 
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Chapter 7                                                  
Conclusions and Future Directions 

This chapter ends the thesis by providing concluding remarks about the various 

methods and experiments, the limitations of the study and open directions for 

enhancements and future research. 

7.1. Summary and Discussion 

In this thesis we studied the problem of modeling NWP forecast uncertainty by 

utilizing the point forecast accuracy records with a focus on learning methods. In this 

regard, we developed a comprehensive methodology to obtain accurate prediction 

interval forecasting models from NWP performance history. Firstly, clustering algorithms 

were proposed as an improvement over the classical approach of manual grouping of the 

forecast situations. Various clustering methods along with different distribution 

estimation methods were applied for this purpose.  

Two different data sets of NWP forecasts and NCAR observations were used to 

practically test these uncertainty prediction models. A comprehensive evaluation 

framework was developed and used in the experiments that add the crucial aspect of 

sampling uncertainty in forecast skill measurements majorly absent in similar previous 

studies. The evaluation results clearly confirm the higher accuracy of the prediction 

interval forecasts obtained from these models (specifically the Fuzzy C-means model) 

when compared to the baseline and previously proposed methods. In addition, these 

models do not suffer from the dimensionality limitations of the previous methods. 

In the next step, we further extended our methodology by implementation and 

evaluation of a wide range of quantile regression methods as alternative solutions to the 

prediction interval forecasting problem. Extensive experiments affirm the superior 

performance of some quantile regression methods (specifically Spline Quantile 
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Regression) when compared to the best clustering methods. It should be noted however, 

that the uncertainty models obtained using clustering methods have the advantage of 

directly providing the full density for the forecast target.  

Time series modeling of the forecast error series was the focus of the last phase of 

this thesis. Various time series models including seasonal ARIMA models using 

exogenous elements were fitted to the forecast error series to obtain forecasts of 

prediction intervals and expected error into the future in increasing forecast horizons. 

Also, heteroscedastic models of forecast target variance which can model the conditional 

variance of NWP forecast error as an independent process were studied as alternative 

solutions to the problem of prediction interval modeling. Elaborate experimental studies 

proved that the best time series models (specifically combination of ARIMA and 

GARCH) can provide significantly more skilful prediction interval forecast for up to 6 

hours ahead. In longer forecast horizons the time series model is outperformed by SPQR 

but yet can maintain a nearly comparable performance when compared to quantile 

regression and still outperforms the clustering and baseline models.  

Based on this study, in a practical scenario a combination of the two best models can 

be employed, i.e. the ARIMA-GARCH time series model for the near future prediction 

interval forecasts (first 6 hours) and SPQR for further time steps into the future. It is also 

shown that these models are able to significantly improve the accuracy of the NWP point 

forecasts by incorporating a dynamic de-biasing process. 

The research conducted in this thesis, leading to the proposed methodology, clearly 

confirms the feasibility and benefits of using point forecast performance databases to 

extend these forecasts into prediction intervals that can also provide critical information 

about the uncertainty of the forecasts. This uncertainty is modeled dynamically and is 

dependent on various influential aspects included in the model such as the current and 

recent past weather attributes (forecasted situations), the recent past accuracy of the 

system and station attributes such as elevation. Such information is of high value in 

various applications utilizing these forecasts in decision making and optimization process 

such as DTR and wind energy markets.  

7.2. Future Directions 

A limitation of this study was the unavailability of a sufficiently large NWP forecast 

performance database which is well geographically distributed to study spatial aspects 

and dependencies in uncertainty modeling. Moreover, various meteorological analytics 
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can be performed to provide new features (such as detection of troughs) that can 

potentially improve the accuracy of the uncertainty models. It will be also interesting to 

incorporate various ensemble-based uncertainty forecasts in the evaluation studies.  

The algorithms and methods studied in this work can be extended in a few interesting 

directions:  

(I) Improving the clustering prediction interval models by developing 

techniques to guide the clustering process (e.g. merging and splitting of 

clusters) using characteristics of forecast error distribution in the clusters. 

(II)  In the operational use of the PI forecasting methods, the model should be 

adaptive and update its parameters as the accuracy of new forecasts are 

revealed. Evolving Clustering Methods (ECM)  [1] can be employed in this 

context. 

(III)  Developing proper kernel functions to optimally and efficiently learn non-

linear quantile regression functions. Also using Artificial Neural Network 

(ANN) for faster learning of nonlinear quantile functions  [11]. 

(IV)  Currently, the quantiles of various confidence levels can happen to cross one 

another in the quantile regression models. Although, the frequency of such 

cases is very low, approaches imposing constraint on the learning problem 

can alleviate this problem in future study. 

(V) Application of alternative versions of the GARCH model such as 

Asymmetric GARCH models  [31]. Also, application and adaption of non-

linear time series for the modeling of NWP forecast uncertainty is of interest. 

(VI)  Modeling the conditional density of the time series forecasts using models 

that consider a wider range of distribution moments and characteristics such 

as the method proposed in  [30]. 
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