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Abstract

Weather forecasting is one of the most vital task®miany applications ranging from
severe weather hazard systems to energy produdidamerical weather prediction
(NWP) systems are commonly used state-of-the-ambsgpheric models that provide
point forecasts as deterministic predictions areangpn a three-dimensional grid.
However, there is always some level of error andettainty in the forecasts due to
inaccuracies of initial conditions, the chaotic urat of weather, etc. Such uncertainty
information is crucial in decision making and optiation processes involved in many
applications. A common representation of forecastettainty is a Prediction Interval
(PI) that determines a minima, maxima and confiddeuel for each forecast, e.g’(2
15°C]-95%.

In this study, we investigate various methods taat model the uncertainty of NWP
forecasts and provide Pls for the forecasts aceglhyli In particular, we are interested in
analyzing the historical performance of the NWPteys as a valuable source for
uncertainty modeling. Three different classes ofhods are developed and applied for
this problem. First, various clustering algorith(meluding fuzzy c-means) are employed
in concert with fitting appropriate probability ti®utions to obtain statistical models
that can dynamically provide Pls depending on titedast context. Second, a range of
guantile regression methods (including kernel glemegression) are studied that can
directly model the Pl boundaries as a functionnfluential features. In the third class,
we focus on various time series modeling approadhekiding heteroscedasticity
modeling methods that can provide forecasts of itiomdl mean and conditional

variance of the target for any forecast horizon.



All presented PI computation methods are empiycallaluated using a developed
comprehensive verification framework in a set gbemments involving real-world data
sets of NWP forecasts and observations. A key compiois proposed in the evaluation
process that would lead to a considerably morabidijudgment. Results show that Pls
obtained by the ARIMA-GARCH model (for up to 6-heainead forecasts) and Spline
Quantile Regression (for longer leads) provide rirgk forecasts with satisfactory
reliability and significantly better skill. This ndead to improvements in forecast value

for many systems that rely on the NWP forecasts.
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Chapter 1
Introduction

This chapter lays a starting point into the studgducted in this thesis.

1.1. Forecasting and Uncertainty

Weather prediction has numerous applications irouardomains. Weather forecasts
are typically made and reported in the form of apeeted value for the attribute of
interest in a particular time and location. Num&rizveather prediction (NWP) models
are advanced computer simulation systems thatgeauch expected value forecasts for
a number of attributes. They capture physical aphesc processes to model the
atmospheric behavior. Although the deterministideractions of these physical
simulations yield real numbers (with even third ided places) of different weather
attributes in the mid-range future, such forecasésuncertain due to the inaccuracy of
initial conditions, low spatial resolution, and ims simplifying assumptions
[48][61][62]. Yet, such uncertainty information is not dahle in the immediate outputs
of the system.

Thus, while the NWP deterministic outputs are reaimbers, they will have an
unavoidable level of uncertainty. As an example NWP model may predict the
temperature to be -3.8°C for a specific locatiothtin the next hour and the next week.
However, the uncertainty level of these forecasiald/be clearly different although the
single value (point) predictions are equal.

In many applications, it is desirable that foresaste accompanied by the
corresponding uncertainties. Information aboutdast uncertainty may be as significant
as the forecast itself. Such information can haweortant role in the planning and
decision making processes that utilize the foredd€[72]. For instance, the expected

accuracy of NWP wind speed and temperature fore@st have crucial impact on the



optimized operational planning and management afgp@rids using Dynamic Thermal
Rating (DTR) systemp!2].

The uncertainty of a forecast is typically formelhtand communicated using
prediction intervals(Pls) that are accompanied by a percentage expgeds level of
confidence (nominal coverage rate) (e.f§.= [2°C, 14°C] conf = 95%)16][29] or
simply expressed as -3°8when as typical the units and confidence levedsamsumed
invariant for all P1 forecasts of a particular gstand application. The confidence level
specifies the expected probability of the actualentation to be inside the Pl range. This
form of forecast (sometimes called cantral credible intervalforecast or forecast
interval) may be harder for a non-specialist to interpret avaluate, but it provides the
user with a more complete description of the ptedippghenomenon compared to a point
forecast. Chatfield17] classifies forecasts of real valued variabigs point forecasts,
interval forecasts and full density forecasts. bmtcast to point forecasts, interval
forecasts supply the likely uncertainty in the pcedn and are therefore preferred. In
spite of the clear value of Pl forecasts, this farrof forecast “...has been largely
overlooked by meteorologists and would benefit fismme attention...[39].

When the PIs of a forecasting system take diffenedths depending on the forecast
context dynamically{17] [68], they are called Conditional Pls as opposea tstatic
interval forecasting system that has the same widtny occasion. Assuming a fixed
confidence level for the output Pls of a systenipr@cast case with a lower level of
uncertainty would in effect be narrower compared tnore uncertain forecast (e.g. 3.8
vs. -3.8°).

In a deterministic forecasting system, Pls can lohiewed by theoretically
formulating the error behavior of the model. Suppraaches are mostly infeasible due to
the high degree of complexity in input data, modiements and non-linear relations
between the different facto[$6][20]. In many cases such error formulations turhtou
be too rough and misleadifit6][66].

A major category of solutions for uncertainty amsédyand prediction interval
estimation, especially in meteorology, is basedeosemble predictio20]. In this
method, individual predictors as members of an mb¢e of forecasters, are run with
different parameters and/or initial conditiof®2][81]. The degree of uncertainty for a
forecast is then associated with the extent ofespr@mong these members. However,

ensemble executions of an NWP model incur a vagi bbmputational cost making the



ensemble approach infeasible in many applicatigme@ally when new uncertainty
analysis is required in short temporal intervalorébver, the ensemble approach may
not be the best choice when the user is interastéde forecast uncertainty of a few
points rather that a whole spatial domain.

Pls can also be obtained by statistical modelinfpa#cast error using the historical
performance of forecasts made by the sysfgr)[29][39][40]. In this approach, the
characteristics and dynamics of the forecast uaicgyt will be essentially learned from
the recorded accuracy of past forecasts which aedlable for many deterministic
forecasting systems today. In the current studyfomas on this approach as a potentially
efficient method that has received relatively ladgention in the literature.

The weather research and forecasting (WRF) mi@¥élis the NWP system used in
many meteorological applications. As this moddbased on deterministic formulations,
it provides predictions in the form pbint forecasts values of various weather attributes
such as temperature, wind speed, wind direction, laquid water conten{48][67].
However, past forecasts made by this system (ergtefv years) can be recorded and
later augmented by actual weather observations.itAsonsists of forecasts and
observations made at different times and locatitims, historical forecast performance
data can provide valuable knowledge for uncertaamiglysis.

It is a well-known fact that, the extent of forecancertainty varies with the weather
situation[62]. For example, low pressure systems are knawoetless predictable than
the more stable high pressure systems. It is eggabit such patterns of dependency of
uncertainty on the forecasted attributes can bmdered from the historical performance
of the NWP forecastigl8][59][69].

In [47][48] and[49], such dependencies are discovered by clugténe performance
records into separate groups and characterizingtinkutes of their error distribution
individually. However, this useful analysis is npctically used and evaluated for the
purpose of deriving Pls from a deterministic foistoay system. In another series of
studies[66][68], wind energy forecast records are grouped iyexpert-driven manual
partitioning of space of variables that are beliciebe associated with the forecast error
(influential variables). Due to the low scalabil@ this manual records grouping method
only two variables are used to define four clasderecast weather situation. Pls are
then computed using the empirical quantiles ofdfrer distributions in each group by

using the fuzzy membership values of a new forewastich of the predefined groups.



Experimental evaluation of the resulting Pls dentarted applicability of the historical
forecast grouping approach as it provides skilfudl aelatively reliable Pls from the
initial point forecasts. Yet some drawbacks of thisthod which motivate the proposed
research are discussed in the next chapter.

The application of intelligent post-processing teghes to analyze and model the
uncertainty of weather forecasting systems is c®med as a significant and attractive
direction in probabilistic forecasts. Such methods efficiently enrich many existing
forecasting systems by providing valuable informatiabout the uncertainty of
predictions using the performance history widelgessible for these systems. In this
project, we investigate the application of diffarégarning methods to obtain effective

forecast uncertainty models.

1.2. Motivation and Problem

Long records of point forecast accuracy are avilain many areas specifically in
NWP applications. The characteristics and dynarofcthe forecast uncertainty can be
essentially learned from this database of pastcésts. It is a well-known fact that, the
extent of forecast uncertainty varies with the \weasituation and is dependent on many
factors. Such patterns of connection between fetagacertainty and various factors can
be potentially discovered in the performance histdrthe system.

Upon obtaining an effective model that can prettietuncertainty of NWP forecasts
we can extend these forecasts as prediction irgertfmt can communicate such
uncertainty information and provide these intefeaécasts in situations when ensemble
models are unavailable or infeasible. This uncetyaiinformation is of critical
significance in many decision making and optimizatapplications such as Dynamic
Thermal Rating and energy markets just to namena lence, the problem focused in
this research is: “Learning and evaluation of predn interval models of uncertainty
from the historical performance of NWP forecasts.”

In particular, to improve the quality of the resudt Pls and also to alleviate the
problem of manual grouping of the weather forecastsinvestigate the application of
automatic objective-based clustering algorithmsathieve optimally defined forecast
record groups that follow the inherent structuresdata. We suggest that, as these
clusters will be based on the actual similaritiebaeen the past forecast situations they
will lead to Pls of higher quality. Moreover, wellwiot be bound to the limitations of

expert-based definition of partitions which beconzgeglaunting task with increased



dimensionality of the influential variables. Inghprocess, we examine the application of
crisp clustering algorithms i.e. K-means, CLARA dtligrarchical Clustering and assess
the resulting Pls. Also Fuzzy C-means clusteringpiglied as a natural alternative to the
crisp allocation of forecast records to a spedaificster only. The Pl analysis follows a
preceding step which involves the fitting of an eggpiate probability distribution
function to the actually observed error distribatio each cluster. We examine statistical
technigues in this regard and consider the requiredlifications when the fuzzy
approach is used.

As another alternative for learning uncertainty eledthe application of Quantile
Regression algorithms will be studied for the esipland direct learning of appropriate
guantile functions from the historical errors o tRWP system. In addition, time series
modeling methods are investigated to account fertémporal qualities of the forecast
error in the uncertainty modeling process. Inhenerll of these models, is the dynamic
calibration of forecasts by modeling and removathef “situation-based” forecast bias.

The applicability and quality of the resulting Fispractical scenarios is investigated
in this research. The results can provide insigtd the role of different aspects such as
clustering algorithms, number of clusters, featets, distribution fitting algorithms and
their appropriate choice in the uncertainty modglanocess. In addition, better skill and
qguality of the output PIs compared to some basdRheapproaches and raw point
predictions of the WRF NWP system would prove tbeaatages and actual value of the
proposed models. Some major research directionslacerecognized to improve the

interval forecasts by developing more approprieéering methods.

1.3. Contributions
Major contributions of this work can be summariasdollows:
() We propose a new approach consisting of clusteaimdy distribution fitting

to learn models of forecast uncertainty from the N@érformance history.

(I As a very critical aspect, we introduce a novell@ton framework which
considers sampling uncertainties in the assessaigmediction intervals in
testing experiments.

(1 We develop and apply a hybrid clustering and keeintile regression
modeling approach to the NWP prediction intervaééasting problem.



(IV)  We study the application of time series modelinghods that focus both on
expected conditional mean as well as the conditiorariance
(Heteroscedasticity) of the forecast target.

(V)  The last contribution of this thesis is the broa ef experiments and
analysis for the application and evaluation of dewiange of available and
proposed methods for forecast uncertainty modalisigg real-world large

size data sets.

1.4. Organization of the Thesis

In the next chapter, basic definitions and backgdoior the focused problem are
provided. Also various approaches and previousteglavork is reviewed. Chapter 4
describes the various proposed clustering methddgrediction interval modeling
including fuzzy C-means. To assess the qualityrefiigtion interval forecasting models
various measures and scores are incorporated ifremesework described in Chapter 3.
This evaluation framework is utilized in the expeental studies conducted in Chapter 4
and other chapters as well. In Chapter 5, varioeshads of quantile regression are
studied as methods of prediction interval modeliAg. a rather different approach,
various time series modeling methods are invesithals an alternative solution for the
problem of prediction interval modeling in Chapter The experimental results and
analysis of each of these groups of methods areiqeo within the corresponding
chapter. Finally, in Chapter 7 general conclusiansl future research directions are

discussed.



Chapter 2
Background and Related Work

Basic definitions and related previous works avgetged in this chapter.

2.1. Prediction Interval Definition

An NWP model or any othedeterministicforecasting model (e.g. neural network,
decision tree, etc.) provides forecasts as singleeg for every prediction instance. For
an NWP system these forecast values are in the ébtime seriedy,}(u, w, z) for each
weather attribute (e.g., temperature, wind speed) for each location on a three-
dimensional grid(u,w, z). For simplicity, the location coordinates are ¢edtin the
following text. However, in @robabilisticforecasting model the prediction is supplied as
a Probability Distribution Function (pdﬂ,t as an estimation of the true pJf wherey,
is the target variable of interest. In fact, itespected that the actual observatign
would be a sample following the prediction disttibn fyt.

A point forecast ¥;) is in effect a single value from the full predet distribution
which is often selected to be the mean of thisridistion as the expected value foy.
Figure 2.1 demonstrates the distinction between a prababilforecast versus a

deterministic forecast.
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Figure2.1. A sample probabilistic forecast rep(fgtswhile the deterministic forecast providgs
only

The relation between the forec&gtand its observatiop, can be described as:

Ye=Yet e @.1)
i.e., each observation can be decomposed to thkcpeed valuey, for timet, and an error
terme, for the specific forecast instance.
Based on a probabilistic forecast, the probabiignsity function (pdf)fyt and the
cumulative distribution function (cdﬂ?yt are explicitly available and are estimations of

the true pdf and cdf functions of the observatifipsandF,,,. Thus, ame-quantile ofy;

can be defined 429][66][68]:

\? =F;'(a) @.2)

which implies the main quantile statement:

P (yt < q§,f)) =a @.3)

The prediction intervall¥ is defined as 1(— a)-confidence interval into which
observatiory, is expected to fall with probability — a. Therefore, it can be described as
a range satisfying

Plycelf) =Py €[L{,UfD=1-a @Q4)
wherelL? andUf are, respectively, the lower and upper bound ofliptien interval ¥

defined by the corresponding distribution quanties

¢ =¢8P = 5N a/2)  @.5)



Uf =y = Bl -a/2)  @6)

For instance, withe = 0.05, the prediction interval has a 95% confidence lleve
bounded by quantiles}®® = ¢9.°%* andU?° = ¢9.°”> asa; = 0.025 anda, = 0.975.
The above equations are also expected to be cdaretite estimationfyt andﬁyt that
are provided by a probabilistic forecaster. Theesponding quantiles for the predictive
distributions would hence H& andU¢ [66][86].

In practice,fyt has to be predicted at tinte= t — k using all of the information

available at timg and the probabilistic forecaster would accordingigvide ¥ as the

prediction interval for the target valuekitemporal steps (e.g. hours) ahead.

2.2. Forecast Uncertainty Modeling

When a forecasting system is not functioning baseditting probability models,
output forecasts have no guidance about their acgutn this situation, the uncertainty
dynamics of the predictions have to be analyzed secondary procedufé][16][47].
This is a condition holding for the WRF NWP foresasvhich are originally
deterministic.

The ensemblesxecution approach is the common approach appli¢ais situation
for weather forecasting. A number of different NWW&tups (e.g. 50) with various initial
conditions and/or parameters are run as the enseméinbers for the same location and
horizon in the future. In fact, this approach iMante-Carlo method to approximate the
stochastic dynamics of the NWP system due to umiceies in the model and initial

conditions[86][72] (Figure2.2).
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As a result, when the forecast values of the enkemlembers have a wide spread
the forecast is estimated to be more uncertain eoeapto situations where there is lower
dispersion among the members. To obtain each emsemdmber a single run of an
NWP model is needed. This incurs a considerableuatmof computational cost when
running multiple members in an ensemble approachspecifically for very short-term
forecasts (e.g. few hours) the members will notehamough time to adjust and spread
from their initial perturbations.

It is known that the extent of forecast uncertamtyies with the weather situation
[62]. For example, low pressure systems are knowvibd less predictable than the
generally more stable high pressure systems. Térltal performance of an NWP
system is a valuable source of information aboah quatterns and can be efficiently used
in a post-processing method to model the behavitireosystem’s forecast uncertainty.

Langeet al. [48][49] use a historical performance dataset of wipelesl predictions
to study the uncertainty in different meteorologisguations. The authors cluster wind
speed, wind direction, and pressure data into spaate classes of meteorological
conditions. The characteristics of these clustees analyzed to ascertain practical
dissimilarities in their forecast uncertaintigg7]. The results[48][49] confirm that
uncertainty in the forecasted wind speed dependshenforecast weather situation.
However, the results of this analysis are not prally considered as a method of
obtaining conditional Pls for wind speed forecasts.

A practical application of weather classificationdbtain Pls is proposed in Pinsein
al. [68][69] where two predicted variables, wind speed amdd power, are used to
categorize the situations into four manually defiméasses. For each class, or situation,
the error distribution of its members from the ffasécasts would be different. The error
distribution of a new forecast case is then exmettefollow the distribution of past
forecasts with the most similar situations. Theritistion of error for a new forecast is
thus constructed by bootstrap sampling. The fraafosamples drawn from each class is
determined based on the fuzzy membership of theaame in that class. The prediction
interval of a new case is then computed based isirélsonstructed estimation of error
distribution using the empirical statistical quéeti Therefore, the Pls are practically
computed by the categorization of prediction caodg. These resulting intervals are
then analyzed and evaluated in a set of experimditis main shortcoming of this
approach is that the classification of the fore@stditions is performed manually by

simply discretizing the variables into equal biteq bins for wind speed and three bins
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for wind power). Such simple manual grouping of pihediction outputs does not provide
optimal grouping of data points that have high knty to each other within a group.

Hence, the quality of the computed PI is not optieidner. This issue will be even more
significant when a larger number of variables/feegumay have influence on forecast
uncertainty. Please note that more detailed backgtstudy is provided in each of the
individual following chapters as various chapteysuis on different areas of uncertainty
modeling.

In Chapter 4, we propose more advanced methods bgqitovade optimal clustering
of the historical performance data set and to lexplicit quantile functions. Yet, in the
current section, the general process of modelingeainty from accuracy records is
elaborated.

The systematic characterization of forecast eraor ©imply lead us to the modeling
of forecast uncertainty for the target variableisTdan be achieved by consideriggin

Equation 2.1) as an instance of the random variaéland associating”’ (or its

estimationﬁf) as its cumulative distribution function, i.e.,
-~ ~ ~ 2 ~ 2 ~,—1
¢ =9+ 457, ¢/ =Fe ™ (a/2) (2.7)

O =9+ a5 %, al7 P =g - a/2) 28)

wherqu? is the estimated quantile of “error” based on the estimated foreeasor

distribution £¢. The distribution ofy,, and hence the desired quantiles, are not explicit
known. Therefore, to find thi¢ prediction interval of,, the quantiles cé (i.e., the error
associated with the forecast) are estimated anddatidthe predicted valuyg to obtain
the lower and upper bounds for the original vagd®8]. Thus, by finding quantiles over
the forecast error distribution, one can find tlhamiles over the forecast value that is

expected to enclose the target observation.

2.3. Forecast Evaluation

The evaluation of PI forecasts and generally pridiséib forecasts is a more complex
process compared to point forecal§€]. To empirically put our proposed approaches
into test, we apply the developed Pl models into twal-world data sets. Detailed
background and discussions on Pl forecast evatluagigprovided inChapter 3. In that
chapter we also develop a comprehensive evaluétaonework that covers the major

measures from the PI evaluation literature and higngs some new insight to the PI
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verification process leading to more reliable juégns. This framework is extensively

used in the experimental study of different modelde following chapters.
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Chapter 3
An Evaluation Framework for Prediction
Interval Forecasts

Various measures for the assessment of prediati@nval models are discussed in
this chapter. Also arguments on the evaluationhef $kill of interval forecasts are
provided. An uncertainty bound is proposed to ipooate sampling uncertainty in the

measurement of forecast skill score.

3.1. Basic Verification Measures

Generally, prediction intervals are better undedtand easier to use compared to a
full probabilistic distribution function (PDF) of predicted variabl¢17][86]. However,
the probabilistic nature of interval forecasts ctiogges their verification compared to
deterministic forecasts. The verification of Pldoasts can determine the quality of a
forecaster and lead us to proper selection or neadibn of a forecasting system.
Atmospheric science has been the field with moseld@ments in forecast verification
processes among othef86]. However, verification analysis of probabiistand Pl
forecasts in particular are still under ongoingelepment9][12][86]. The Brier score is
a classical and still widely used verification seofor probabilistic forecast$8].
However, this score is appropriate for dichotomeasiables[39][65]. An extended
version of the Brier score for multi-category prbliatic forecasts is the Ranked
Probability Score (RPp6] which is widely in use. Yet, the inappropria¢ss of this
score is a known fact as it does not penalize vdgterasts i.e. wide interva[§6].
Another version of this score developed for proligtin forecasts of continues variables
named Continuous Ranked Probability Score (CR®3)can only provide a measure for

the match between the forecast full PDF and thahefobservatio86]. Hence, these
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measures are not appropriate for Pl evaluationeeiiince they are not sensible to
interval width or do not match the double quarfoienat of Pl forecasts.

Other analytical tools such as rank histogrdi2ls are commonly used for the
examination of ensemble forecasts but do not peowad quantitative measure for
objective verification of PI465]. Recently, information theory approaches haiso
been studied as a verification tool for probabdisorecasts. Although the basic idea of
using the logarithm of probabilities was proposed[27], an information theory
verification measure named “ignorance score” west fileveloped irf73]. This score
measures the joint entropy of the forecasted piibb@b distribution with the observed
distribution. More recently, a new alternative mmf@tion theoretic measure is proposed
in [65]. This measure, called the “information gaimlleviates the tendency of the
previous ignorance and CRPS scores to infinityhéddigh all of these measures can
provide proper score®][26] for continuous variable probabilistic predais they are
not widely used12]. One reason for this can be the low intuite®s and low power of
these scores for communicating the forecast skithé decision makers. It should also be
mentioned that these scores can be applied fovahBcation scenarios where both the
predicted and target probabilities are providedtie form of a full probability
distribution. Hence, they cannot be directly emphbyor the evaluation of prediction
interval forecasting systems. Instead, efforts hagen made to quantify the skill of
prediction interval forecasts using more relevargasures. Specific measures for
evaluation of “reliability”, “sharpness” and “resion” aspects of Pl forecasters have
been proposed ifi7][67][68]. These measures reflect individual quality exxp of Pl
forecasters and do not provide a single score tamaluding verification.

The major expectancy from a set of Pl forecastisaistheir empirical coverage of the
observations in a test setting is as close aslgedsi the required confidence level. This

primary property of a Pl forecastiris called “reliability” noted aRels;. [68]:

g ={1 if I§, <y, < U5 8.1)

‘ 0 otherwise,
Rel§ =& —(1—a) where & =231, (32
whereT is the number of Pls in the test data set usedhforevaluation of Pl forecasts

and 5{ is an indicator of hit if the observation is withihe Pl boundaries, otherwise it

will express a miss by being set to zero. Heeg;; simply accounts for the difference
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between average hit of the forecasts over the wiesiecases and the required nominal
coverage defined for the PI. For an ideal caseheeld haveRelf; = 0 when E,{; =1-
a. Note that we assume, without loss of generatlitgt all of the forecasts in the tests are
provided with a constant confidence level.

A forecasting system that provides Pls with lesguemess expressed by the width of
a Pl is clearly preferred. This is due to the thett lower uncertainty in the PI forecasts
would lead to a higher value for the exploitatidntlee predictions. This leads to the

second major aspect of Pl forecast quality calthfpness[59][68]:
Widthy = ﬁjij‘i - E‘;i 3.3)
Shp§; = Width§; = 31, Width{ (3.4)

whereWidth? is the width of thé" prediction interval. Note that the sharpness measur
has a negative orientation as we prefer forecaistslower values of average Pl width.
Another important quality aspect of a Pl computatieethod is its ability to provide
intervals of variable width, depending on the fascsituation. A method with high
“resolution” Rest is capable of distinguishing low uncertainty fasts versus high
uncertainty ones and assign wider intervals to dasts with high uncertainty and
narrower intervals to forecasts with low uncertgirithe standard deviation of PI widths

is a natural choice to measure the method’s raeal{f6]:

1
1 = ~ 2712
Res§y = |-, (0% - 1 —shpg)’ | @5)
It should be noted that the resolution measureisdependent on the observations.
Thus, it can be hedged and is not a significantsen@aindividually. However, when the

two first major measures of reliability and shamgmeare equal for two competing

methods, the one with higher resolution may begored.

3.2. Forecast Skill Measure

Having a single scalar summary measure of foregaality is always attractive and
useful for objective comparison of various methadsany such measure would simplify
the evaluation of the complete performance prafilea forecaster. The most common
prediction interval skill score is the Winkler'sase proposed if87] and is widely used
as the concluding objective evaluation measurdPloforecasting methods including in
[6][59] and[69]. A comprehensive study done by Gneiting anétdRa[26] proved that

this score is “strictly proper” and would henceggthe maximum score to a forecast that
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Skill Score Gained

is actually the true belief of the forecaster aadrmot be “hedged”. This would mean that
only a PI that follows the true distribution of ttegget can obtain the maximum score.

Using the notations and assumptions defined hbre skill score can be expressed

as:

fq:{l ifytsq 66)

i 0 otherwise

sscore = X1 (67 - @/2) Ge- B5) + (67 - 1 - @/2) 03-55)| @)
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Figure3.1. Skill score over different observations acaeety a Pl of [-5, +5]-conf = 95% for (a)
the lower quantile, (b) the upper quantile, (c)wmle PI

Note that the minus of the same objective is mingdias a loss function (error) in
the applications of quantile regression for predicinterval analysis, using only one of
the terms in the brackets as each quantile is raddskparatel\{6][59]. To better
understand the behavior of this score we algeldhaisanplify it by considering cases of

hits and missesL; and U; are used instead & and U, for simplicity. When a “hit”

happens for forecast Pl of caiseve have{l-Z =0 and fiﬁ = 1. By substituting these

values in (13) and multiplying the terms we have:

N R

SScorel- (hit) = _%yi + %ii +
In the other case, when an observation is “missed,either on the right or the left

side of the area outside the Pl boundaries. Indhs®, the values o(fii( andfiﬁ) will be
equal to (0,0) or (1,1), respectively. When thesmdsobservation is on the right side of
the interval it would have a positive distanceSpfrom the upper boundary;, the score

of this particular case can be calculated by uEiggation 8.7):
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SScore; (right-miss) = (0 — (@/2))(U; + 6; = L;) + (0 — (1 — a/2))(U; + 6; — U;)

= _%ﬁi —%61' + +%fi - 61’ +%6i = _%(ﬁi _il) - 61’ = —%Wldthla - 61’ (39)
For a miss happening on the left side of PI, arakguore will also be gained as
calculated by Equatior8(9). As(1 — E,{;) will be the overall miss rate, the total score

gained by a PI forecasting methigidover the whold cases in the test set will be:
SScorey = T (—SWidth§; — (1 - &l)8% ) = —T (SWidth§ + %) (3.10)

where g is the average distance of an observation fromPthboundaries among the
missed cases antf; is the average of this distance among all of és¢ tases owing to
the fact that1? is equal to zero for hit cases afdfor miss cases.

Figure 3.1 depicts the value of this score for differebs@rvation values for a
sample PI of [-5, +5]-conf=95%. As can be seenvlee of the score will be equal for
any case where the observation is inside the P¢ Jdore linearly decreases as the
observation gets far from the Pl boundaries. Bytiplying a 2/a term to this score,
which does not change the actual comparison amdifigresit methods, the equal
verification measures of Winkler's score and Gmngis score can be easily retrieved.
Hence, it is shown here that all of these scoreesasentially equivalent and simply use a
weighted sum of the two major aspects of Pl quatinmely sharpness and reliability, for
verification. However, the reliability aspect oktll forecaster is here measured by the
distance of observations to boundarié§ X

It is shown in the next subsection that this scomest be accompanied by an
uncertainty analysis on its own evaluation as Withted number of test samples (which

naturally happen in real-world scenarios) it caregnisleading results.

3.3. Uncertainty of Skill Score Measurements

The described PI skill score can provide a meakurevaluation of a group of Pl
forecasters. This way, the best forecaster cambgen for the application at hand among
many potential choices.

Due to the limited availability of test samplesclsiskill score measurements are
subject to sampling variations. Therefore, it ol to assess whether the observed skill
is due to chance, or if it is a true attribute be tforecasting system. Joliliffe and
Stephensoifi39] point out: “It has been unusual in weatheret@st verification studies

for any attempt to be made to assess this samplicgrtainty, although without some
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such attempt it is not possible to be sure thopammt differences in skill are real and
not just due to random fluctuations”. In this wolky decomposition and statistical
analysis of the skill score measurements, we censdch variations in the evaluations
and hence offering a much more reliable and faingarison for the user.

A close look at the empirical evaluation study aeetdd in this work reveals this
issue as the mere calculation of tB8coremeasure using a test data set results in
misleading evaluations. Since the number of realdvtest cases is always limited, the
“measurement uncertainty” ddScoreusing the available test data set must also be
accounted for. This issue is of a greater impodgawben there are fewer test cases
available to measur®@Scordn each cluster as the number of clusters incesease

To analyze the uncertainty of the skill score, aleeta closer look at its components.

The terms that are dependent on the method undéicaton are Width; and 4%.
These terms are essentially a weighted sum of theasured values in thé different

clusters:

SScorey = —T (SWidthg; + 4% ) = — 2, |1;| (EWadehyy + 457) (3.12)
whereT; is the set of test cases that are assigned ttecjusThe measure@Scoreis
denoted asSScorey, since it is a sample statistic from a single sampét only.

Wldth,?,,'j is calculated as the average of Pl widths amoeggtltest cases in clusieAs

the Pls in a single cluster are obtained basedhensame fitted error distribution, it

follows that

Width? = Widthy vieT, (3.12)

Hence, the width term of the skill score is consianeach cluster, and there is no
uncertainty when this statistic is measured usingample data set in model test
evaluations. However, thﬁ“\,,"' term is the mean statistic of the random varizﬁbfeﬂ [ €
T]-} which is measured using a set of sample valugsTivinembers, and thus it is subject

to sampling variations.
With limited number of test cases and high nomowlerage rates of Pls, it may

happen that in clustgrl only a few test cases (el@;| = 400) are assigned to a cluster
and a fewer number of them (e.g. 30) would leacha@o-zero values oﬂ?'l. The

measured value (ﬁ@l for this cluster may be equal ﬂﬁ,’z of another clustge=2 which

has significantly more test cases (4%, = 6000). Although these two statistics are
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equal, the uncertainty amz is much smaller than the uncertaintyiﬁ,‘l since for
cluster two, the measure has been evaluated usmgh larger sample set.

To analyze the uncertainty SfScorey, Zﬁ" must be considered not as a single
estimate over the test cases, but as a one-siddidi@ace interval that provides an upper
bound over this measure with a specific confiddaeel. After using this upper limit for
all clusters, a lower limit on th&Score, with the desired confidence level can be

determined:

P (ﬂﬁf < jﬁf”)) =B (3.13)
P(SScorey > SScore ﬁ) = 3.14)
wheref is the desired confidence level over the measxpeessed as a percentage. As
an example fop = 0.95, SScore®> is the lower boundary of which the true skill seor
of methodM is expectedo be at least equal to with a 95% confidence.

To find the confidence interval oveif‘\,,'", its sampling distribution (providing the
probability distribution that describes the batokstitch variations of this statistic) has to
be considered. Bootstrap resampling is a methoddidding a collection of artificial data
batches with the same size as the original sanepleith replacemer{g8].

An example of a sampling distribution 4f;” and its confidence bound for a sample
cluster of test cases for a quantile regressionemading spline-basis functions (this

method is described @hapter 5) is shown in FiguBe2.

o
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Figure3.2. Bootstrap distribution of average delta faample cluster - #test cases=588,
#misses=26

The computed statistic over these batches effdgtimevides an estimation of the

sampling distribution[86]. For the purpose of this study, as many as0200otstrap

samples were constructed for each cluster and fHemeasure was calculated for each

sample set. The distributions defined over thesasomements are then used to compute

the desired quantile based on the confidence |gBvéhtuitively, there should be less

uncertainty associated wiﬂﬁ,” when increasing number of test cases in clystee used

in the bootstrapping process. Using the upper Iﬁﬁ,ﬁﬁ in Equation 8.11) leads to the

lower limit of the final skill score irfScore ﬁ This measure, which considers the test

sample uncertainties, is preferred for fair veafion of Pl forecasters.

3.4. Other Related Measures and Statistical Tests

From the statistical point of view, the modeledbemistribution can be evaluated in
comparison to the observed error. Goodness-oédistcan assess the hypothesis that the
observed data has been drawn from a reference lgplibpadistribution. In the PI
computations problem, the reference distributiorthis fitted error distribution in the
training model and the observed forecast errorsbeagompared to this hypothesized
distribution.

Chi-Square Test. The Chi-Square test is a common goodness-of-8t that
compares the frequencies of points in discreteselasf the probability distribution and
is hence more appropriate for discrete random bkesa When applied to a continuous
variable, the data has to be assigned into distriete The test statistic compares the

expected and observed frequencies in each of élsse$86]:

(#Observed—#Expected)?
Z= Zbins L (315)
#Expected

X

With a good fit, the actual number of observed dem a bin is very close to the
expected number of samples based on the fittechpiidly distribution. The test statistic
would have a sampling distribution of tiyé distribution with degrees of freedom equal
to (#bins-#fit parameters-1). This is obtained urttie null hypothesis that the observed
data were drawn from the originally fitted distrilaun [86].
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Kolmogorov-Smirnov (K-S) Test. Unlike the chi-squared test which compares the
pdfs of the fit and observation, the K-S Test fasusn the cdfs of these data samples.

This test is more proper for continuous variabld®e test statistic would be:

D = maxy|Fops(x) — F(x)| (3.16)
where F,,¢(x) is the empirical cumulative density function oétbbservations (refer to
Equation(4.8)) andF (x) is the theoretical reference cdf of choice. Hebas essentially
the largest difference between the empirical attddiicdfs over any possible value»of
In order to assess the rejection of the null hypsiththe critical values of th# statistic
are obtained from a table usually constructed affstical simulations.

It should be noted that the goodness-of-fit tests rbt provide quantitative
verification scores for forecasts in the form oedgliction intervals and can only be
applied to full probabilistic distribution casesetYthey are a powerful tool to statistically
analyze the agreement between the observationadstitdated full distributions that are
modeled within the Pl computation process. Sucts teave been adapted and used for
the evaluation of conditional coverage in Pl fostsfil8]. However, Pinson et al69]
argue that due to the temporal and persistent @adfirweather the independence
assumption of PIs would be loose and hence théfismmce levels by statistical tests can
be misleading.

In addition to the various measures discussed altbese have been efforts made to
develop probabilistic forecast evaluation scoreat tare more comprehensible and

plausible for a non-expert audience sucf2&8%
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Chapter 4
Clustering Approaches to Weather Forecast
Uncertainty Modeling

This chapter proposes the application of clustenmehods in the context of NWP
forecast uncertainty modeling. Various clusteringfimods including Fuzzy C-means and
density estimation methods work in combinationgarh prediction interval models from
performance history. Experiments practically apghly proposed models in a realistic set-

up and measure the quality and accuracy of thétigginterval forecasts.

4.1. Introduction

With the notion of the dependence of forecast eorothe forecast situatide?2] in
mind, a fine grouping of situations can lead tostdus of forecast cases with a similar
error behavior. Simultaneously, the error behauor cluster would be distinct from
cases in other clusters. Such groupings can bedftmynclustering all available cases
using the relative influential variables as thetdees. Subsequently, the prediction
interval analysis described in the previous sectiam be applied to each cluster
separately. This way, different Pls can be foundtfe different discovered forecast
situations. In other words, rather than consideaihgases as equal, the error distribution
within each cluster determines the prediction wdepf that cluster only. Characteristics
of the error distribution for each cluster are fdumsing the past performance of the
forecasting system in that cluster (which represanweather situation) only.

The steps of this Pl computation process and theireric input and output are
depicted in Figuret.1. In the first step, the forecast history undesythe clustering
process and the result will be clusters of forecasbrds. Note that these clusters are
determined by the influential features only and ttieecast errors are not used in this

phase. In the next step, the recorded errors ecésts in each cluster are modeled by
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density fitting algorithms which would provide thdensity models. Finally, these density
models are utilized to calculate the desired ptesticintervals that can be used in any

application and would also undergo the evaluatiwh skill analysis process.

Forecast Error Prediction
History Clusters Intervals

Data Density Pl
Clustering Estimation Evaluation

Pls

Quality
Measures

Forecast
Clusters

Density
Models

Figure4.1. The process of uncertainty modeling for Pl potation and evaluation
In this study, we apply four different clusterinlg@ithms for the grouping of the
NWP past forecasts. Each of these algorithms isobrtbe most widespread algorithms
from a distinct class of clustering algorithri9] i.e. K-means from median-based
algorithms, CLARA from medoid-based algorithms afdglomerative Hierarchical
clustering from hierarchical algorithms. The foumlgorithm is the Fuzzy C-means

clustering which is described in sectibd.

4.2. Fitting Distributions to Forecast Error

Gaussian Fit. The error of a point forecast at timeet)(can be regarded as a sample
of the error random variabke This random variable would have its own probability
distribution whichcan be characterized by its bias)(and standard deviatiow ). Let
{e;} be a series of random samples of the error var@flhen, the values of sample bias

and sample standard deviation can be calculatédedfpllowing sample statistics:

. 1
He = ;Z’t"zl e @.1)

1
~ 1 ~ \2]2
Ge=|=Eale - 02 @.2)
whereN is the size of the sample ser{@g]. A simple yet popular method to find the

boundaries off¢ is based on the assumption that the erfg) follows a Gaussian

distribution. Many studies do confirm that the f@ast error of many weather attributes
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follow a Gaussian distributio[#6][47][48]. For a Normal distributioV (1., o,2) with

known parameters one can calculate the Pl quapiidsn Equations(2.7) and(2.8):

Uf =9t + e = Zaj2-0.  @.3)

¥ =9+ pe + Zi_q/2-0c (4.4)
where z,,, andz,_,/, are the quantiles witlia/2) and (1 — «/2) of the standard
normal distribution’V'(0,1), respectively. In the case of a Pl of 95&= 0.05), z,/,
andz;_,/, are equal to 1.9@9][40]. This method is parametric, as it assumesranab

distribution for the error. Figur2.1 shows the error distribution of temperaturedasts
in various locations in the province of British Goibia (BC), Canada for Summer 2008.

The matching normal distribution and the quantitesthe 95% intervalsa = 0.05) are

also shown.
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Figure4.2. Temperature error distribution and correspagdiormal distribution based on
ufando€ of the entire available dataset.

Depending on the prediction method in use, diffen@ays to estimate the error
distribution parameters i (3) and 4.4) have been propos¢2b]. Some of them have
been shown to be unjustified (e.gt3]), and many others are not applicable hereuas o
prediction model is NWP and not a time series liegrmodel[17]. An alternative is to
estimate the error distribution and its quantilesg a dataset of past performance of the
forecast model. Prediction interval calculation noels of this type use thabserved
distribution of errors in the historical recordstbé system. They are known to provide

reasonably good results when theoretical formudasiot be appliefiLl7]. To obtain Pls
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for the NWP forecasts using this method, a dateSgtast predictions and associated
observations must first be constructed. Subsequetiie prediction interval can be
determined by first fitting a Gaussian distributitmthe data (i.e{e;}) and then using
Equations 4.3) and 4.4) to find the quantiles. By using the simple moet of moments

for the fitting step one can apply Equatiodsl] and 4.2) to calculatgi, andé, using
sample statistics of the empirical dataset. Heasethese parameters are estimates, the
boundaries of the prediction interval are determiinesing the following equations
[40][88]:

¢ =9, +p —t@/2,N-1).6.:+1)"2 @5)
¢ =9 +pe +t(1-a/2),N=1).6..c+ 1) /2 (4.6)
wheret(a,n) is the quantile of the Studentslistribution for confidence levet andn
degrees of freedom. The quantileg-dlistribution and the multiplier term are used ginc

the moments of the real distribution are unknowathier, they are estimated based on

samples from the historical performance datpk#t

Weibull Fit. Investigations into actual forecasts accuracie@svsinat in many cases
the forecast error distribution does not fully éail a symmetrical normal distribution
shape. This is often viewed in target attributest lollow non-Gaussian distributions
such as wind speel®6]. To achieve a better fit and consequently dveRls for such
cases with skewness, Weibull distribution can bgotentially proper choice. Weibull

distribution has two parametérand) as follows:

20 =) e[ ()] @n

wherek > 0 is the shape parameter ahd- 0 is the scale parameter of the distribution
and the value of function is zero for< 0. To find the fitting distribution parameters for
a set ofx values, the method of Maximum Likelihood EstimatidMLE) is used86].

Using MLE the distribution parameters are tunea iwalues that the expectation of

drawing the sample data from the fitted distribntieould be maximized.
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Figure4.3. Wind speed (m/s) error distribution and aAtsibull distribution fit (curve) for a
sample subset of NWP forecasts
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The cdf of this fitted Weibull distribution€) can then be used to compute the error
guantiles of the Pl when used in Equatig@s7) and (2.8). It must be noted here that the
error values in the fitting process have to betetlito right so that the minimum value
for the random variable would be zero. This camee by adding the magnitude of the
worst possible error for the target to all entregsthe error set. Figurd.3 depicts an

example of fitting Weibull over a set of wind spe=dors.

Empirical Distribution. Another alternative for the analysis of error digition is
to not assume any predefined type of distributioer dhe samples. The error distribution
and the respective Pls in such cases can be ddnwedthe actual distribution of the
sample data at hand. This means thatetn@irical cumulative distribution function of
sample errors is used as a direct estimate oftiegpbpulation distributiof66][68]. This

empirical cdf is defined as:
Fgq) = y#lec € Ele, <q} (48)

whereE is the set of errors in the available sample. By #ipproach the termi¢ in
Equations (2.7) and 2.8) will be computed differently ultimately leadirio different
Pls. Because there has not been any assumption onaithe forecast error distribution,
such approach is called mon-parametric method of distribution estimation and

probabilistic forecasting.
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Kernel Density Smoothing.There are some potential drawbacks in the appbicati
of the empirical cdf method for estimation of faast error distribution. First, the
sampling characteristics of the data can have enaira impact on the cdf function.
Second and more significantly, the domain of thé fodction will be limited to the
minimum and maximum values existing in the samplactv is not ideal for the PI
analysis that is enormously sensitive to the talls. alternative to the empirical pdf
function is the kernel density smoothing method cithcan both provide a smoother
function and a better estimate of the tails. In$tefaconsidering a 0 or 1 binary value in
the empirical pdf construction, kernel density sthow is achieved by stacking kernel
blocks that are centered at the data values. A 8nmgpkernel function is a non-negative
function that has a unit area and hence is a pra@érability density function on its own.
In Figure4.4 four different types of smoothing kernels aneven. The support of these

function are [-1,1] except for the Gaussian kemigich has a support ¢fco, +oo].

1.0

Triangular —
0.8 — Quartic
0.6 4 ~
= Quadratic /!
X T~ [ Gaussian
0.4
" ~ /
02 — o ot
— ~
0.0 f I [ I

Figure4.4. Four common smoothing kerngs]
Each sample would provide a stacking element edmathe smoothing kernel

centered at the sample data value and the findupdtion would be constructed by:

A 1 -

fEx) = NI IiV:1K (xhx) (4.9)
whereh is the smoothing parameter which balances the grimgpintensity. A good
choice for this parameter is critical and when gsihe Gaussian kernel a reasonable

choice would bé75]:

. min{o.9s,§1QR} (4.10)

N1/5
wheres is the sample standard deviation d@R is the Inter-Quantile Range of the

sample data.
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Figure4.5. Empirical pdf and the kernel smoothing denasftg sample wind speed error set
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Figure4.6. Empirical cdf and the kernel smoothing cdfief sample wind speed error set in
Figure4.5

In Figure4.5 the empirical distribution of a sample subdeivind speed errors are
shown. The curve shows the kernel smoothing demsitshis sample using Gaussian
kernels. Also the cumulative distribution functiohthe empirical distribution and the
kernel smoothing distribution for this sample anewn in Figure4.6. As can be seen the
kernel version desirably has a smoother shape ecithds gradually on the edges.

It should be noted that almost always the assummtidperfect observation” cannot
be made. If the observational error is not comgdarabth the forecast error it can be

ignored. Otherwise, a possible solution would beadd a noise (with the variance of
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observation error) to the forecag®y. In all of the above error fitting procedurdbge
weather situation and other features (such as éintklocation) do not play any role.
Thus, these Pl computation methods cannot yielteréiit intervals in the various
weather situations. When applied to the NWP modeputs, each of these methods
would estimate a prediction interval for the givettribute (e.g., temperature) with the
same width no matter where and when the forecashade and what the weather
situation is.

To change the above parametric and non-parametdc féting and Pl computation
methods into a dynamic method and to make themitonal with respect to the weather
situation, we propose the use of clustering sotti@previous analysis can be applied to
different well-distinguishable forecast situatiohster on, other learning methods are

studied to provide dynamic Pls from error records.

4.3. Prediction Interval Computation Using Crisp Clustering

In crisp clustering algorithms every data poinstigctly assigned to a single cluster
and hence the partition matrix of the clustering banary elements. In this section we
elaborate on the crisp clustering algorithms areir thpplication in prediction interval

modeling.

K-means. This algorithm is a simple yet powerful clusterggorithm that has been

used in many applicatiorfi84] including clustering of atmospheric situatiarsd patterns

[35]. To findk clusters in a datasét = {xy,x,, ..., xy} Wherex; = {x},x7, ..., x!'}, N is

the total number of available forecast cases fainiing andd is the total number of
influential variables. The K-means clustering aitjon iteratively updates the center
points of theK clustersC = {c,, c,, ..., cx} and reassigns every data point to the nearest
cluster center. This heuristic iterative processally minimizes the total distance of

points to their respective cluster’s cerjt]:

J = argming T, Tuenllx — il @.12)
whereD; is the set of points iD that are assigned to clustasc; is their nearest cluster
center inC. Here,x}"d are thed influential features for forecast caseVe would also
have the forecast error of cgsassociated with the predictay(aSe]?’ but not used in the

clustering.
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Figure4.8. Error distributions and their moments for B dataset (solid black) and four
identified clusters of forecasts.

To find clusters of NWP forecasts, each predictan be considered a pointn
For each poink;, up to 25 influential variablegi(= 25) are taken into account such as:
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forecast temperature, wind speed and wind dired@brdifferent geo-potential heights),
surface pressure, mixing ratio, grid precipitatibour of the day of the forecast, and the
latitude, longitude, and elevation of the foredasation.

The main thesis of the proposed approach is thetaring of past forecasts can
efficiently capture the characteristics of the @& conditions and categorize them into
distinct classes. The forecast error behavior @ggmted by its distribution) is anticipated
to follow the same pattern within a category, hat pattern will differ among categories.

Consequently, after a set of cluster cenfexsc,, ..., cx} is determined from past
forecasts by applying a clustering algorithm, eelaister will have its own set of forecast

cased; and also its own set of errors for targét E such that:

E) ={e|yeD,j=1.n},i=1.K @12

i
where n' is the number of sample points in clusteFhe error distribution of a desired
variable (e.g., temperature or t2) in each clustauld be determined by considering the
past forecasts errors of members in that clustly. diis set is defined as the d&f*.
Now that the error samples are also grouped basetther forecast situation and the
influential variables, any of the distribution ifity approaches described in the previous
subsection can be applied on the #fsi = 1..K.

For instance, based on the Gaussian fitting metamth clustei of forecast errors
E? will have its own estimated probability distribori fft and sample statisticg’
andél. A sample clustering fok=4 on the BC database is projected into the first two
significant components from Principal Component lysig (PCA) in Figured.7. The
arrows show the correlations of various attributegd in the clustering process with
these components. The Gaussian probability defisiigtions which are fitted to the set
of errors from these clusters are plotted alondnlite original single set aill past
forecast errors in Figure 8.

After the training phase is finished and a new dastx,,,, iS made, the cluster to

which it belongs can be identified by the near&stter center:

Xnew € D; , Wherei = argmin]-”xnew — c]-||2 @.13)

and boundaries of the corresponding predictiomialecan be estimated:
z[;rlew = j\’new + ﬂei - t(a/Z,ni - 1) ° &ei : (% + 1)1/2 (414)
ja — 5 AL i ~ 1 1/
Unew = Ynew + He + t((l - Q/Z) yn— 1) *O0g (; + 1) 2 (415)
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wherey,.,, is the attribute of interest in the forecagt,,. Pls determined this way would
be generally variant between different forecastthag depend on the cluster of forecast
situations to which the current forecast case lggon

Using the model performance history makes the megoapproach of PI
computation efficient and applicable to forecasimmed from NWP model outputs. To
examine the effect of clustering algorithm on thldy of calculated PlIs, two other crisp
clustering algorithms are considered in this studiastering for large applications
(CLARA) [41], and Agglomerative Hierarchical clusterifs®].

CLARA. Random sampling approach is used in the CLARA (@hisy LARge
Applications)[41] to handle the large number of points in re@pilications such as data
mining. The key point is that appropriate sampleesican effectively maintain the
important geometrical properties of the entire dsg To improve the efficiency of the
brute force search process in the PAM clusteriggradhm[89], CLARA applies PAM to
find the representative medoids only in a randodnwn sample from the data set. For
better approximation, CLARA repeats this processhwnultiple samples from the

original data set.

Agglomerative Hierarchical Clustering. In hierarchical clustering the data samples
are grouped using either a top-down or bottom-ymr@grh. In the agglomerative case,
data rows are regarded as single clusters initally at each step the most similar pairs
of clusters merge into a new single cluster inttigher level and the process is repeated
using the new set of clustdesl][89]. Hence, at the end of this bottom-up processw
have a tree structure of clusters (dendrogram) lwhas the whole data set as a single
cluster in the root. Unlike the other two algorithihis algorithm does not require the
number of clusters as an input. Instead the resuldiendrogram can be cut into any
desired number of clusters based on the ordemnufesities between the clusters. Further

details of these clustering algorithms are avadaib[89].

4.4. Prediction Interval Computation Using Fuzzy Clusteing
The clustering algorithms described in the previsestion assign each sample point
into a single cluster only. Therefore, the membhersi a forecast case in any cluster

(x; € D;) is a binary value. In a possibly more naturalrapph, the forecast cases can be

associated with the clusters by different levelsr@mbership. This varying degree of
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membership is fundamentally supported by fuzzy #getory [63]. Such partial
membership of samples can potentially improve tobeeting of forecast situations when
analyzing the patterns of forecast history recotdsthis way, a forecast case can be
simultaneously considered as members of variouscést situations. Many weather
conditions such as transitional phases of weatlzer loe better explained by this
approach.

Fuzzy C-means is one of the most widely used dlusgtealgorithms that can
discover cluster patterns based on the fuzzy meshipeassumption. In this algorithm
the membership values of data points (rows) in ¥hdous clusters (columns) are
represented by a matrix that can have fractionllevan the entries rather than only
binary values in the case of crisp clustering aigors. The objective function of the

clustering process is changed accordijg]{64]:

J = argming Z{-\'zlzﬁ-‘:luﬁ”xi - c]-||2 @4.16)
whereu;; represents the degree of membership of the mpint clusterj andXr , u; =
1. m > 1is the fuzzification factor that controls the balarbetween membership values
of close to 0 or 1 and the values in between.

The objective function can be minimized using GeatliDescent in an iterative

process where the membership matrix and the clasteers will be updated by:

[xi=cll

eyl 71
wy = 1/3k (1) @.17)

lIx;—cll

This iterative optimization process will repeat iumione of theu matrix entries
changes are bigger thar{convergence).

Finally, these fuzzy patterns of historical fordsasan be used for the modeling of
forecast error. Unlike the binary clustering apgfothat each error sample contributed to
a single cluster in the next distribution modelsigp, the output of the fuzzy clustering
process will determine the contribution of eacloresample to all of thie clusters. After
applying a binary clustering algorithm, the sepabt error samples for targett;” could
be achieved by Equatiod.(2). However, since the samples in the trainingspe of the
clustering process have fuzzy levels of memberétripeach single cluster, the” set
cannot be determined as before. In addition, amy fleeecast case,,,,, iS now going to
be associated to all of the clusters but with défeé degrees of membership and Equation

(4.13) will not be appropriate anymore as the esample set should be independently
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defined for any new forecast case according t@mws membership levels. Hence, we
should devise a new method to determine the saenpbe se'rE)i’neW that can describe the
forecast error characteristics of each new forermEpendently. WhenE)i’neW is made
available, any of the distribution fitting approashdescribed in Subsectidr? can be
applied to this set in order to provide the estadafiorecast error distributiof® which
can then be used in Equatiof?2.7) and (2.8) to get the prediction interval quantiles of
choice.

The process of determinirﬂjneW is essentially a probability distribution combiioat

problem. Here we apply the bootstrapping approakitiwis a resampling method that
tries to get a better estimate of a population patar by measuring the estimate over

multiple representative samplg&s]. TheE)i’neW set of errors would havé members (i.e.

the number of past sample errors for every newchseis equal to all available past

forecast samples.). Out of theSesamplesu, . ;.N would be drawn frorTE]?’ with
replacement. Hence, wheg,.,, has a higher level of membership in clugtemore
samples fronk?” would contribute t&y .

It should also be noted thﬁ‘}.” is a fuzzy set on its own where the veatgy, i =
1..N determines its members. This implies that the ggs@f sampling, ;. N points
from E].y is not uniform and is performed by the weightedbability vector ofu;; for

clusterj.

Once the described sampling process provides megr?e%, the distribution fitting
methods can then be applied just as in the binkstering case. The fitted probability
density functionfx‘jlew would then be used to obtain the cumulative distron function
and the desired quantile values as explained is&ion2.1. The PI quantileB’%, and

022 \would be achieved by a single run of the bootgtirap process wherk = 1..B.

After repeating the process for B times the finaBuld be achieved by:

B 1
%, ==
new B

b-1lnew (4.18)
—~ 1 —~
Ufew = 5 25=1 Unswy  (4.19)

whereB is the number of bootstrap samples &, can be finally available for usage

and evaluation purposes.
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As an alternative to the bootstrapping process litaio a single fitted error
distribution for any new forecast, a two phase pssccan be used. In the first phase, a
distribution can be fit for each cluster involviad training samples, using a weighting
scheme based on each sample’s degree of membgrshgt cluster. In other words, the
training samples that are more associated witlusten contribute more to the formation

of that cluster’s pdf:
E' = {e?, mi(e?) Imi(e)) =m;(x) =wy, i=1..N, j=1..k} (4.20)

Hence, when applying the kernel density smoothirggthwd to fit a probability
distribution over the error set of clusteru;; determines the vector of weights for the
samples in the fitting process. In the second plEsecasting), any new forecast case
Xnew 1S NOW associated with all clusters, but with eliént degrees of membership.

Therefore, the Pl boundaries computed for eachtesfgs fitted distribution are

consolidated using membership level of the newdasein each of these fuzzy clusters

Lew = Zfet tnew,iLhew,  Uflow = Zft tnew, Uy 4.21)
whereuy,,, j = m;(xpey) is the membership level of,.,, in clusterj. This provides a
normalized weighted mean of the individual quastitalculated for each cluster. Hence,
for example, when the new forecast belongs to etustwith a much higher degree
compared to cluster 2, its prediction interval isteimined with much stronger
contribution from quantiles of cluster 1 ratherrit@duster 2. This method is in essence a

distribution combination process.
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1) Clustering Phase: Use the d influential weather attributes from the
NWP forecasts to discover k cluster centers using Fuzzy C-means (using
equation (7)) over all of the forecast records.

2) Distribution and Quantile Estimation Phase: For every cluster
[ = 1..k consider E; as a fuzzy set of error samples defined by the
membership level of their associated forecast in this / cluster (i.e.
;. i=1..N).

a. Fit a (parametric or non-parametric) distribution (F?) to
cluster / by using u;; as the weight vector over the samples.

b. Use the estimated £} to obtain L and U} for the prediction
interval with (1 — @) level of confidence.

3) Test Phase: For new forecast X,., determine its level of
membership in each cluster u,,,; (j = 1.. k).

4) The lower quantile of the forecast (I%,,,) is obtained by combining
the estimated quantiles based on the membership weights i.e.
fo:l Unew,j - Eff (likewise for the upper quantile)
Figure4.9. Steps of fuzzy prediction interval modelingl &orecast
The general steps of the process of training amdyusprediction interval forecasting

system using fuzzy clustering is provided in Figi@

4.5. Experimental Results

4.5.1. Data Sets and Method Set-ups

We experimentally evaluate the applicability andfgenance of the described
uncertainty analysis models to obtain Pl forecésimn the WRF Numerical Weather
Forecasting mode[80]. Two different hindcast data sets of hourlyedlictions are
accompanied by the respective observations frontheeastations from the National
Center for Atmospheric Research (NCAR) data repositBy joining the relevant
observation for each forecast and deriving the@asa forecast error, the two data sets
can be considered as two repositories of the NWRBefizohistorical performance. The
WRF v3 simulations were run in three nested grigh wesolutions of 10.8 km, 3.6 km
and 1.2 km. The outermost domain covered an aresbaift 15595 kfmwith a 38x38
grid. The nearest grid point to the observatiorii@iawas assigned as the associated
forecast grid.

The first data set is for the forecasts and obsiens of the summer of 2008 in 60
different weather stations in the province of BhtiColumbia, Canada. This data set
(referred to as BC) contains about 13,000 recofdisrecast history. For this data set, 10

major weather, location and time attributes wereduss the influential variables:
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predicted wind speed, wind direction, temperatsteface pressure, mixing ratio, grid
precipitation, altitude, latitude, longitude, armlh-of-day.

The second data set covers a much longer peridgomefi.e. three years of 2007,
2008 and 2009 for two stations in BC. This data(seferred as AG) contains about
51,000 records of historical performance. Theregataal of 33 features available in this
data set as listed in Tablel. For both of these data sets the observationsised to
derive the forecast error for two meters tempesaturd ten meters wind speed forecasts
and the described PI computation methods are apliachieve Pls over the forecasted
temperature and forecasted wind speed. Pleasenalsahat since the features of wind
direction and hour of day are periodic, we subsithhem with their sine and cosine
transformations with the appropriate periods @80 and 24, respectively) in the best

setups of fuzzy clustering and quantile regresgient chapter).

Table4.1. Available influential variables for the AG todcal data set

wd10 (wind direction at

t2 (temperature at 2m), ws10 (wind speed at 10m) 10m)

pg1/3/6/12 (pressure gradient
psfc (surface pressure) current value compared to | td2 (dew temperature at 2m)
1/3/6/12 hours before)

temperature at

psl (sea-level pressure) rh2 (relative humidity) 950/925/850/700/500
pressure levels
horizontal wind speed at vertical wind speed at wind direction at
950/925/850/700/500 | 950/925/850/700/500 pressur  950/925/850/700/500
pressure levels levels pressure levels
Hour of day station -

Table4.2. Feature sets used for uncertainty modelingeBC data set

Features
Feature Set 10 Basic| pgl, pg3 PCA
Feats pg6

BF1 °

BF1PG ° °

PG °
BF1PGPC4 °

BF1PGPC6 °

37



Table4.3. Feature sets used for uncertainty modelirtheoAG data set

Features
. Pressure
Feature Set 1([):23?(: levels 55615513 5 PCA
Feats. '
BF1 °
BF2 ° °
BF1PG °
BF2PG ° °
PG
BF1PC4 ° °
BF2PC4 ° °
BF2PC8 °
BF2PC12 °
BF1PGPC4 ° ° °
BF1PGPC8 ° ° °
BF2PGPC4 ° ° ° °
BF2PGPC8 ° ° ° °
BF2PGPC12 ° ° ° °

For the BC data set five different subsets of tailable features are defined to
investigate the role of influential variables awndselect the optimal set for Pl forecasts.
These feature sets are describes in Tdl#leNote that the features starting with “pg” are
new derived temporal features from the forecastb@srepresent the gradient of surface
pressure between the current forecast and theasiseeade in one, three and six hours
ago for the same location. It is expected thatehesitures would provide valuable
information about the temporal stability of the doasted weather for the uncertainty
model. Also, Tablet.3 lists the 14 different feature sets used fer Al data set. The
feature set which excludes the pressure gradighpegssure level attributes is called the
basic set here. As the number of features woulexbensively high for some setups such
as BF2PG and this can have negative impact onualgyyof the clustering algorithm the
Principal Component Analysis (PCA) technique isliagopon some of the feature sets to
use theC-most important components in the analysis rathan @all of the dimensions.
The number after PC in these feature set namegsems how many of the first
significant components were used.

For the evaluation of the various PI forecastinghods each data set is split into a
train set and a test set in every experiment. @ytrain set is applied for the modeling

phase of the process when the clusters of weathecdst situations are discovered and
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their error distributions are modeled. After thainmg phase, the test data which has
never been seen is fed into the model to obtainPilse These forecasted Pls are then
subject of the verification measures as describ&hapter 3.

The available data sets are split randomly intaffereént folds to perform a 5-fold
cross validation process to better evaluate thénookst At each step 4 folds of the data
are used for training and th& $old (which was not applied in the training proses
used in the test phase. In another evaluation sbeIAG data set is split into 3 folds
based on the temporal sequence of the records.ig haieach fold run, two years of data
are used for training and the third year of datasisd for test. For example the 2007 and
2008 data are used to train the model and the@@B8 data is used to verify the trained
PI forecasting model. Monthly split of the dataamts in the BC data set would also
yield to 3-fold cross validation.

Here we focus on the 95%-confidence level Pls §.e. 0.05) for temperature and
wind speed. Due to the availability of alternatol®ices for the various steps in the PI
training phase many different models will be definey the combination of these
options:

* Feature Sets: as listed in TaBl@ and Tablé.3.

* Clustering algorithm: K-means (5 random starts)ABIA (300+&K random
samples) and HClust (Euclidian distance and Waadgiomeration method),
Fuzzy C-means (FCM)rE1.2 for BC and 1.1 for AG)

* Number of clustersK): from 2 to 200 with increasing intervals

» Fitting Method: Gaussian, Weibull, Empirical andri& density smoothing

In the test phase the trained model is used to aterpe Pls for the forecasts made
in the test data set and the resulting Pls areigeedvas inputs to an evaluation procedure
that would determine all of the explained qualitgasures and scores for the verification
of Pl forecasts. Each measure is evaluated in deddytest run and its average over all
of the folds is considered as the overall estimteat measure for a method.

To compare the various proposed methods with alibasmethod, some simple
approaches are considered. The first possible ihasehethod is theclimatological
approach that considers all of the past error sesrjolgether (i.é<=1) and computes the
Pl based on these samples. Note that any of tiregfinethods can be used for its error
distribution modeling. Other baseline methods ater&d in this study would follow

manual categorization of past forecast recordscasean attribute. Here, we consider
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Density

methods that simply use forecast hour-of-day, manith temperature as the categorizing

attribute (i.eK=24,K=12 andK=10).

2007 Error Distribution: m=0.01 sd=3.024

2008 Error Distribution: m= -0.199 sd= 3.061

2009 Error Distribution: m= -0.248 sd=3.244
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Figure4.10. Temperature error distributions for varioeang (in AG data set) with different bias
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Figure4.11. Standard deviation of temperature error @heaonth for different years in the AG

To have an initial look at the forecast error htites in the data Figuke8 shows the
temperature error distribution in the BC data Aé&to in Figure4.10 and Figurd.11 the
sd. of temperature error (as a key aspect in Rysisgis plotted for different months and
years in the AG data set. As can be seen therdyieasome regular pattern of forecast

uncertainty in the different months that can bel@xgd for obtaining conditional Pls.

Ionth

data set

Similar patterns can be observed for the wind spetast errors as well (Figudel?2).
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Agaziz Error Distribution: m= 1.564 sd= 2.261 Hope Error Distribution: m=-1.502 sd= 3.04

0.25
0.25
|

n= 24659
Plwyidth= .86

n=25618
Plwyidth=11.92

0.20
|
020

Density
0.1%5
|
0.15
|

010
|
010
|

005
|
0.05
|

0.00
|
0.00

15 -10 -5 0 o 10 15 -15 -10 -5 0 5 10 15
Yyind Speed Error{mis) Wind Speed Error{mis)

Figure4.12. Wind speed error distributions for the twiiedent stations (in AG data set) with a
notable difference in bias and variances and tlohvaf a Gaussian fit Pl

The above analysis confirms the hypothesis thatfdhecast error behavior would
follow different patterns and attributes in variofmecast conditions which can be
exploited by the Pl computation methods to achielethat are dynamic based on these

situations.

4.5.2.Crisp Clustering PI Forecasting Methods

The methods that achieved the five b8Sicorefor temperature Pls as defined in
Equation 8.11) among the entire possible PI forecasting ougthas described in the
previous subsection) are listed in Tabld. Please note that for simpliciyScorevalues
are divided by—T so the measure is independent from the numbeesif damples
between different experiments and it is also neghtioriented (as in error measures).
The best performing methods have used the maximumbar of clusters for the
clustering process which is counter intuitive athwiery large number of clusters there
will be very few samples available in each clugtereffectively learn the uncertainty
model of the weather situation represented by ¢hester. The same issue is evident in
the best methods in the AG data set with the yearbgs validation experiments as

reported in Tabld.5 and also in the wind speed error Pl methodsrépmrted here).
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Table4.4. Top five methods and the detailed measuretefiop. in BC data set based on SScore in

5-fold cross validation

Algorithm | K Fit Features| Sharpnesq Coverage| Resolution| SScore SRS;r?kre
K-means | 20D Kernel BF1 11.45 95.79 3.12 0.32B3 1
Clara |200 Kernel BF1 11.61 95.45 3.08 0.33p2 2
HClust |200 Kernel BF1 11.30 95.04 3.24 0.3359 3
K-means | 150 Kernel BF1 11.77 95.73 2.92 0.3366 4
K-means | 200Empirical] BF1 9.84 90.00 2.82 0.3372 5

Table4.5. Top five methods and the detailed measure®iop. in AG data set based on SScore

in 3-fold (yearly) cross validation

Algorithm | K Fit |Features|SharpnessCoverage Resolution SScore SRS;r?kre
K-means| 200 Kernel BF1 9.99 94.02 1.94 0.3125 1
K-means| 150 Kernel BF1 10.16 94.24 1.83 0.3145 2
K-means| 20D Kernel | BF2PG 9.97 93.92 2.26 0.3161 3
K-means| 200Normal BF1 9.64 93.12 1.89 0.31p4 4
K-means| 100 Kernel BF1 10.58 94.81 1.78 0.3171 5

To have a closer look at the rolekofn the SScore evaluations the trend of this score
with increasing number of clusters is provided igufe 4.13 and Figurel.14. These
figures show theSScoretrend for the best temperature Pl setup using edcthe
clustering algorithms for the BC and AG data sebe Tever improving trend is in

contradiction with the statistical nature of thaning process.
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Figure4.13.SScordrend of best temperature Pl methods over inargasimber of clusters in the
BC data set
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Figure4.15. The trend of detailed forecasted PI qualigasures with increasing number of

clusters

The reason for this optimistic measuremer8toran methods with higher number

of clusters is that the measur&®bcoreis a sample statistic over the available test
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samples. Yet, as argued in subsec8d) the uncertainty bounds for this measure vall b
further away from this estimation with small numb¥rsamples. By using the 95%-
confidence level bound for ttf&Scoreverification score as defined i8.(4) we can make
sure that the judgments are not mislead by thenomber of available test samples. As
Figure4.15 shows sharpness and the average delta (a®ih@ising elements of the
skill score) have improving trends when the numdfetlusters increases. However, the
95% bound on the average delta measure does nowfsuch trend. The observed
nominal coverage, its 95% bound and the resoluti@asures are also depicted in this
figure. Figure4.16 and Figuret.17 show the trend dfScore®®> (that uses the delta
bound rather than its sample value) for the besipseof the clustering Pl methods. As
can be seen, this score accounts for the uncertafirthe SScoremeasurement using the
available test set and shows a decrease in forekdis{increase ofSScorg with large
number of clusters as expected.

ConsequentlySScore®®® is used to rank the various methods and the sesut
reported in Tabld.6 and Tabld.7. Also, the best ranks achieved by the variaseline
methods are listed in these tables. In the BC sdettathe K-means clustering algorithm
with 6 clusters and kernel density estimation palesiP| forecasts with the average width
of 13.42 while the Base-Temp baseline method wputdide Pls for the same forecasts
with an average width of 14.23. The paired-t testrothe skill scores of these two
methods confirms that their estimated means ateststally significantly different (p-
value=0.014<0.05). The difference between the skitire of the best clustering and the
best baseline method is also statistically sigaiftqp-value=0.0001). In addition, the K-
means algorithm Pls would have a standard deviaifoh.20 degrees in the forecasts,
while this value is equal to zero for the climatptal baseline approach that provides
constant width PIs.

Also in the AG data set, the best K-means setup thi¢ kernel fitting method over
the BF2 feature set can achieve @8corewhich is less than 0.3485 with a 95%
confidence. This value would be equal to 0.3774 ther climatological baseline and
0.3704 for the best baseline which is the montretdagouping method (p-value<0.005).
Such improvement in forecast skill is achievedhesRIs of the K-means setup have less

width (less vagueness) and higher coverage of waens (reliability).
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Table4.6. Top five methods and the detailed measureteifop. in BC data set based on
SScore?> in 5-fold cross validation

. . _ SS SScord™
Algorithm | K | Fit | Features | SharpnesgCoverageCoveragé *|ResolutionRMSE|SScore Racnokre SScord®? RC;r:k
K-means| 6| Kerngl BF1 13.42 95.37 93.05 1.20 3.41 0.394®34| 0.4245 1
HClust 4| Kerne BF1 13.79 95.66 93.86 0.73 3.40 0.401494| 0.4251 2
K-means| 9| Kerngl BF1 13.26 95.58 92.68 1.29 3.37 0.387818 0.4253 3
K-means | 10 Kernel BF1IPGPC4 13.12 95.73 92.60 1.33 3.32 0.38810 0.4254 4
K-means| 7| KerngBF1PGPC4 13.48 95.52 92.96 0.95 3.39 0.39988 0.4256 5
Base-Temp.10| Kernel| Temp. 14.23 95.59 92.59 1.10 3.65 0.401314| 0.4423 451
Base-Clim| 1 | Kernel - 14.99 95.19 94.32 0.00 3.0 0.439895| 0.4514 782
Base-Ws.| 10Kernel Ws. 14.49 95.61 92.89 0.92 3.67 0.4p3887| 0.4621 1001
Base-Houn 24| Kernel Hour 13.72 95.77 90.21 1.09 3.47 0.3971211| 0.4679 1098
Table4.7. Top five methods and the detailed measureteifop. in AG data set based on
Sscore®> in 3-fold (yearly) cross validation
. . _ SS SScord®
Algorithm |K | Fit |Features|SharpnessCoveragd Coveragé - ®|Resolution| RMSE|SScore Rac:kre SScoré®® RC;r:k
K-means | 50Kernel| BF2 10.78 94.96 92.74 1.87 2.80 0.325466 0.3485 1
K-means | 4bKernel| BF2 10.86 94.89 92.78 1.87 2.83 0.32738 0.3492 2
K-means | 40Kernel| BF2 10.89 94.82 92.85 1.84 2.83 0.380314 0.3499 3
K-means | 50Kernel| BF2PG 10.94 94.87 92.60 2.20 2.87 0.32889 0.3506 4
K-means| 70Kernel| BF2PG 10.64 94.75 91.98 1.95 2.78 0.32283 0.3509 5
Siifh 12 Kemel| Month | 12.21 | 95.12 94.10 1.91| 312 036@B41| 0.3704| 1671
Base-TempglONormal Temp. 11.70 94.44 93.57 0.98 3.04 0.362809 0.3725 2193
Base-Ws.| 1Kernel| Ws. 12.12 94.91 94.17 1.20 3.12 0.368037 0.3754 2681
Base-Clim| 1 |[Normal - 12.17 94.78 94.49 0.00 3.11 0.3748885| 0.3774 2845
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Figure4.17.Sscore®®> trend of best temperature Pl methods over inangasimber of clusters
in the AG data set

Achieving better scores by bigger number of clissterthe AG data set compared to
the BC data set can be a result of the availabifitnore data samples and features both
in the train and test phases as this would incréeseomplexity of the learning space in
the training phase and decrease the uncertaintiyeogkill score evaluations in the test
phase. In the Coveral@ column of the measure tables, the 95%-confideexel lower
bound for the measured nominal coverage is providéis estimate is the weighted

average of the binomial test lower bound of nomioaerage in individual clusters
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based on the number of test cases in each clUstere is a notable difference observed
between the sample measure of nominal coverageatar®b%-confidence level lower
bound due to the availability of rather few teshpées with bigger number of clusters.

Moreover, the Root Mean Squared Error (RMSE) of firecasts is listed in these
tables. This important point forecast performaneasare is calculated for the forecasted
Pls based on considering the median of the Pl as#w revised point forecast. The
notable improvement achieved by the proposed mstlammpared to the baseline
methods is due to the dynamic calibration of foséchias in the forecast groups
discovered by the clustering algorithms. Here theedast bias is estimated from the
accuracy records in a dynamic fashion dependintp@forecast situation characteristics.

To have a general comparison between the varioogprsing elements of a Pl
forecasting method we aggregate and summarizedtiermance measures of the three
clustering algorithms over all of the combinatidhsy can have with number of clusters,
feature sets and fitting methods. The same aggoegest performed for the feature set
and fitting method elements. Figu#el8 shows the box plot of skill score of the
clustering algorithms for the BC and AG data séihis figure shows the better
performance of the K-means clustering-based Plcézts in both data sets. Due to the
low scalability of the HClust algorithm for the A@ata set, a randomly selected subset
with half of the size of the original data set wased in the training phase of this
algorithm. This seems to be the reason for theaedigkill of HClust Pls in the AG data
set.

Figure4.19 shows the statistics 8Scoré&® for the five feature sets in the BC data
set. It shows that the BF1 and BF1PGPC4 featuse asstieve the best temperature Pl
quality. Also comparison of the fitting methods eais that the Kernel density smoothing
method achieves the best scores. For temperatuce distribution, the Normal
distribution outperforms the Weibull fit but stiioth methods are not as good as the
Empirical method. Very similar results were obtairfeom the 5-fold cross validation
evaluations in the AG data set. The role of AG datdure sets for temperature Pls is
investigated in Figuret.19 and Figure4.20 and they generally suggest that (lower
whiskers reaching to smaller SScore- better skill) the pressure level features (idetd
in BF2) are relevant and helpful for the tempermatnror modeling and PI computation.

As for the Pls of wind speed forecasts, the clisgiealgorithms had practically the
same comparison as in temperature Pls. Yet, thdWHditting method leads to better

results here (Figuré.21). The feature set BFO is introduced here fodvgpeed analysis
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specifically. After initial results revealed thdtet simple baseline methods (using only

one or no features) performed better that the ddfiieature sets, a new feature set BFO

was defined that comprises of the predicted winekedpand surface pressure only. As
shown in Figuret.21 and Figurd.22, BFO would lead to better wind speed Pls lhath

BC data set and AG data set. Also the pressuré fiesires in BF2 lead to wind speed

P1 forecasts with better skill compared to the b&satures in BF1.
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Figure4.22. Comparison of 15 different feature setshierwind speed Pl methods for the AG

data set

Table4.8. Top five methods and the detailed measuresiftd speed in AG data set based on
Sscore®> in 3-fold (yearly) cross validation

9
Algorithm K| Fit |[FeaturegSharpnessCoverageCoveragé *ResolutionRMSE Sscoré> RS;IfIIESScoré'%SiC;JI:f
K-means | 3fEmpirical BFO 8.99 94.73 92.83 1.91 3.03 0.2[428 0.2915 1
K-means | 2fEmpirical BFO 9.22 94.67 93.10 1.84 3.10 0.2[/828 0.2918 2
K-means | 3fEmpirical BFO 9.09 94.78 93.05 1.81 3.04 0.2[/625 0.2921 3
K-means | 3D Kernel BFO 9.37 95.89 94.32 2.02 3.02 0.27726 0.2928 4
K-means | 3p Kernel BFO 9.29 95.99 94.29 2.11 3.00 0.27523 0.2928 5
Base-Ws. | 1&mpirical Ws. 10.43 95.03 94.28 0.78 3.35 0.3p3P4 | 0.3119 51
Base-Clim.| 1| Kernel - 12.63 95.03 94.75 0.00 3.23 0.392392| 0.3973 2984
Base-Temp1d Kernel | Temp. 12.81 95.15 94.33 0.97 3.20 0.39G8l5| 0.4032 3557
Base-MonthlZ2 Kernel | Month 12.51 94.71 93.66 1.37 3.22 0.388329| 0.4038 3621

The detailed measures for the top five wind spdefdrécasting methods are given
in Table4.8. Here the baseline method that groups thedstamases by wind speed bins
is ranked as the 81method among all. Yet the best skill score is et by K-means
clustering over the newly defined simple BFO feataset. The RMSE of wind speed

forecasts would be decreased to 3.03 from 3.3hanbiest baseline method after using
the top clustering method.

To have a closer look at the Pls forecasted by#st temperature Pl method in the
BC data set, which is K-means clustering with Kédensity smoothing anki=6, Table

4.9 provides the details of Pls from each of the dusters for a sample fold of test
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results. As expected, the method is able to profldewith dynamic width. The third

column of this table shows the average distance wiissed case from the edge of the
forecasted PI. It is also worth to note that farstér number one where there are fewer
test cases available, the difference between tlasuned coverage and SScore and their
respective 95%-confidence level boundaries aredviggmpared to other clusters. The
Kolmogrov-Smirnov goodness-of-fit test results hie fast two columns also suggest that
the hypothesis that trained error model and theerofesl test error follow the same

distribution is not rejected on the 10% level fimefout of six clusters.

Table4.9. Cluster-level measures for the best temperd&umethod in BC (K-means, Kernel,

K=6)
Cluster | . iy Test . | 98 gK-S TeslK-S Tes
No. MWidth &y Cases Missed|CoverageCoverag®®l SScore | SScort] Statistic| P-Value
1 10.98 0.73 175 9 94.86 91.20 0.3119 0.3507 0.06 0.56
2 12.14 1.85 317 14 95.58 93.18 0.3844 0.4287 0.04 0,82
3 12.68§ 1.44 292 12 95.89 93.43 0.3763 0.4118 0.05 048
4 12.74 2.13 248 9 96.37 93.75 0.3950 0.4507 0.11 0.00
5 13.33 1.13 396 24 93.94 91.58 0.4021 0.4288 0.05 0,30
6 14.85 1.18 538 21 96.10 94.43 0.4172 0.4389 0.04 0)29
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Figure4.23. Histogram of forecasted temperature Pl wi¢tthtal counts and miss cases) for the
top method in AG.
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Figure4.25. Examples of eleven different confidence Ig@rediction intervals for temperature

forecasts in 2009

For the best temperature Pl forecasting methochén AG data set i.e. K-means

clustering with kernel fitting an8=50, Figure4.23 provide information on how variant

the forecasted Pls were in terms of their widthisTigure also shows the distribution of

the PIs that actually missed the observed valuis. dtear that the forecasted Pls have a
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dynamic property and are sharper compared to th&éicsPls of 12.17 in the
climatological baseline method. Also, it is evidémt the P| forecasting system has been
able to maintain a stable level of coverage inruateforecasts with different level of
uncertainty (~94% in the leftmost bin and secorggjest bin).

An example of PI forecasts for temperature made@i9 by the best Pl method in
AG data set is depicted in Figu4e24 for the Agassiz station over 100 consecutua
The horizontal lines represent the Pls of the diotagical baseline method. This figure
clearly shows the dynamic change of the estimabeechst uncertainty for the different
predictions. Pls as narrow as 8 degrees and asasiddout 16 degrees are estimated by
this method. The higher sharpness of the clustenetod forecasts (i.e. smaller average
Pl width) is also evident in this graph. Figut&25 shows a fan chart of 11 different
confidence level Pls (i.e. 0.1, 0.2, 0.3, 0.4, @%, 0.7, 0.8, 0.9 and 0.95) by the best
method along with the observed value for tempeeafmot temperature error). Again the
conditional nature of forecast uncertainty basedasacast situation is apparent in the

forecasted Pls.

4.5.3.Fuzzy Clustering Pl Forecasting Methods

In the application of fuzzy clustering both boaagping and distribution averaging
methods of error density estimation are implementdet obtained prediction intervals
were very similar using either of these two methdttswever, the latter is preferred due
to a notably better efficiency. This is due to thet that a whole process of bootstrapping
and error estimation is required for every singlgt ttase in the first option. Hence, we
only report the distribution averaging results here

Figure4.26 plots the fitted error distribution of threfferent fuzzy clusters obtained
over the AG data set using BF2 feature set. Noa¢ ¢lach distribution is attained by
kernel density estimation using all of the samphethe AG data set along with weights
from that fuzzy cluster’'s membership values. Usihg FCM algorithm, the forecast
situations are defined as fuzzy sets using theitrgidata. As a consequence, the forecast
cases are not associated with only one clustehdng different levels of membership in
all clusters. The three best-performing fuzzy aon-fuzzy setups are listed in Tallel0
and Tablet.11.

FCM was applied to the BC data set using the be$tpning feature sets and fitting

method for this data set based on the non-fuzzyemedaluations described in the
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previous subsection (i.e. BF1, BF1IPGPC4 and kdittielg). The results show a modest
improvement of Pl verification score using the fuapproach (0.4194 vs. 0.4245).

Train Error Distribution: m=-0.224 sd= 3.156
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Figure4.26. Forecast error distribution in 3 cluster2@d7 and 2008 AG data and the
corresponding fitted kernel density distribution

Table4.10. PI verification measures for top methodsofp. Pl in BC data set based on 5-fold
cross validation

.94
Algorithm |K| Fit | Features |SharpnessCoverageCoveraQj&Resolutio)RMSE SScorgRS;r?kr(SScoré'gfssRc;r:f
FCM 5|Kerne| BF1 13.63 95.82 93.80 0.77 3.390.3934 1059 0.4194 1
FCM 8KerneBF1PGPC4 13.35 95.74 93.00 0.97 334 0.38686 | 0.4206 2
FCM [11KerneBF1PGPC#4 13.12 95.70 92.35 1.04 3{29 0.38%31 | 0.4213 3
K-means|6 [Kerne| BF1 13.42 95.37 93.05 1.20 3.4110.3944 1087 | 0.4245 13
HClust | 4Kerne| BF1 13.79 95.66 93.86 0.73 3.40 0.401248| 0.4251 14
K-means| %erne| BF1 13.26 95.58 92.68 1.29 3.37 0.388B5 | 0.4253 15
_Eea;i- 10Kerne| Temp. 14.23 95.59 92.59 1.10 3.65(0.407] 1368 | 0.4423 489
Base-Clim|1|Kerne - 14.99 95.19 94.32 0.00 3.80 0.439455| 0.4514 829
Base-Ws.|[1CKerne] Ws. 14.49 95.61 92.89 0.92 3.67 0.428887| 0.4621 1001
Base-HouR4Kerne| Hour 13.72 95.77 90.21 1.09 3.47 0.397211| 0.4679 1098

A similar skill improvement was observed for the A&ta set using BF2 and BF2PG
feature sets and the kernel density smoothing rdefIs obtained by the FCM algorithm
(with K=45) have the best skill score and the least RMSEnwconsidering point
forecasts. By transforming the periodic variablésvind direction and hour of day as
explained in subsectio.5.1, the FCM can further improve SScore and S8%binto
values of 0.3173 and 0.3401, respectively. The Hé2lded Pls have rather smaller values
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of resolution. This is expected as in these modeds error characteristics of every

forecast case are affected &ly discovered situations although with different nsigies.

However, the presented empirical evaluation stuahfioms that the proposed clustering-

based methods improve the skill of forecasted Bispared to baseline methods.

Table4.11. PI verification measures for top methodsoip. Pl in AG data set based on 3-fold
(yearly) cross validation

.99
Algorithm |K| Fit FeaturesSharpnesSCoverageCoveraQ@EResolutionRMSESScoreSRS;r?kr(SScoré'gfssRc;r:f
FCM 45Kernel BF2 10.62 94.89 92.77 1.59 2.7710.3220 27 | 0.3432 1
FCM 30 Kerne] BF2PG| 10.91 94.93 93.26 1.65 2.86 0.328806 | 0.3452 2
FCM 50 Kerne] BF2PG| 10.67 94.78 92.49 1.79 2.81 0.32311 0.3459 3
K-means B50Kernel BF2 10.78 94.96 92.74 1.87 2.8010.3254 64 | 0.3485 13
K-means | 45 Kerne¢l BF2 10.86 94.89 92.78 1.87 2.$3 0.32737 0.3492 15
K-means | 40 Kerne¢l BF2 10.89 94.82 92.85 1.84 2.83 0.33028 | 0.3499 16
Base-Monthl2Kernel Month | 12.21 95.12 94.10 1.91 3.12 |0.3601 2588 | 0.3704 | 1719
Base-Temp[{lGNormal Temp. 11.70 94.44 93.57 0.98 3|04 0.3@309| 0.3725 2193
Base-Ws. | 10 Kernel Ws. 12.12 94.91 94.17 1.20 3.12 0.368@37| 0.3754 2681
Base-Clim.| INormal - 12.17 94.78 94.49 0.00 3.11 0.373985| 0.3774 2899

4.6. Conclusions

Forecast uncertainty plays an important role in ynanactical applications of
meteorology. In this study, the historical perfonta of WRF NWP model is used as a
source of information for uncertainty modeling. Tgr@posed approach allows dynamic
analysis of uncertainty based on context, i.e.dipted weather situation. Contexts of
weather forecasts are established by automatidaiyovered clusters and then used to
derive conditional Pls through statistical analySi®ie effectiveness of the proposed
approach has been empirically evaluated using tata dets of weather hindcast and
associated observations.

Several feature sets were applied to group weeatiteations using four different
clustering algorithms (K-means, Clara, HClust andzdy C-means). To assess the
proposed Pl computation methods, we created a @rapsive evaluation framework
based on a proper skill score metric. The assedsemuits confirmed the applicability of
the proposed Pl computation methods and showed thfeatresulting Pls have high
sharpness and skill.

Comparisons to various baseline methods confirravenage 8% improvement in Pl
forecast skill when using the proposed dynamic odghbased on Fuzzy C-means
clustering. As a result of their nature, the praubsnethods also intrinsically remove

bias, decreasing the RMSE of point forecasts byoup0%. The proposed Pl modeling
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methods can be used in real world applications ribaece point forecasts of NWP

systems with information on prediction uncertainty.
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Chapter 5
Quantile Regression Approaches to
Uncertainty Modeling

In this chapter a range of quantile regression odshare investigated as tools for
learning forecast uncertainty models. Specificdlty, the first time a hybrid approach of
clustering and kernel quantile regression is appirethe context of weather forecast
uncertainty modeling. The prediction intervals améd from all of the quantile
regression models are practically examined and tbempared to the clustering methods

using a real data set of NWP forecasts.

5.1. Introduction

The degree of uncertainty in the forecasts of a &hical Weather Prediction (NWP)
model can potentially have an enormous impact erditisions that are made based on
these forecasts. Wind power production and margggt6], Dynamic Thermal Rating
(DTR) systems used by power transmission utilifgz§[71], and extreme weather event
prediction system§70] are just few example applications where thedast uncertainty
is often regarded as significant as the expectextést value itsefB7][53].

NWP models are advanced computer simulation systidwais provide expected
values of various weather attributes, on a threeedsional spatial grid and at certain
forecast horizon[80]. These systems do not provide any informateout the
uncertainty of the forecasts. However, there isagwsome level of error associated with
forecasts and the degree of this inaccuracy is kntwv be variable for different
predictions[48]. Imprecision of initial conditions, parametgiion of sub-grid scale
processes, and various simplifying assumptions rparated in the NWP system are

regarded as some major reasons for forecast irewesj61).
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Although the raw outputs of an NWP system providsdpoint predictions can be
easily understood and evaluated, the probabilistiture of the forecasts (which can
represent the prediction uncertainty) is dismissBdediction Intervals (PI) are a
prominent form of forecast uncertainty communicatidhey are defined as a value
interval accompanied by a confidence level for alctbservations to be inside this
interval (e.g.T = [-3°C, 10°C], conf = 95%)16][29][68].

There is a large body of literature on obtaininghsuincertainty information from
NWP models using ensemble forecasting syst@dl72][60][81]. However, ensemble
predictions may incur large computational costskingathem infeasible in some cases.
Additionally, instant availability of historical prmance data sets for many existing
forecasting systems and potentially useful uncetggpatterns hidden in them has made
post-processing approaches to uncertainty modalingcreasingly attractive topjig][7]
[59][69] [68].

Error distribution fitting and clustering methodsve been studied recently as major
methods towards learning forecast uncertainty nsoét@im historical system accuracy
data set$68]. These methods rely on the known fact thafed#nt forecast situations
typically exhibit different levels of forecast umtanty, and that such patterns can be
potentially found from the system performance rd¢48]. Hence, the forecasts of the
system are first clustered into similar groups gsielated attributes regarded as
influential variables. Next, the historical errastdbution of each cluster is modeled by
fitting either a parametric (e.g. Gaussian) or an-parametric (e.g. empirical)
distribution. The desired quantiles of a new foseae then calculated from the fitted
error distribution of the cluster which the newdoast case belongs to. Hence, these
approaches can provide uncertainty informationafqoint forecast in the form of a full
probability distribution. The distribution can thée used to obtain prediction intervals
with any desired level of confidence.

In quantile regression based methods, on the tiwed, each individual quantile is
modeled independently and there are no assumptiorise distribution of the forecast
error [59][90]. These methods can learn a direct relationbkipveen the target quantile
and the set of available influential attributesottgh an optimization process. Various
guantile regression methods have been proposedapplied to forecast uncertainty
modeling. Bremne$6] proposed the application of local quantile e=gpion to obtain

non-linear models of quantiles for wind power fasts. In another study, Nielsehal.

58



[59] applied an additive quantile model by usingrgpbasis functions. In both works,
the resulting prediction intervals were evaluateterms of their inter-quantile range and
actual observation frequencies, as compared tdotleeasted quantile. Yet, the skill of
the prediction interval forecasting system wasawatluated in an objective framework. A
few statistical models including local quantile megsion were compared in a study by
Bremnes [7] as quantile forecasting models for wind poweoni NWP outputs.
Sharpness and reliability measures were evaluatedifferent setups of these models
but forecast skills were not verified. Pinson ararikiotakis[68] demonstrated a novel
fuzzy inference model based on grouping of forexastid adapted resampling for
distribution fit. A detailed comparative study big method and one quantile regression-
based method was provided in Pinstral. [69]. An improved version of this approach
using fuzzy clustering and error distribution figi was introduced irChapter 4.
Additionally in the domain of statistical methotispe-adaptive kernel density estimation
methods were proposed by Bessal.[3]. In this research, we aim for a comprehensive
comparative study for the application of some majoantile regression methods and
recently proposed distribution fitting methods. dddition, the relatively new kernel
guantile regression methdf1] is also investigated in the context of weatfmecast
prediction interval modeling in this study. Dueperformance issues a hybrid clustering-
guantile regression approach is proposed for agipic of this method. A comparative
study is performed using a large, real-world NWRadzet with a focus on forecast skill
as a significant measure for essential conclusiveparisons between prediction interval
forecasting systems. As discussed previously, skitke measurements are extended by
considering sampling uncertainties in the test arpents as explained @hapter 3. This
approach also offers a good foundation to investighe role of different parameters

involved in these methods.

5.2. Linear and Non-linear Quantile Regression for Pl Maleling

In linear regression tasks, a target variable tsnesed by a linear combination of a
set of related features. The unknown coefficieftshis linear equation are tuned by an
optimization process using an objective functiong(esquared error in real value
regression). The same approach can be used ta findar relationship between a set of

features and a specific “quantile” of a target aale. Thef-quantile of the target

variabley denoted a@f, is formulated a§44][45] [54]:
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@y = f() = B§ +pix* + BIx* + -+ Bix? 6.1
wherex/,j = 1..d are thed influential variables for modeling th@-quantile ofy, and
B]-G, j =1..d constitutes theﬁg vector of coefficients for the targét-quantile. This

vector is estimated using the following optimizatimbjective[44][90]:

B = argming T, Lo (v — (6§ + poxt + -+ Bxd)) 6.2)
wherei= 1.. N is the number of recorded pallg;, x;) in the data set, an, is the loss

function of ag-quantile target defined as:

(66 5 =0
Lo(6:) = {(9 -18; 6;<0

6i=yi—a% (64

The optimization task formulated in Equatiob.?) is then solved using linear

and (5.3)

programming technique@4][54]. In order to obtaifl4,,,, quantiles of target erro@fl

andqf“ are separately modeled by linear quantile regrasssing the data set &f;,x;),

where e; represents the recorded error of forecast ¢asend x; is the vector of
explanatory influential variables. This yields thy@imizer vectors o,f?’f ! and[?f“ that are
then used to compute thé £ a)-confidence level prediction interval of targetor any

new forecask,q,, :

A0 50 A ABy 56 “
Qy; = Be' 1 Xnew) + i @y = (Be", Xnew) + 9 6.5)

where(.,.) represents the dot product of the two vectorseNiaat an entry of 1 should

be added as the leftmost elementXqf,, to be multiplied by thg¢ term as the intercept.

As opposed to the methods described in Chaptérede is no distribution fitting process
required in further steps when using quantile regiom. This also means that a new
model has to be trained for any new quantile cdrizdt.

The model optimized and stored/ﬁﬁ describes a linear relationship between the
error quantile and the influential features M However, using a non-linear
transformation basis functio(x) to derive new features from the currently avadabl
features, one can in effect learn non-linear retestinips by still using the linear
formulation in Equation.2). For instance, to leanf' degree polynomial functions in
quantile models, one can extend features in x lojngdp(x) = [x2,x3, ...,x™] and then

perform the same process of optimizing the linedationship between the new feature
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set and the target quantile. More complex formsai-linear relationships can also be
represented and optimized using other basis fumcsoch as the sigmoid asia(x) etc.

In the experiments, we use the second and thirdedgaplynomials along with the sine.
We use NLQR to refer to the prediction interval mlaty methods that use these

transformed features, while LQR refers to the mashtihat use the original vector x.

5.3. Quantile Regression with Spline-basis Functions

Additive quantile models are another technique usedielsenet al.[59] to learn
non-linear models of weather forecast quantilesin8gunctions are the most frequently
used basis function8][54]. Since it is expected that the relationshipsneen forecast
values and forecast errors are of a non-linearreapline-basis can provide a suitable
transformation.

This relationship can then be approximated by ealicombination of basis functions

of the influential attributef32]:

a9 = B8 + T4 50 Blifie(x) 6.6)
where f; . is the cubic B-spline basis function used for deaf using df; degrees of
freedom. Note that assuming a constirdegree of freedom for all basis functions, there
will be df x d features in the final model to be optimized by lihear optimization task
formulated in Equation5(2). The appropriate value for this parameter tasbe

determined based on experiments involving theitrgidata set.

5.4. Local Quantile Regression

Unlike spline additive models of quantile regreasiin local quantile regression
(LocQR) there is no effort made to learn complex-finoear models for a quantile.
Instead, it is assumed that, in the close neigldmmthof a given x, the relationship
between x and the target quantile is simple endoghie modeled linearly. Rationally,
data points that are closer to x should have nmopact on this linear model than those

further away from it. This can be formulated asftiwing optimization problen91]:

Bl = argming 3L, Lo (yi — B (xi =) ) w(x,x)  6.7)
where[?gX is determined for input x by considering a setirafining samples that are

centered around x and weighted ugiéjy
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3
llx;—xI1\ 3 _
w(x;,x) = {(1 - o< b1 69
0 otherwise

whered, (x) is the distance from x to it&V-th nearest neighbor amotrgining samples
x..n and||x; —x|| is the Euclidian distance between the two vect8ased on this
definition, (1 — )N data samples have zero weight and hence have pacinon the
guantiles optimized at point x.

Note that using LocQR, two new models have to leraped foreachnew forecast
(x) to compute the upper and lower quantiles ofghadiction interval for that specific
forecast. This is in contrast with the scenariosapplying other regression methods
described above, in which these models are leaonlydonce and then utilized to provide

prediction intervals foanyfuture forecasts.

5.5. Kernel Quantile Regression

To learn arbitrarily complex nonlinear models, tbgtimization process can be
performed in reproducing kernel Hilbert spaces (FHeading to kernel quantile
regression (KQRJ51][76]:

BS = argming CYN, Lo(y; — fOx) +% 18I 6.9)
where the last term is obtained from the RKHS nofnfunctiong (HHZ) andf=g+ ¢,

where functiorg only containsg? ; so that here the constant offset is not reguldrine
the above objective. The regularizer penalizes mooeplex functions to avoid
overfitting. C is the cost factor that balances the total loswr tkis penalization. The
above formulation is very similar to the well-knovmmimal form of support vector
regressior[83], except for the loss function that has beatefieed to optimize for the
conditional quantile of interest rather than thaditonal mean or median.

This formulation also allows obtaining a dual foofithe optimization problem using
Lagrange multipliers that would represent the mégeVector of weightsd;,i = 1.. N)
over samples (rather than features in the primalpm)[77]. Since the dual form only
uses the vector products of the input vectors, mhe weed to consider the kernel function

(k) which would provide an inheredt-mapping of inputs into a new feature space:

as = argmina%aTKa —a’y subjectto C(0 —1)<a; <CO forall 1 <i<
Nand TTa =0 (5.10)
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Kij = k(xl-,x]-) = (CD(xl-),QD(xj)) 6.11)
where the kernel matriX is positive-semidefinite. Note thab(x;) does not appear
explicitly in the objective function and only thenier products of the transformed vectors
(represented ak;; entries in the kernel matrix) are used. The aldwa form can be
solved using quadratic programming and fthiinction can then be recovered. A

common choice for the kernel function is the Gaaurs&ierne[77]:

k(xi,x;) = exp (—“xi - x]-||2/202) 6.12)
wherec > 0 is the kernel width parameter and should be tuned.

Because of the low scalability of this method (Keenel matrix isN by N), we
propose a two-step process where the training idafmst clustered intdK partitions
using the same feature set and kernel quantilessmgm is applied independently to each
partition. In the test phase, a new forecast & &issigned to its closest cluster and then

passed to the learned model for that cluster taiolhe quantiles.

5.6. Experimental Results

5.6.1. Data Sets and Method Set-ups
The data set used in this set of experiments i&@a&ata set described in subsection
4.5. Also the utilized feature sets (other than hemture sets defined in this section) are

defined in subsectiof.5.

Table5.1. feature set definition in Pl models using corations of basic features

FeatSetm d h t2 ws wd sp pg

C1 o o

C2 o o °
C3 e o o °
C4 ° o o °
C5 o o o °
C6 e o o o o °

C7 e o o o o o o o

Table 5.1 describes seven new combinations from the asitires and pressure
tendency. These feature sets are defined to pedamare detailed analysis on the role of
basic attributes, specifically month, day and hdihree-fold cross validation was used
by splitting different years into folds. For instan the 2007 and 2008 data was used to

train the prediction interval model and then preditintervals for 2009 obtained by this
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model were evaluated for their quality and skilarfdom-based 5-fold cross validation
experiments were also conducted. However, duedgithilarity of the obtained results,

only year-based cross validation results are repdrnere.

5.6.2. Forecast Evaluation Results

In quantile regression models, the forecasts argterled using different numbers of
clusters in the range from 2 to 100 for projectainthe skill score sampling variance
analysis and confidence bound computation. Theabieimber of degrees of freedom in
spline-basis as an important parameter of thespjirantile regression (SPQR) models is
depicted in Figuré.1. The curves show the changeS§tore 9;°° usingK=50 clusters
for models using different feature sets. The nuntfedegrees of freedom by which a
model achieves its best score is encircled. Na@&h50 is chosen as it was the number
of clusters which best represented the forecasupgroin experiments involving
clustering-based methods.

SPQR - K=50
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Figure5.1. Projection ofScore $;°° for spline quantile regression models over diffiéregrees
of freedom using various feature sets
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Figure5.2. Projection ofScore $;°° for spline quantile regression models over diffiéregrees
of freedom using various number of clusters useskithscore uncertainty analysis

BF2 and BFPG feature sets provide the best modtgy uhe SPQR method by a
considerable margin compared to the other featet® 3hese models achieve the best
skill using 4 degrees of freedom. In Fig&w different curves show the trends of skill
score over degrees of freedom when using diffenember of clusters in skill score
uncertainty analysis. This figure shows that theQBRPmodel with four degrees of
freedom achieves the best score for all alternativabers of clusters used in sampling
analysis.

In local quantile regression (LocQR) models theerof A is investigated. As
previously mentioned, there is essentially no oéltraining phase involved in LocQR
and two quantile models have to be optimized fagrg\single test case. Experiments
revealed that a rather long computational timeeggiired for the evaluation of the whole
test data set due to these characteristics. Adtamative approach, the LocQR model
was trained for a limited number of points (knotsither than every test point) randomly
selected from the training samples. In the tess@heather than training a new model for
every test case, the model already trained fontegest knot to the current test case is
applied to compute the prediction interval for ttedt case. Different numbers of knots:
10, 100, 1000, 3000 and 20000 (indicating originatQR with no knot selection used)
were examined. The skill score of prediction inggérmodels using BF2 and C3 feature
sets are plotted in Figur3 and Figureés.4. These figures show that for BF2 feature
space, that has a higher dimensionality, a largeghtvorhood 4 = 0.7) is preferred by
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the LocQR model. In contrast, a smaller neighbodh¢b= 0.1) is preferred for the
lower dimensionality feature space of C3. Resulthis set of experiments also confirm
that by using a limited number of knots (e.g. 30@0¢ training and evaluation phase can
be performed much faster without significantly ceompising the accuracy of the model.

For KQR algorithm, the Gaussian kernel was choseitha best kernel function.
Tuning of this method is performed using a gridreleaver the two parametessandC.
Figure5.5 shows two curves as a sample of the grid seastlits that project the skill of
prediction intervals over one of these parametehde keeping the other constant. Note
that due to the very large size of the Kernel maf(NxN) used in KQR, Cholesky
decomposition is applied to compress this matrig & lower rank matrix which has a
feasibly computable sid@3].

To explore the impact of different feature setstba trained prediction interval
models, Figure5.6 summarizes the distribution of skill scoresaoidd by different
models using these predictor sets. The BF2 feaseteclearly provides better skill
prediction interval models on average (lower SScoyeThe two feature sets of BF2 and
BF2PG include the horizontal and vertical wind spelements at five pressure levels. A
possible explanation for obtaining better uncetyamodels using these feature sets is the
availability of relevant information describing thestability of the forecast atmospheric
situation. Among the newly defined basic combinagjoC3 attains the best score

emphasizing the significance of temperature, wipeksl and hour-of-day attributes.
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Figure5.3 Skill score diagrams of LocQR models as a fanatf lambda and number of knots for
BF2 feature set
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Figureb5.4. Skill score diagrams of LocQR models as atfan®f lambda and number of knots
for C3 feature set
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Figure5.5. Tuning the sigma parameter in the KQR kemmettion
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Figure5.6. Box plot of skill score for different featusets used by the various quantile regression
methods

The details of prediction interval quality measurfeem (yearly) 3-fold cross
validation of different methods are reported in [Eab.2. The first four columns
determine the best model among each of the diffegaantile regression, clustering-
based and baseline methods. Basic quality measaneseported in the next five
columns. The 95% confidence lower bound of the cye measure is also calculated
using one-sided Binomial test. Thus a cluster ®idB6 coverage (hit rate) in 1000 test
cases has a bigger lower bound (i.e. Covérdg88.3%) as compared to a cluster with
the same 90% coverage, but with only 200 test cdBes Coveragt’*=85.8%).
Moreover, Root Mean Squared Error (RMSE) is regbids a key measure for point
based forecast evaluations. Note that the medigadi prediction interval is considered
as the new point forecast of the trained modeahtiuld also be noted that since the upper
and lower quantile models are learned independeémttyuantile regression approaches,
they may cross one another in some cases. Alththegh were only few such cases (e.g.
about 61 for 20% confidence level in NLQR), theyrevsubstituted by the climatological
baseline prediction interval to keep a balancediueht between different models.

The best prediction interval model is SPQR withrfdagrees of freedom using BF2
feature set. It is followed by LocQR, NLQR, KQR ah@R, respectively. All of the
guantile regression models outperform the bestyfuustering based method with 45
clusters and kernel density smoothing (in termSSabre %°°). Yet, all of these learning-

based models surpass the baseline methods (p<(.005 quantile regression models
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provide significantly sharper prediction intervadrécasts (lower average prediction
interval width) but with about 3% less reliabilitiowever, refereeing to skill score that
summarizes the overall performance of a model,cameconclude on the higher quality
of prediction interval forecasts by these modelg.uBing transformed features for the
cyclic attributes of wind direction and hour of daySPQR, the SScore and SS&dre
measures improve to the values of 0.2119 and 0,2&spectively. Figur®.7 takes a
detailed look at the width of forecasted predictioiervals by the different models. The
constant width of climatological baseline modelsisown as the horizontal line. This
figure shows the sharpness of forecasts providedjuantile regression models, and
specifically the SPQR model.

A fan chart showing SPQRIfc4) temperature prediction intervals with a range o
confidence levels for a specific time frame andistais provided in Figur&.8. One can
notice the dynamic change of estimated forecasertmiaoty depending on the various

forecast situations.
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Figure5.7. Empirical width distribution of forecasted 9%¥ediction intervals (horizontal line
shows the best baseline model)
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Figure5.8. Trends of various confidence level prediciigervals and the actual observations

Table5.2. Prediction interval verification measurestfgqp models of different methods based on
3-fold (yearly) cross validation

Fitt  SharpnessCoverage Coveragé®™ Resoluti

Algorithm K Features RMSE SScore SScor&®

Params (°C) % %
SPQR (50) BF2 d=4 6.68 93.56 91.10 1.76 192 0.2129.2323
LocQR  (50) BF2 21=0.7 6.92 93.46 90.97 1.73 2.00 0.2201.2406
NLQR (50) BF2 - 6.92 93.15 90.62 1.79 2.00 0.2264.2492
KQR (50) BF2 a—g._()f42 7.16 93.09 91.51 1.85 2.05 0.2362.2561
LOR (50) BF2PG - 7.91 94.39 92.05 1.64 217 0.2438.2640
FCM 45 BF2 Kernel 10.62 94.89 92.77 1.59 2.77 0.3220.3432
Base-Month 12 Month  Kernel 12.21 95.12 94.10 1.91 3.12 0.3600.3704
Base-Temp. 10Normal Temp. 11.70 94.44 93.57 0.98 3.04 0.3620.3725
Base-Clim. 1 - Normal 12.17 94.78 94.49 0.00 3.1137400 0.3774

Finally, Figure5.9 depicts curves dfScore 9°° for increasing number of clusters.

This figure also confirms that the differences hesw skills of the best-performing
models are not due to chance and that the predictiervals obtained by SPQR are truly
superior to other models. As a counter exampls, iinot the case between LocQR
models withA = 0.5 and 0.7. Although the first model has a bettefl skiore in the

ordinary test results, its skill score confidenaauid is increasingly worse than the
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second model when taking sampling variations imtwoant within increasing number of

clusters.
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Figure5.9. Trends ofScore §;°5 for the top quantile regression models

In other words, the better skill of the first modelthe initial test results is most
probably merely due to chance (by providing gooedmtion intervals in the areas that
insufficient samples are available to evaluatertoelel). This example signifies the role
of skill score uncertainty analysis for real-woelehluations and decisions.

It is also important to note that by modeling thedman forecast error dependent on
the available set of attributes, the point foregestormance is considerably improved as
a side effect of prediction interval modeling. Thian be considered as dynamic
elimination of forecast bias in these models. Tésults of this study also conform to
results obtained bj69]. Yet, the improvement obtained by quantileresgion models

over clustering based models is considerably gr@atbe experiments conducted here.

5.6.3.Confidence Level Results
To perform a more comprehensive evaluation on nl@duced prediction interval
modeling methods, we provide the results for a@awigmajor confidence levels, i.e. 0.1,

0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and 0.98ute5.10 depicts the trends of Reliability
and Figure5.11 depicts the trends of Reliabifity (which uses Coverad® rather than
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the initially measured Coverage). In addition, daded report of observed coverage
measures for three confidence levels of 10%, 508@®&A0 is provided in Tabk.3. The
first column in each section of the table repohis average distance between a missed
case and the edge of its forecast interdab¢ defined in subsectidh2). There is no
considerable bias observed in results regardingtbarrence of missed forecasts on the
left or right side of the intervals.

Figure 5.12 shows the change of prediction interval widtitained by various
models using a range of confidence levels. To perfine final skill score evaluations,
one should note that the reliability would haveb® measured in terms of the average
distance of observations to the prediction intebhalndary (i.e4%;). Hence, in Figure
5.13 this measure is projected. Finally, in Figbr&#4 the overall skill of the various

methods are compared over the selected range bflenoe levels.
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Figure5.11. Comparison of Reliability0.95 between variouethods over confidence levels

Table5.3. Detailed coverage and miss ratio observatiotest for three confidence levels
(1 — 2)=0.95 | (L — @)=0.5 | (1 — a)=0.1

Avg. 6 Miss Hit Miss Avg. 5 Miss Hit Miss Avg. 8 Miss Hit Miss

Algorithm (°C) (left)% (center)%right)% (°C) (left)% (center)%right)% (°C) (left)% (center)%right)%

SPQR 0.70 3.3 93.6 3.2 106 258 48.9 253 135 455 9.9 44.6

LocQR 0.75 34 93.5 3.2 111 26.8 49.2 240 141 46.8 10.0 43.2

NLQR 0.78 3.4 93.2 34 112 258 48.9 253 142 453 10.0 53.7

KQR 0.82 34 93.1 35 120 284 46.2 254 155 46.3 11.2 42.5

LQR 0.82 2.8 94.4 29 122 252 49.7 251 155 451 10.0 54.0

FCM 1.08 2.7 94.9 24 162 248 50.3 249 2.03 44.9 10.0 45.2

Base-Month 1.11 2.5 95.1 24 182 246 50.7 26.6 2.32 448 10.3 44.9
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The results obtained from the range of confiderwels confirm superior skill of the
SPQR method based prediction interval forecasts. Mbdel outperforms other methods
both in terms of sharpness and reliability of thevided prediction intervals.

Experiments reveal that the KQR algorithm sufferent lower reliability of
prediction intervals although its sharpness is canaple with those of other quantile
regression algorithms. However, it is observedhedxperiments that the KQR algorithm
ranks as the best or second best quantile regnessthod in terms of overall skill when
applied to smaller feature sets including C3 and.BFhis likely demonstrates the higher
capability of this algorithm to handle lower dimarglity quantile learning problems.

A possible explanation for the superior performanteuantile regression models
over clustering methods is the fact that the foseearor information is directly utilized
(in the objective loss function) by the single phaptimization procedure involved in
these methods. In contrast, clustering-based mstliodluding FCM) determine the
clusters of forecast cases by an optimization mlaeethat does not exploit the forecast
error, but is based solely on the predicted wealttebutes (unsupervised learning). The

forecast error information is used only later,hie second phase of distribution fitting.

5.7. Conclusions
Major quantile regression methods including kermglantile regression and

clustering based methods were applied for prediatiterval modeling on a data set of
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NWP forecasts. These models extend the raw poattigiions of the forecasting system
into interval forecasts that intrinsically commuatie the expected forecast uncertainty to
the users. A key analysis for skill score evalusiovas taken into consideration in test
experiments. The roles of parameters and varioadade features applied in quantile
regression models were investigated in the experisnelhe results demonstrated the
superior performance of quantile regression modats specifically the spline quantile
regression. Prediction interval models obtainednhftbe hybrid method of clustering and
KQR can also outperform other models when using dawensional feature spaces but
can only get close to the best model with higheredisional feature sets. All QR models
considerably outperform the clustering-based moubeierms of forecast skill. However,
it should be noted that clustering models haveghdri reliability and can model the

entire probabilistic distribution of a forecastarsingle model.

76



Chapter 6
Time Series Approaches to Uncertainty
Modeling

This chapter turns the attention of the uncertaimtypdeling problem into
consideration of temporal features of the poineéaist errors. In this regards, time series
analysis approaches that can provide an estimaifothe expected variance of the
forecast into the future are investigated. We alsusider time series models that focus
on the variance of the density forecast rather thialy focusing on the mean of this
density for future time steps. Prediction intervaltdained from these time series models
are then compared with interval forecasts from telisg and quantile regression

methods discussed in the previous chapters.

6.1. Introduction

Weather forecast accuracy records are a valuahlecesof knowledge about the
systematic and chaotic behavior of prediction erBy utilizing such information useful
models can be obtained that are capable of pradithie uncertainty of system outputs.
Different learning methods including clustering agglntile regression are studied as
modeling approaches for this purpose in the previclapters. However, due to the
intrinsic temporal quality of the forecasts gairfemm Numerical Weather Forecasting
(NWP) systems, time series modeling can be coreiders a potentially suitable
approach for uncertainty modeling. Forecast erobrdifferent weather attributes (e.qg.
temperature and wind speed) are recorded in cotigedime steps (e.g. hourly) in each
station which can be considered as a time series. pfimary goal of the time series
modeling performed in this study is to obtain apgenal model for forecast uncertainty
along with the expected value of target. This mardei then in turn provide prediction

intervals for the target attribute of interest wilmy desired level of confidence in
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different time steps into the future. In this wodkifferent univariate time series modeling
methods including ARIMA models and also heterossedamodels for conditional
variance are empirically investigated to obtaindaron intervals for weather forecasts.
The quality and skill of time series uncertaintyefcasts for 1-hour-ahead up to 10-days-
ahead are evaluated and also compared againskerahgstand quantile regression
forecasts using the prediction interval evaluatramework.

Time series models have been broadly studied amdiedpin various weather
forecast problems such as climatological forecg4886][55] and short to medium-range
forecasting[24][38][52]. As another motivation for applying statisticaethods in our
problem, Wilks[86] notes that these methods “...are still viabld aseful at very short
lead times (hours in advance), or very long leate$s (weeks or more in advance), for
which NWP information is not available with eithenfficient promptness or accuracy,
respectively.”. Hence, we are motivated here tdyapppropriate time series models for
the purpose of uncertainty modeling and compareatioeiracy of the forecasts obtained
against the other uncertainty prediction modelgstigated in this study.

In [10] a non-structural time series modeling approachaken to forecast daily
average temperatures for weather derivative agmita Due to the crucial significance
of forecast uncertainty in the weather derivativaket, GARCH models are also used to
provide estimations of target densities into theurfe. The accuracy of point forecasts
obtained from this time series model is comparedresy benchmark methods and also an
NWP model. Results of this study confirm betterf@enance of the autoregressive time
series model when compared to the benchmark methodislso show that this model
can even outperform the NWP model in longer hoszfre. leads bigger than 8 days).
The capacities of these models in terms of vaigtprediction are not however broadly
evaluated and are not compared versus other alauabertainty modeling methods.

Franseset al. [24] use GARCH models to capture volatility clugtgrand obtain a
univariate model for weekly mean temperatures. Tserées models for point and density
forecasts of daily temperature are compared witkemble predictions from an NWP
atmospheric model ifi78] and[79]. An AR-GARCH model is fitted to the series and
utilized to provide forecasts of mean and varidiocgiven horizons based on a Gaussian
distribution assumption for residuals. The ensemian forecast outperforms the other
methods in terms of accuracy both for point andhtjleaforecasting. Yet, the time series

model can provide forecasts that are even moreratecithan the NWP forecast for
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horizons longer than 6 days. However, in this stuldg ensemble model-based
uncertainty forecasts are assumed to be inaccesaiol uncertainty models are obtained
using solely the historical records of the pointefmasting system. In this context, the
study performed here is novel as it compares niajor series models along with other
uncertainty modeling methods of clustering and ¢ienegression by focusing on the
historical performance of an empirical weather ¢asting application.

Accordingly, the time series models learned frow &vailable system performance
history are to provide an estimate of forecast tagay (along with the expected value)
which can then be reported in the format of préaiicintervals. For this purpose, two
main groups of time series models are employed. firkeset of methods applies the
theoretical statistical analysis of residual vacgiof seasonal ARIMA models to obtain
variance forecasts along with expected mean predsgt In the second set, explicit
autoregressive models of variance are employechio time series models of conditional
variance over the forecasts. These models aresthigject to analytical and comparative
study along with other models of forecast uncetyaimamely clustering-based and

guantile regression-based models.

6.2. Time Series Modeling Essentials

Similar to other machine learning approaches, 8erges modeling involves learning
a model using available training data and latefuatang the quality of the model by test
data. However, there is a wide range of modelhtmse from when fitting a time series
model in the training phase. Each of these moda&sldvbe appropriate for different
types of time series depending on the process whietdata is generated from. Hence,
the general procedure of time series modeling reslthe three phases of a) model
specification, b) model fitting and ¢) model diaghcs[19].

As the first step “model specification” is requirdtiat investigates various
characteristics of the time series to determinentlst appropriate model to be fitted to
data. Next, the specified model is fitted to thaikmble time series data by estimating the
parameters defined in the model. Classical teclesiquuch as Least Squares Estimation
(LSE) or Maximum Likelihood Estimation (MLE) areed for this purpose. Finally, in
the third step the learned model undergoes diagrasalysis to determine whether there
has been a shortcoming in either of the two previsieps. Often, the last step would
advise that the initially specified model shouldrbdefined and/or fitted again for couple

of cycles until a proper time series model is lastbtained. In this study, we aim to
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obtain models of “temperature forecast error tinexies”. After providing basic
background and definitions in this section, majoalgsis and results from each of the

above mentioned modeling steps are explained ifottmaving sections.

6.3. Definitions and Processes

A time series is essentially a stochastic processisting the sequence of random
variables{Y;:t = 0, +1, 12,43, ...}. For theY;, series there are some characteristics that
describe major aspects of the series. These inth&lmean, variance and autocorrelation

of the process:

s =E;) fort=0,+1,%2,.. (6.1)
Yts = COU(YL“' Ys) (6-2)

Yt,s
=Corr(Y,,Y.)="" 6.3
Pes (Y:, Ye) /mm 6.3)

wheres = 0, %1, £2,£3, ... andy; is the autocovariance function. Functjon is the
autocorrelation function which provides a unit-leseasure of (linear) dependence
between the two random variables. Hericands are arbitrary time indexes that can be
chosen to have any value in the above equations.
Random Walk

A “Random Walk” as the simplest form of a time seris represented as follows
[25]:

Vi =Y 1+e 6.4
wheree, is a white noise stochastic process with zero naahs? variance and the
random variables; g, ... are independent and identically distributeddi)i This defines
the time series in a way that each new sample ensthies is the result of a random

change from the previous value. To investigateathm/e metrics for this series we have:

u =E(e;+e;+--+e)=0 forallt 6.5)
Var(Y,) =y, = Var(e; +e; + -+ ¢e;) = to? (6.6)

which represent the mean and variance oftirandom variable.

Stationarity
A critical concept in the study of time series gdtionarity”. The idea behind this
concept is that “the probability laws that govehe tehavior of the processes do not

change over time. In a sense the process is iststat equilibrium”[19]. ProcesgY;} is
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“strictly stationary” if the joint distribution of; ,Y;,,...,Y; is the same as the joint
distribution of Y; _,Y;,_x, ..., s, —x for all choices oft andk. One common way of

examining the stationarity of a series is to chedlether its covariance function only
depends on the time lag (ile=s-t) and not the actual time positions (iteor s). For

example, the random walk series is not stationigests covariance function:

Yes = 2i-1 Z§=1 Cov(ei'ej) =to; (6.7)

b=t 69

suggests that the covariance (and hence the dovrgldunction is dependent on the
actual time position meaning that the correlatidraracteristics of the series actually
changes during time in contrary to the definitidrst@ationarity.
Trend in Time Series

In a stationary process the mean function must d@natant function of time. Due to
the regular inclination of the Northern Hemispheoe/ard the sun a seasonal trend is
naturally expected for the forecasted temperatahees. However, here the focus of the
analysis is on the temperatwegor series which does not necessarily follow the same

cyclical trend. By considering a seasonal trencafion a possible model can be:

i=pu+X 6.9
where u, is a deterministic annual periodic function i@ = p;_1,. The general
assumption for monthly seasonal data considerot&tants for the expected mean value
for each month:

p1  fort=1,13,25,..

B- fort := 2,14,26, ... 6.10)

Ue =
B, fort — 12,2436, ..
Figure6.1 shows the box plots of such seasonality trexsdseported in Tabl6.1,
sometimes called a seasonal mean model, for faestaesmperature and error series.
Error series also show some considerable leveka$anality in the trend although they

are less substantial when compared to that ofatee&sted temperature trend.
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Table6.1. Seasonal mean model parameters for forecapetature and error

K K

Month (temp.) (error)
January 1.6 -0.97
February 3.8 0.47
March 5.2 0.83

April 8.1 1.52

May 12.3 0.91
June 14.5 1.29
July 19.1 1.86
August 17.7 2.35
September 14.8 1.67
October 9.6 0.90
November 6.1 -0.13
December 0.6 -0.98

For a detailed analysis on the accuracy of sucktaahmean estimation of the trend
one can refer to subsection 3.218]. To achieve a better smooth transition betwiden

time periods the seasonal trend can be modeledsmtisoidal curves:

Ue = Bo + B1 cos2rft) + B, sin(2uft) (6.11)
where thef parameters are estimated by regression. Figiteshows a fitted cosine
trend (parameters shown) to the temperature forecew along with the observed errors
as points. One can notice that the general flucsitin error are captured by the trend

curve. Details on the reliability of the regressemtimates can be found[@2b].
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Figure6.2. Cosine trend fitted to 5 days of temperatuarere

When examining the residuals of a trend model weha

X, =Y. —pn 6.12)
whereX, is the residual of thith observation. Using a least squares fit will aatically
result in a zero mean residual and it can be stdima by diving over the standard
error. Residual analysis of both models descriliexla reveals that there is dependence
and non-normality evident in the residuals of teepective models which signals the

need for further complex model fitting strategiescdssed subsequently.

General Linear Process
Using this modelY;} is represented using a weighted linear combinaifgoresent

and past white noise terrfi&]:
Yt = et + llllet_l + q’zet_z + ety ?11 llllz < (613)

A typical example is the case where the weights areexponentially decaying

sequence:
v, = ¢/, —-1<p<1 (6.14)

for this case we can easily calculate the charatitemeasures as:

E(Y,) =0, Var(,) ==

2
_Je
1-¢2 "’

Corr(Y,,Ye_y) = ¢p¥ (6.15)

Hence, this process is stationary and one canrolatanonzero mean process by

adding theu (trend element) to Equatiof.(3).
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Moving Average Process
Using a finite number of non-zero weights in thegmal linear process the moving

average process is obtainé®):

Yt = et - Hlet_l - gzet_z — e qut_q (616)

whereq is the order of the process M#( It can be shown by calculations that for this
process we have:

Yo=(1+06f 467+ ++62)cf (6.17)

—0x+6010k4+1+020k42 +"'+9q—k6q

fork=1,2,..,q

2 2 2
Pk = 14607 +65+-+67

0 fork>gq

(6.18)

hence, there is a cut off after lgg

Autoregressive Process
When the random process is the regression of #gsiqus values we obtain the

definition of pth order autoregressive process as follf&g:

Vi =¢1Vio1 + Ve o+ -+ Yy e, 6.19)

For example, when considering AR(2), the seconeoaditoregressive, we have:

Yo = ¢1Ye1 + 2V 2 + e (6.20)
wheree; is assumed to be independent’af; andY;_,. For investigation of stationarity

we consider th&R characteristic polynomiand equation:

p() =1-¢1x—¢x* =0 (6.21)

It can be shown that the process will be statioifeapd only if the absolute values of
roots for the characteristic equation exceed lnoother words the roots should lie
outside the unit circle in the complex plane. Tondhe autocorrelation function, we first
obtain the autocovariance function after multiptyiquation §.19) byY;_, and taking

expectations:

Yk = P1Vk-1 + P2Vi—2 fork =123,.. (6.22)
which are usually called théule-Walker equationd/arious values op, can be obtained
by dividing this equation by,, settingk and p, equal to 1 and calculating the
autocorrelation values for higher lags successiv@stails of these calculations and also
methods to directly calculate the autocorrelatiatugs are provided if25]. It is also
shown that with complex root for the Yule-Walkematjons the correlogram exhibits a

sine wave shape with a damping factor which is ddpet on the roots too.
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Also note that an autoregressive model can be sgpdeas a general linear process
as defined in Equatior6(13). By using the recursive definition of an ARadel we can
get the values foY;_4, Y;_,, etc. and by substituting these into the origeguation one

will obtain a general linear process version ofdhiginal process.

6.3.1. Mixed Autoregressive Moving Average Process
A more general form for a time series can be obthiny assuming a series being

partly autoregressive and partly moving averd@g:

Ye=d1Yeoa tdoYe o+ -+ @Y, t e — 0160 — Orep — - — Oger_q (6.23)
where the process is called ARMA). It should be noted that we may get the same
autocorrelation functions using different valuesfofHence, given an autocorrelation
function there may not be a unigue MA model foiTib. address this issue of invertibility
we first introduce the re-expression of an MA psxcas an infinite-order AR process by
substituting for consecutive valuesepf ; and defining th&1A characteristic polynomial
[19]. It can be shown that the M&)( model is invertible if and only if the roots diet
MA characteristic equation exceed 1 in modulus.hBsiationarity and invertibility are
required for the ARMA model.

6.3.2. Nonstationary and ARIMA Process

When there are not sufficient reasons to assigetermiinistic trend for a series (e.g.
just a linear increase in a segment of the ser@®), would have to use nonstationary
models to fit the data which consider stochastends. It can be shown that using
different sets of assumptions the first or secoifterénce of many non-stationary
models, leads to a stationary procd€y.

When thedth difference W, = VY, is a stationary ARMAg,q) process,Y; is
identified as an integrated autoregressive movingrage process i.e. ARIMA(,q)
whered is considered 1 or 2 practically. Faxl, W, =Y, — Y,_; and for higher values
of d this transformation is repeatddl times overV,. When there are no autoregressive
or moving average terms in the process it is dehateARI and IMA, respectively. By
substituting associated difference values in thelM¥R formulation the equivalent
ARMA model can be obtained which is of course ntatignary (a unit root exists for the
characteristic polynomial).

To obtain stationarity in a series which has inseedispersion for higher values, the

logarithm transformation can be used. The powex{Box) transformations are another
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alternative to obtain normality and stationafBg]. It can also be shown that whEnis

a relatively stable percentage change figm, a log transformation followed by a first
difference can provide a stationary process knosvithareturns series in the financial
domain.

6.4. Time Series Models for Temperature Forecast Error

6.4.1. Model Specification

For basic analysis of the time series, 5 days afliiaecorded temperature (at 2m)
forecast errors starting from first day of Juned2@y the WRF NWP system are plotted
in Figure 6.3 for the a weather station in Hope, BC, Canadio for a broader look at
the characteristics of this time series a 45 dayg lslot of the same series is depicted in
Figure6.4. In these figures, high autocorrelation andseality qualities of the series are

evident.
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Figure6.3. Temperature forecast error time series
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Figure6.4. 45 days long series of temperature forecast er
To have a detailed look at the dependency of theeotu temperature error and

forecast errors in the past hours, scatter plowifedrent lags are represented in Figure
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Figure6.5. Autocorrelation of the forecast error serrediiferent lags

A closer look at the autocorrelation measures ioua lags of 1, 12 and 24 hours is

provided in Figures.6. These values are measured independently ébr manth rather

than calculating them using the whole time sefibdike the 1 and 24 hour lags, 12 hour

lag values exhibit a considerably higher variantelifferent months and maintain this
pattern through the different years.
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Figure6.7 demonstrates this condition with lag 12 vallsstuating between -0.4 in

June and 0.6 in December. Such information may estggpecial considerations such as
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considering two independent models for cold and nweseasons in the model

specification phase.

6.4.2. Sample Autocorrelation Function
The available recorded time series data can be wtsedalculate the sample

autocorrelation values for different lags:

_ Z?=k+1(yt_7) (yt—k_y)
- TR, (-7)2 (6.24)

T

Ther, values can then be checked to see whether thieyvfal characteristic pattern

for a common ARMA model with specific parametersr Fistance, for MA§) processes
the autocorrelation function (ACF) is zero for ldyondg. Figure6.8 shows the sample
correlation function for the temperature forecasoretime series in the Hope station for
up to 72 hour lags. In this correlogram there Insgdn correlation observed in the first few
lags which gradually declines reaching its minimimthe 12" hour lag and increases
again in the next 12 hours. This pattern is mametithrough the next days with a

damped property.
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Figure6.8. Sample correlogram for up to 2 days back

The sample correlations are subject to samplingatian yet its properties are not
easily obtained as it is a ratio of quadratic fiord with dependent variables. Results
from simulations provide methods for computationhef sampling distribution. For large
n, r, is assumed to be approximately normally distridutéth meanp, and a variance
that is calculated using a formula defined18] which is inversely proportional to the
number of samples. Consequently, the varianceeo$#impled autocorrelation values can

be obtained by these formulas and then considerguypothesis testing purposes.
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6.4.3. Sample Partial and Extended Autocorrelation Functims

For an ARp) model the autocorrelation function does not bezararo after an
specific lag. Hence a different function is reqdite decide about the proper order for
AR models. Therefore the partial autocorrelatiomction (PACF) is defined which
considers the correlation betwegnandY;_,, after removing the effect of the intervening

variablesY;_1, ..., Y;_r+1- Assuming{Y;} as a normally distributed series:

Grre = Corr(Ye, Yoo |Ye1, Yeozs oo, Yeir1)  6.25)
wheregy, is the partial correlation at ldg It can be shown that for an AR (process the
partial autocorrelation function cuts off after lpgFor an MA() process the partial
autocorrelation function will also decay expondhtito zero.
To estimate the function based on an observed s$enes the following recursive
equation can be us¢to]:

b = pk—Z;‘:—f Pr—1,jPk—j
kk — —
1—2;‘:11 br-1,jPj

(6.26)

where ¢y i = ¢r—1,; — PricPr-1k—j for j=1,2,...k-1 and¢,, = p;. In practice, thep
values are replacadvalues. It is also shown that for an AdRprocess the sample partial
autocorrelations at lags greater thmare approximately normally distributed with zero
mean and varianck/n.

It is difficult to identify mixed ARMA models usingample ACF and PACF. The
extended autocorrelation function (EACF) is knownbe a good tool for this purpose
with large sample sizg43]. This method uses a finite sequence of regrasso filter
out the AR part of a mixes ARMA model to obtain @re MA process that enjoys the
cutoff property in its ACF. The EACF information simmarized by a table which
reports the sample correlations of the autoregres®siduals (assuming different AR
and MA orders) which are significantly differentofn zero[82]. In this table an
ARMA(p,q) process will theoretically have a triangle of aerwith the left vertex
matching the proper orders of the model.

Figure6.9 shows the sample partial autocorrelation famctor the temperature error
time series. This graph is a strong indication faaitoregressive model with order 2
since the first two lag partial autocorrelationg argnificantly different from zero (the

dashed horizontal lines represent the critical @slior significance test).
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Figure6.9. Sample partial autocorrelation function fog gast two days
The summarized analysis of the extended autoctioeldunction is provided in
Table6.2. Entries of “X” represent autoregressive resisiuvhose sample autocorrelation
is significantly different from zero. Please refer{19] for detailed definition of EACF.
The upper left hand zero element which is highkghtclearly suggests that an

ARMA(2,2) model would be appropriate for the series

Table6.2. Sample EACF for the temperature error series

ARIMA IO 1 2 3 4 5 6 7 8 9 10 11 12 13
0 X X X X X X X X X X X X X X
1 X X X X X X X X X X X X X X
2 X X 0 X X X X X 0 0 0 X o0 X
3 X X X X X 0O X O O o o 0O o0 X
4 X X 0 X 0 0 OO OO O 0O o o]
5 X X X X 0 0 X 0 0 0O 0O O o0 o
6 X X X X X 0 0 0 OO O O o0 o
7 X X X X X 0 0 0 OO O O o0 o

In the specification process we should be cautibasmany series are nonstationary.
The ACF of such series typically shows large valofesutocorrelation that fail to die out
as early as expected. Considering the ACF of thecést error series in Figu6e8 all

values are significantly far from zero.
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Figure6.10. Correlogram for first difference of the mdgitheasonality removed series

The sample ACF of the first differences of thisieiis provided in Figuré.10. It
must be noted that over-differencing can resuli imonstationary or noninvertible series
and hence must be avoided by differencing in swioesand applying parsimony

(models should be simple, but not too simple).

6.4.4. The Dickey-Fuller Unit-Root Test

To statistically analyze the nonstationarity ofiaeg series hypothesis testing can be
used. Under the null hypothesis th#t} is difference nonstationary it can be shown that
the AR characteristic polynomial of a properly nfa equation of the series, which is
an ARK) process, will have a unit roft9]. The Augmented Dickey-Fuller (ADF) test
statistic is the-statistic of the estimation of a coefficient naneedsing least squares
regression where=0 corresponds to the null hypothesis of differenoastationarity
[14].

The same test can be used to examine the null ingpist of a process being linear-
trend nonstationary. This can be performed by agldmintercept term and the covariate
time in the test’'s regression model. The ADF téstistic for the seasonality removed
temperature error series is estimated -21.7 withpHvalue being 0.01 which is an
indication (although not very strongly) of the gsrbeing stationary.

Another method for selection of orders for an ARMAodel is based on

minimization of Schwarz Bayesian Information Ciiver (BIC) [25]:

BIC = -2 log(maximum likelihood) + klog(n) (6.27)
wherek =p+q + 1 for a model with constant term which is includesl a penalty
function to prefer simple over too complex moddibe process minimizing the BIC

involves first fitting a high-order AR process withe order determined by minimizing
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Akaike’s Information Criterion (AIC) and then usingesiduals as proxies for
unobservable error terms and estimating BICkftags of observations along withags

of the residuals from the high order autoregressiveel.

10
11

ag
ag
ad
ag
ad
ad
ad
ad
ad
ad

a
8812
ag13
ag14
agl1s
ag16
agl’y
ag18
agl19
ag
ag
ag

2
3
¥l
5
3]
7
3
9
20
21
22
g23

error-lag24

O NI O 00O
Q0T e e e I

52
53
54

(Intercept)
21

t-lag1
Ha%?

d

d

d

d

d

d

d

-lag

d

d

d

d

d

d
&rror-
error-
&rror-

= error-
— error-
= error-
— error-
= error-
— error-
= error-
= error-
— error-
— error-
— error-
— error-
— error-
— error-
~ error-
— error-
~ error-
— error-
~ error-

~ tla
— tla
— tla
t-la
t-lag

-55000
-55000
-55000
(55000
Bs000
-54000
-54000
-51000

Figure6.11. Best subset ARMA selection table based on BIC
In Figure6.11 the results from a BIC-based order selectimtgss are provided.
Each row represents a subset ARMA model with ordetsrmined by the shaded cells.
These models are ordered according to their Bl@ Bést model includes lags 1, 3, 18,
23 and 24 of the time series and lags 2, 3 and #3ecerror process. However, the BIC
values are very close for the top models and iec®mmended to investigate orders of
the other models in further analysis e.g. lag 2heftime series and lag 24 of the error

process.

6.5. ARIMA Model Fitting

6.5.1. The Method of Moments

Assuming thap andq orders for an ARMA model have been already spstifthe
parameters involved in the model have to be eséidhat the next step. In the Method of
Moments (MM) theoretical moments of the model ayeaged with the sample moments
and solved to obtain the unknown parameters. Rtamte, in the general AB(casep,
values are replaced by estimates in the Yule-Walker equations to obtaitn@ates of
the ¢, , parameters. For MA and ARMA models the method isrencomplicated
involving quadratic equations that have multipleusons and only one is invertible and
acceptable. It can be shown that this method ig efficient for AR processes and fails

for models that have MA procesq&s].
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6.5.2.Least Square Estimation

The parameters of a model can be obtained usingt [Szuare Estimation (LSE) by
minimizing the sum of squares of model error. FEaraple in an AR(1) with constant
meanS: [19]:

Se(d, ) = Eial(Ve — ) — ¢ (Yeey — w]* (6.28)
is called the conditional sum-of-squares functiomd & minimized through setting its
gradients relative to the parameters equal to derman be shown that the conditional
least squares estimation of the general AR modeluats to solving the Yule-Walker
equations.
For MA models the objective function will be nordar in thed parameters and
hence derivative-based methods are to be replageuiimerical optimization methods

such as multivariate Gauss-Newton. The same apiprisagsed for ARMAQ,q) models

by minimizingS, (¢4, ¢, ..., by, 61,02, ..., 04).

6.5.3. Maximum Likelihood Estimation

The likelihood functionL is defined as the joint probability density for wedty
observing the series in hand. In ARIMA models stughction has parameters ¢f; ,,,
01.q) U ando?2. By maximizing the likelihood function with resgeio these parameters
the observed data are the most likely outcome @fptiocess. The white noise terms are
assumed independent and normally distributed veth mean and each error term can be
substituted by its respective model based terntkignjoint pdf to obtain the likelihood

function. For example in AR(1):

F@2 Y50 Yaln) = @ro) D 2exp (= S BL[(Y = ) = Yooy — WIP) (6:29)

wherey; is the observed value of the varialie and so forth. By multiplying this

function to the marginal pdf af the unconditional sum-of-squares function is olsdi

S =Ll =) — ¢(Yeey —w)? + (1 — ¢ (Y, — 1) (6.30)
and then applying the logarithm ovBmwill result in the log-likelihood function which
can be numerically minimized to obtain parametétsd to the observed series. Since
S(p, 1) = S.(¢,u) the parameter estimation should be very similar lfoge sample
sizes. For details on derivation of Maximum Likeldd Estimation (MLE) functions for

general ARMA models we refer the reade[74).
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By using the maximum likelihood theory we can obtdhe sample variance
properties of the estimated parameters. For instanthe AR(1) model we have:

var(¢) =22 (6.31)

n

Hence, the variance of thg estimator decreases @sapproaches +1. The analysis
can also provide correlation between multiple ested parameters. It can also be shown
that the variance in the method of moments is adwagger than that of the maximum
likelihood estimation. For example for an MA(1) nebavith & equal to 0.9, the sd. of its
estimation using MM will be more than 5 times largen that of the MLE method.

Based on the analysis of the temperature foreaast series performed in the
previous subsection regarding the results of exdéraltocorrelation function and BIC
analysis, we start fitting ARMA models with ordes2 and 3. In Tablé.3 the results of
parameter estimation using least squares and maxirkalihood estimation are reported
for the Hope station. The model has been traina@agube first two years of data (i.e.
2007 and 2008) which has about 17000 observations.

Table6.3. LSE and MLE estimates of the favourable ARMAdels for the temperature error

series
ARMA(2,2) ARMA(2,3) ARMA(3,2)
Conditional Conditional Conditional
Parameters LSE MLE LSE MLE LSE MLE
o 1.63+0.04 0.21+0.45 1.64+0.04 1.63+0.05 1.72+0.15 1.44+0.46
b, -0.69+0.04 0.59+0.41 -0.69+0.04 -0.69+0.04 -0.83#0.23 -0.41+0.66
b3 - - - - 0.06+0.09 -0.11+0.24
0, 0.41+0.04  -0.99+0.43 0.42+0.04 0.41+0.05 0.50+0.15 0.23+0.46
6, 0.11+0.02  -0.25+0.79 0.11+0.02 0.11+0.02 0.08+0.06 0.17+0.10
0, - - 0.01+0.02 0.01+0.02 - -
intercept -0.0740.13 -0.07+0.18 -0.074#0.13 -0.07+#0.13 -0.07+0.13 -0.07+0.14
o? 0.99 1.01 0.99 0.99 0.99 0.99

By starting from a more specific model of ARMA(2 B estimated parameters for
the autoregressive and moving average components tte be significantly different
from zero (meaning that the specific terms actuglay an important role in the model)
except tharf; which is not significant and can be possibly efiated from the model to
obtain a simpler model. In the two left columns tptimized parameters for the simpler
ARMA(2,2) model are reported. Although the estiroasi were very close between the
LSE and MLE estimators in the first case, here ébgmations for MLE are different

from both the LSE and the first more complex model.
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6.6. Model Diagnostics

To test the goodness of fit for models and to itigagse appropriate modifications
over them we analyze the residuals and over-pamtiration for these models. If the
model is correctly specified with well-estimatedraraeters, the residuals would be
approximately white noise with i.i.d. normal disition having zero mean and constant
variance. So by looking at the residuals’ plot veerabt expect to see non-zero mean or
any trend in the series which is roughly the casesfandardized residuals from our fitted
ARMA(2,2) model in Figure5.12. A point noticeable from this plot that stélquires
further analysis is the possible fluctuation of Maeiation of residuals which is critical in

uncertainty modeling.
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Figure6.12. Standard residuals from the LSE ARMA(2,2) eiod

To assess the normality of the residuals the geagqiiantile plot of residuals are
depicted in Figur®.13. There is clear deviation from the theoretrmamal quantiles in
this plot. The Shapiro-Wilk normality test resuls@ rejects the normality of residuals
(p<0.005). The ACF of residuals can also providéualle information about the
independence of residuals. In Fig8d4 the ACF of residuals from the temperature
error ARMA(2,2) model is plotted. Although most &agonfirm independence between
residuals, the statistically significantly diffetdnrom zero autocorrelations around lag 24
are very important. This information can lead us iproper further customization of our

model for the series.
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Figure6.13. Quantile-quantile plot for residuals from &RMA(2,2) model
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Figure6.14. ACF of residuals from the ARMA(2,2) model

As another model specification technique, a closeengeneral model is (over)fitted
and the original model is accepted if the additignantroduced parameters are not
significantly different from zero and the estimat#sthe original parameters are not
dramatically changed. In Tabte3 the basic ARMA(2,2) model is further investighby
trying close general forms. These forms are obthibg adding an order to either
autoregressive or moving average components andehemnsidering ARMA(2,3) and
ARMA(3,2). It can be noticed than in both cases éeBmated parameter for the added
order (65 in the second column and ¢; in the third column) is not significantly

different from zero and hence the general modedjected.
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6.7. Forecasting
Using the available series up to titngorecast originthe forecast fot;,; occurring
| (lead time) steps ahead is to be computed whidki®ted a%; (1). It can be shown that

to obtain the minimum mean square error we Ha9H25]:

V(D) = E(pyy|Yy, Y, -, V) (6.32)
If there is a deterministic trend model involvedtire process, it can be used to
calculate the trend element in the lead timeu.g.
It can be shown thaf. (1) ~ u for largel in all stationary ARMA models. This is
intuitive as the dependence between the forecabtohrervations gradually disappear

until there is no information to improve on theveforecast ofi. Also for the variance

of error we hav&ar(e,(1)) = 62 and by using the MAg) form:

ec(l) = ey + Prep1t¥2ec 2+ + Wi (6.33)
which holds for all ARIMA models. The forecast ishiased i.eE(e. (1)) = 0 and:

Var(e.()) = 02(1+ W7 + W7 + -+ ¥W2,) = a2 XV W7 (6.34)
meaning that with increasing lead time the erranavece increases aridar(et(l)) =
Var(Y;) =y, for largel. Please refer tf19] for details of obtaining this equation. It can
also be shown that generally for nonstationary ARIrocesses the forecast error
variance increases into the future for examplehenrandom walk case we ha¥e =1
for all j so Var(et(l)) = lgZ2. To further clarify the forecast process the eipforecast

expression for an ARMA(1,1) will be:

L) =pu+ ¢ (Y, — ) — p'te, forl=1 (6.35)
Also in the forecasts df> g the autoregressive portion of the forecast eqodto
this process remains only, as we have;,,|Y;, ..., Y;) = 0 for j>0.
Assuming an i.i.d normally distributed white noteems for{e.} an ARIMA series
will also have a normal distribution feg () and hence the prediction limits for forecasts

can be obtained by:

P [?t(l) —Zi_a/2 /Var(et(l)) <Y <V (D +2z1-4/2 /Var(et(l))] =1—-—a (6.36)

wherez; _, /, is the critical value of standard normal distribatfor being(1 — a)100%
confident that the observation at steg [ will be within the prediction interval. Note

thatVar(e.(1)) is obtained by Equatior(34).
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6.8. Improved Models
6.8.1. Daily Cycle

In many cases when there is clear autocorrelatiseasonal lags such as previous
day, week, month, etc. we need to incorporate soctelation in the process. As a first
step seasonal difference of perigdis an appropriate transformation for modeling

nonstationary seasonal processes:

V.Y, =Y, —Y_s (6.37)

where for example for an hourly series witk= 24 the transformed series will represent
changes from the previous day in successive hddtdtiplicative Seasonal ARIMA
models are the general form of seasonal procesksesevior{Y;} an ARIMA(p,d, q) %
(P,D, Q) is considered for which:

W, =74vPY, (6.38)
is an ARMA(p, q) x (P,Q)s model. In addition to autoregressive terms up tags and
moving average terms up gdags this model also includ€sseasonal autoregressive and
Q seasonal moving average terms with seasonal lag ®hese seasonal terms are
DY, oY o5, o, PpYips @NAO €15, Oz€1 35, ..., Oger_gs, respectively.

Referring back to Figuré.14 the seasonal autocorrelation is noticeablagst 24.
This is also confirmed by the BIC analysis as deplién Figures.11. As for the possible
differencing transformations here we apply the tfidifference and the seasonal
difference P = 24). Using these two transformations over the foreeaor series the
resulting time series plots (for the same windowvah in Figure6.3) are shown in

Figure6.15 and Figuré.16, respectively.
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Figure6.15. Transformed time series of temperature ersorg first differenced = 1)
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Figure6.16. Transformed time series of temperature ersorg first seasonal difference & 24)
The choice between different transformations is enddsed on the seasonality
removal ability of the transformation and its poweiobtain a simpler yet accurate model

for the series.

6.8.2. Cross-correlation

It is often the case that the target time serieeuanalysis is related or impacted by
other covariate series. Better models of forecesteapected to be obtained once such
relevant covariates are incorporated. Assuniing {X;} as a covariate time series for

Y = {Y;}, the cross-correlation function (CCF) betweeandY at lagk is defined as:

P (X,Y) = Corr(X,,Yi_i) = Corr(Xeqr, Yr) (6.39)

whereX andY are jointly (weakly) stationary if their means aanstant and their cross-
covariancey; ;(X,Y) is a function oft —s. The sample cross-correlation function
r.(X,Y) can be used to empirically investigate the lagwlith a covariate series has
influence on the target. The critical value fornsigantly different from zero sample
cross-correlations magnitudesli®6 /+/n based on the assumption tbais independent
of Y and henceN(0,1/n) is the distribution forr,(X,Y). However, due to the
autocorrelations present ¥randY this variance turns out to be inaccurate. In trse azt

stationaryX andY independent serig¢49]:

var(n(X,Y)) = - [1+ 257, pe(X)pe(V)]  (6.40)

which can be much larger than 1/n with autocori@testin X andY. For non-stationary
data the sample distribution will not be even ndrrrence, spurious cross-correlation
can be easily detected even between independees skrcan be noted that the variance

is 1/n if X and/orY is a white noise process. This can be achieveepcing the series
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by the residuals from a fitted ARIMA model in priget An AR() representation can be
used ifX; follows an invertible ARIMAp, d, q) model:

X, =0 -mB—-mB*— )X, =n(B)X, (6.41)
wheremn(B) is the filter which uses; parameters and the backshift operaB)rt¢ obtain
X, which is the residual at timeand hence white noise. This process is known as
prewhitening. We can also obtalp using the same filter used frand then calculate
the CCF off andY. As prewhitening is a linear operation, the oragjirelationships will
remain intact. The statistical significance of s#aenple CCF of the resulting prewhitened
series can now be evaluated using19& /+/n threshold.

Thus a general linear regression model will be:

Yo =X72, BiXej +Z; (6.42)
whereX is independent & andZ; can be modeled using ARIMA models. The lagXof
present in the model can be determined by crogglation analysis.

In the context of modeling the temperature foreczsor it seems promising to
include relevant exogenous variables from paraiiéluential series such as the
forecasted temperature (t2) and surface pressafe @ample cross-correlation analysis
results are provided in Figuré.17 and Figure5.18 which both confirm significant
correlations in the zero lag. Also both series leixhmarginally significant cross-
correlation around the diurnal lag. In addition temperature series has noticeable cross-

correlation in lag 1 too.
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Figure6.17. CCF plot of error series and the t2 foresases
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Figure6.18. CCF plot of error series and the surfacespiresforecast series
After performing similar analysis on the other dadlie exogenous series (Tadld),
the sixth lag of the relative humidity series (rh)also added to the ARIMA model
along with the terms detected above from pressndetemperature. Sample window of
the original forecast error serieg ) along with the exogenous linear regression series
and its corresponding residual serigs) (are depicted for two cases of using the BF2
feature set only and using the BF2 feature setgalmth lagged features having

significant cross-correlation with the target seri@ Figure6.19 and Figure6.20,

respectively.
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Figure6.19. Residual and regression series using zerexiagenous features of BF2
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Figure6.20. Residual and regression series using zerexiagenous features of BF2 along with
lagged features of t2, rh2 and psf

The RMSE of the newly obtained residual series athbcases confirm higher
accuracy of the model when exogenous variablesaereunted for. In addition results
shown in Figureés.20 confirm that the residual accuracy will impeawo 1.98 from 2.19
when lagged variables are included in the modedoAote that the original time series is
transformed using the seasonal mean model desanbEable6.1 as it was determined
to be a better seasonal model in these experiméiitsof these specification and
diagnostics analysis results are in-sample andenenly use first two years of data with
80% proportion for training and 20% for validatidviore related experimental results are

provided in subsectio$.10.

6.9. Heteroscedasticity Modeling of Forecast Error

Rather than modeling the conditional mean of a sBeres as performed in ARIMA,
there is an increasing interest in modeling thedd¢@mnal variance of the series as an
uncertainty measure. Instead of assuming a cohgianteasing variance for forecasts of
any number of steps ahead in ARIMA (refer to Equatb.34)), the conditional variance
can be considered as a random process by itselhi@mce modeled in connection to the
current and past values (Homoscedasticity vs. ldstedasticity). For instance in many
financial series, periods of larger volatility aoéen followed by larger conditional
variance as opposed to stable peri@ds.

Suppose we have noticed that recent temperatugedst errors have been unusually
volatile. We might expect that the next hour’s &ast error is also more variable than the

typical volatility. However, an ARMA model cannotmture this type of behavior
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because its conditional variance is constant. Soeeal other time series models in order

to model the non-constant volatility.

Here we focus on the study of such dynamical pagten the volatility of the

temperature forecast error time series. The ACFKCPAnd EACF results may show little

and insignificant serial correlation in the ARIMAsidual series, suggestingvhite noise
model. The sample ACF and PACF functions of thaedueds from the best fitted

seasonal exogenous ARIMA model (details in subse@il0) are plotted in Figur@21

and Figure6.22. Both these plots suggest an i.i.d residuaigclering the fact that few

significant correlations can happen by chance).il&ilym EACF results (not shown here)

confirm a white noise model for the residuals.
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Figure6.21. Sample ACF function of the residuals fromliest ARIMA model
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Figure6.22. Sample PACF function of the residuals fromlibhst ARIMA model
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With an i.i.d. random variable for the residual ie®r transformations such as
logarithms, absolute values or squaring must pvesedependence. If otherwise there is
some significant autocorrelations detected in th®olute or squared transformations of
the original series, one can conclude on the engst®f some higher-order dependence.
Such dependence is evident in the ACF and PACFKs st absolute value of residual
series in Figuré.23 and Figuré.24. Similar correlation was observed in the sedar

residual series (not shown here).
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Figure6.23. Sample ACF function of the absolute residfralm the best ARIMA model
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Figure6.24. Sample PACF function of the absolute resglfraim the best ARIMA model

In addition to these visual tools, the Box-Ljungstteis often used to test
autocorrelation in a series. Under the assumptlat there is no AutoRegressive
Conditional Heteroscedasticity (ARCH) present fag tesiduals of an ARMA model, the

Box-Ljung statistic will have a chi-square distrilmn with m degrees of freedom for the
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first m autocorrelations of the squared residual seridsisnalled as the McLeod-Li test
[50]. Conforming to the autocorrelation analysi®e thesults from this test are all

significant at the 5% significance level as showirigure6.25.
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Figure6.25. McLeod-Li test statistics for ARIMA residuals

All of these results show that although the sedeserially uncorrelated but it has a
higher-order dependence structure which is expdeaseatterns of conditional variance
(namely volatility clustering). Here we try to capt such patterns in a series using
Generalized AutoRegressive Conditional Heterosdmilyd GARCH) models.

AutoRegressive Conditional Heteroscedasticity (ARC#oposed by Englg21]
model the variance of a time series. Given theimaigseries{r;} up to timet-1, the

conditional variance (or conditional volatility) of is defined asr,_?lt_l. Based on the fact
that ;2 is an unbiased estimation Oﬁt_1 one can hypothesize that a period of large
squared values can foretell a period with largéavae and on the other hand a period of
small squared values can foretell a stable pefit@ ARCH(1) model is a regression
model with the conditional variance as its targatiable using lag one of the squared
values as its featufg8]:
1 = oe-1& (6.43)
01:2|t—1 =w+art, 6.44)

wherew anda are unknown parameters agds i.id.d with zero mean and unit variance.
To replace the conditional variance by some obséevzalue the following definition is

used:

ne =17 — 0'1:2|t—1 (6.45)
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where{n,} is a serially uncorrelated series with zero meachia uncorrelated with past

values of the original series. Using this equatiBquation §.44):

2=w+ari,+n, (6.46)
Hence, under the assumption of having an ARCH(1gehfor the original series, the
squared series follows an AR(1) model. Based orsthgonarity assumption of tHe;}

series and taking expectations of the above equatio

0?2 =w+ac? (6.47)
wherecg? is the stationary variance of theseries and is used for forecasting krstep

ahead conditional variance. Hel:
Ot =w+ard =1 —a)o? +ar? (6.48)
and generallya,_?ﬂlt = rtz+l|t for I < 0. As a more general approach the model can
includeq past squared terms of the series to obtain a AROHOdel. Also by adding
lags of the conditional variance to the model tlem&alized AutoRegressive Conditional
Heteroscedasticity model is defined as GARCH([BHBO]:
0152|t—1 =w+t ,3101:2—1|t—2 + ,3201:2—2|t—1 + et Bpatz—p|t—p—1 +agrfg Fagri, o+
agrt, (6.49)
With nonnegative coefficient in a GARCH model thenditional variances are
guaranteed to be nonnegative. Yet, this constrsinbt essential for obtaining positive

variances from the GARCH model. Using Equatiém®b) in the above definition of
GARCH:

=w+ B +adri, ++ (,Bmax(p.q) + amax(p.q))rtz—max(p,q) + 1 — PiNe-1 —
T :Bpnt—p (6-50)

wherep, = 0 for k > p anda;, = 0 for all k > q. Hence, for{r;} series following the
GARCH(p,q) model, the{r?} series is an ARMA(max(d), p). Yet due to the larger
sampling variability for higher moments, the orderalysis is usually done using the
absolute series i.¢|r.|}. Details of stationarity conditions and proofs digcussed in
[19]. Finally the trained model can be used to dast thel-step-ahead conditional
variance. As an example using a GARCH(1,1) modell arsing 02 = ac? +

w/(1—ay;—By):

0152+1|t =1 —a;—Bo* +a;r¥ + ,310'1:2|t—1 6.51)
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thus the next conditional variance is a weighteerage of the long-run variance, the last
available squared observation and the last predici the variance. By assuming normal
innovations, the likelihood function of a GARCH msbdcan be obtained and then
numerically optimized to estimate the model coeffies and their corresponding
variance.

It is evident that the GARCH model can only captilme conditional variance of the
process under analysis. Hence, in order to modettimditional mean of thg;} series
the ARMA model is still needed to be utilized. mgt setting the GARCHY g model is

used to model the white noise term in the condionean’s ARMAG&,b) model:

Vo =¢1Yeq1+ -+ PaYeq+e—0O1e0 14— —6Opep (6.52)
er = ogje-1&c (6.53)

Ofitoq = W+ P10l qj—g + -+ BpOlpjtop-1 + @1€fq + -+ agel, (6.54)
where the ARMA and GARCH orders can be determinedralyzing the{Y;} and{e?}
series, respectively. The parameters can then treagsd independently. After model
diagnosis confirms the two models, they can beiegb forecast both the conditional
mean and variance of target future values.

The extended autocorrelation sample function ofabsolute (or squared) residuals
can provide an analysis on the order of the GARCsteh Results for the absolute
residual series of the temperature forecast er®MVBA model in Table6.4 suggest a
GARCH(1,1) model.

Table6.4. Sample EACF for absolute residuals of the ABSMA model
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0 0 X
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X O 00O p o OO
©O 0O 00O po oo
© 0o oo po oo
©O 0O 00 po oo
© 0O 0o 0opooO
©O 0 00 p o X X
O 0 oo x X O

To accept a fitted model a major assumption tofyes whether the standard
residuals i.eé, = r./6t-1) are independently and identically distributed. kiog at
the ACF of the absolute or squared standard residoae can check for serial

autocorrelation and volatility clustering. Figuée26 shows the ACF of standardized
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residuals from the GARCH(1,1) model which was fouade the best GARCH model
for the residuals of the best ARIMA model fittedth® temperature error series. This plot
has the general impression that the residuals @lenger serially correlated and hence

the volatility clustering has been well capturedha model.
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Figure6.26. Sample ACF of absolute standard residuafs the fitted GARCH(1,1) model
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Figure6.27. McLeod-Li test statistics for GARCH(1,1) chsals

The results from the McLeod-Li test also confirnattithe residuals do not exhibit
serial autocorrelation anymore and hence the fil@@®RCH model is a good candidate

for the conditional variance of the original series
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6.10. Experimental Results

6.10.1. Data Sets and Method Set-ups

After performing model specification analytics imetprevious subsection, here we
focus on the practical application of time seriesdgis for the temperature forecast error
and uncertainty modeling and prediction. We usditketwo years of data (i.e. 2007 and
2008) from the AG data set for training and diagieesand preserve the 2009 data for
out-of-sample forecasting and evaluation in eactneftwo stations. Different time series
models are compared to the clustering and quamgeession methods in terms of both
their point and interval forecast accuracy andl.skile also evaluate the time series
models relative to three baseline competitors. firsebaseline method is the no-change
forecast known as the “persistence forecast” irctimeatological literature (referred to as
Persistence). The two other baselines are theslreple moving average models using
the past 4 hours (MA-H4) and the same hour valnethé past three days (MA-D3),
respectively.

For prediction interval forecasts of the ARIMA tinseries models we use the
theoretical variance approach with a Gaussian gssomand the exponential smoothing
multi-step-ahead error variance formula (Equatiér84)). For the baseline models the
empirical distribution of the forecast errors (it@00 hour window) for each lead time is
used to obtain variance estimations. Finally, t#RGH model can provide a series of
conditional variance forecasts (and hence predictbervals) under the Gaussian and
empirical distribution assumption for any lead tinfdhe results from any of the two
distribution assumptions were very close and irofaf the empirical distribution in rare
cases. Hence, we only provide the results frometmpirical distribution assumption
here. Also Analytical results did not support difiet model specifications for different
seasons and stations. However, independent maodigisidentical specification) were fit

for each station.

6.10.2. Forecast Evaluation Results

We first consider the performance of the varioo®etseries models in terms of point
(i.e. expected mean value) forecasts. The RMSEowit gorecasts made for different
forecast horizons in the two stations are provide@iable6.5. For ARIMA models there
are three entries ARIMA, sARIMA and sxARIMA markirtige three different setups of:
simple ARIMA p = 2,d =1, q = 2), Seasonal ARIMAf=2,d=1,q=2,P =2,
D =0, Q = 1) and Seasonal Exogenous ARIMA (including BF2 aagbkd features as
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described in Figuré.20). Optimization methods of LSE and MLE yieldwesimilar
results with marginally better performance by LSEdeis. The results clearly show the
higher accuracy of the sxARIMA model in these pdanecasts.

The average RMSE in both stations for these modedsplotted in Figures.28.
Considering the forecasting performance of the Ibesenodels in the first horizons, it
can be seen that the Persistence has higher agctt@wever, with increasing horizon
length the Persistence forecast becomes compdyagiver. Yet, the MA-D3 model has
a better accuracy in longer leads and is more giergiin its accuracy. As expected, the
sXARIMA model consistently outperforms the otherdels in terms of forecast accuracy
and therefore is used for the prediction intervableling and forecasting and referred to
as ARIMA here after.

Table6.5. Point forecast accuracy of time series madeisrms of RMSE

1-h 2-h 3-h 6-h 12-h 24-h 48-h
Agassiz
Persistence 1.10 1.73 2.27 3.43 4.45 2.64 2.75
MA-H5 2.22 2.50 2.79 3.64 4.18 2.64 2.96
MA-D3 1.82 2.19 2.26 2.34 2.38 2.47 2.55
ARIMA 1.00 1.48 1.86 2.41 2.59 2.61 2.76
SARIMA 0.98 1.41 1.71 2.18 2.38 2.28 2.52
SXARIMA 0.81 1.14 141 1.79 1.98 1.98 2.16
Hope
Persistence 1.08 1.79 2.31 3.33 4.05 3.02 3.23
MA-H4 2.10 2.44 2.73 3.42 3.84 2.96 2.98
MA-D3 2.06 2.47 2.62 2.70 2.66 2.71 2.87
ARIMA 1.02 1.64 2.06 2.67 2.89 2.83 2.82
SARIMA 1.00 1.59 1.97 2.50 2.66 2.64 2.74
SXARIMA 0.75 1.28 1.59 1.99 2.04 2.04 2.18
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Figure6.28. Average of point forecast accuracy in bo#iticts for different time series models

Sample point and prediction interval forecasts ftbm ARIMA model for the Hope
station in 2009 are plotted in FiguBe29. As can be seen, the forecast series can ttegtch
general shape of the series and matches well iétlobservations during the first leads.
After longer leads (e.g. 40 hours) the forecaste 6 smooth as there is less information
available for the forecast. The prediction intesvallso reflect on the increasing
uncertainty in the forecasts as the forecast horinoreases. This is more evident in a

closer look into the prediction interval forecast$SARCH shown in Figuré.30.
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Figure6.29. Sample ARIMA forecast along with theoretjpgddiction intervals
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Figure6.30. Sample GARCH prediction interval forecasts

Detailed evaluation measures for the predictioerial forecasts of the ARIMA
model are listed in Tablé.6. Rather than having a single row in this tdide the
previous methods of clustering and quantile regoas@vhich do not have any temporal
awareness), the ARIMA model has an independentfooveach lead time (in the forth
column) as this has a critical role in the accuratythe time series forecasts. As
mentioned before this best model incorporates th2 &nd the lagged features (BF2+L)
as regression inputs into the ARIMA time series aetodThe ARIMA forecasts
outperform the best quantile regression model §RQR) up to the 6-hour lead in terms
of skill (SScor€®). The time series Pl forecasts have comparabléonesnce with
guantile regression models up to 24-hour-aheacerAfiis lead, the ARIMA model is
less accurate than quantile regression but yetidenably better than FCM and baseline
models. The ARIMA model has a better coverage measud also has a wider
prediction interval when compared to quantile regi@n forecasts except than the first
few leads.

In the next step an ARIMA(2,1,2)X(1,0,1)-GARCH(1,model is fit to the series
meaning that the residuals of the ARIMA model aredeled by a GARCH(1,1)
independently. This model is referred to as GARGHeh The order of the GARCH
model is determined by the analysis performed bseation6.9. It must be noted that the
point forecasts of the GARCH model are identicalthat of the ARIMA model.
However, the prediction interval forecasts are jted independently for each origin by
the GARCH model as opposed to ARIMA where for etedd the variance will be

approximately constant from any origin. This caneasily noted in Figuré.31 which
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plots the next-hour forecast of standard deviatmnthe GARCH target which is the
ARIMA residual.

Table6.6. Prediction interval verification measurestfgqp models of different methods for 2009

Fitt  SharpnessCoverage Coveragé®™ Resoluti

Algorithm K Features RMSE SScore SScor&®

Params  (°C) % %
SPQR (50) BF2 df=4 6.77 92.78 90.19 1.79 2.02 0.223D.2450
LocQR  (50) BF2 A=0.7 7.04 92.62 90.42 1.74 2.08 0.229®.2505
NLQR (50) BF2 - 7.00 92.57 89.95 1.86 2.06 0.2319.2550
KQR (50) BF2 6_3'34042 7.22 91.98 90.14 1.93 215 0.252D0.2839
LOR (50) BF2PG - 7.84 93.52 91.03 157 2.26 0.2490.2719
FCM 45 BF2 Kernel 10.44 93.28 90.91 1.52 2.90 0.3413.3697
Base-Month 12 Month  Kernel 11.90 93.43 92.26 1.86 3.27 0.3778.3916
Base-Temp. 10 Temp. Normal 11.41 93.09 92.15 0.79 3.16 0.373M3849
Base-Clim. 1 - Normal 11.89 92.95 92.62 0 3.25 £7390.3993
ARIMA  (50) BF2+L =1 3.05 93.82 91.30 0.09 0.78 0.1149.1334
ARIMA  (50) BF2+L =2 4.73 94.36 91.97 0.19 1.21 0.162D.1828
ARIMA  (50) BF2+L =3 5.84 94.44 92.08 0.41 150 0.1930.2141
ARIMA  (50) BF2+L | =6 7.29 94.30 91.94 0.51 1.89 0.2329.2531
ARIMA  (50) BF2+L =12 7.84 94.63 92.33 0.28 2.01 0.2478.2698
ARIMA  (50) BF2+L 1=18 7.96 95.18 92.94 0.23 2.03 0.247DR.2692
ARIMA  (50) BF2+L 1=24 8.01 94.99 92.70 0.23 2.01 0.2498.2716
ARIMA  (50) BF2+L |=48 8.28 94.29 91.91 0.31 2.17 0.263PR.2875
ARIMA  (50) BF2+L 1=120 8.83 94.68 92.36 0.65 2.30 0.2746.2980
ARIMA  (50) BF2+L |1=240 9.58 95.05 92.80 1.20 2.43 0.294R.3192

20

Sd. of Residual
15

1.0

MWM« iR,

T T T T T
200 400 B00 800 1000
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Figure6.31. Sample forecast of next-hour sd. of errangiSARCH(1,1)
A detailed comparison of uncertainty forecasts fid#-D3, ARIMA and GARCH

05

[

in different leads are provided in Talle/. These results also confirm better performance

of ARIMA and GARCH versus the baseline model. Indiidn prediction interval
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forecasts from GARCH outperform ARIMA in the firthree hours and are very
comparable with it in the following leads into theture (Figure6.32). The average width
of the prediction intervals from the moving averagaedel are clearly larger than ARIMA

and GARCH, with GARCH having slightly wider intetgawith higher coverage as

shown in Figuré.33 and Figuré.34.

Table6.7. Prediction interval verification measurestfore series models

1-h 2-h 3-h 6-h 12-h 24-h 48-h 120-h  240-h

Width
MA-D3 7.80 9.51 9.89 10.00 10.00 10.03 10.73 11.972.59
ARIMA 3.05 4,73 5.84 7.29 7.84 8.01 8.28 8.83 9.58
GARCH 3.02 4.70 5.93 7.69 8.22 8.22 8.99 9.90 10.25
Coveragé®®
MA-D3 92.47 92.45 92.44 92.45 92.46 92.87 92.53 2B3. 93.03
ARIMA 91.30 91.97 92.08 91.94 92.33 92.70 91.91 382. 92.80
GARCH 91.97 91.57 91.83 92.42 93.24 93.48 03.98 6M4. 94.61
Resolution
MA-D3 0.72 0.92 0.97 0.99 0.99 1.00 1.10 1.55 1.45
ARIMA 0.09 0.19 0.41 0.51 0.28 0.23 0.31 0.65 0.61
GARCH 0.90 1.38 1.66 1.89 1.04 0.34 0.26 0.55 0.54
SScord@®
MA-D3 0.2663 0.3247 0.3379 0.3416 0.3415 0.3464 0.3655 0.3976133@.
ARIMA 0.1334 0.1828 0.2141 0.2531 0.2698 0.2716 0.2875 0.2980(3819Q.

GARCH 0.1240 0.1793 0.2130 0.2606 0.2694 0.2689 0.2847 0.298(815Q.

0.1 /“
L
/ M
7

o
w
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o
o
[N

SScore0.95

ARIMA(2,1,1)%(1,0,1) | |
—+—GARCH(1,1)

0.11

3 4 5 6 12 18 24 48 120 240

Forecast Lead - Hours
Figure6.32. SScore95 over increasing forecast leads Up ttays for different time series
forecasting methods

115



13.00

—4—MA-D3

11.50 - ARIMA(2,1,1)X(1,0,1)
—+—GARCH[1,1)

10.00 4

8.50 -

Width

5.50 4

4.00

2.50 T T T T T T T T T T T T

1 2 3 4 5 6 12 18 24 48 120 240
Forecast Lead - Hours

Figure6.33. Time series forecast Pl width comparisorufoto 10 day-ahead forecast
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Figure6.34. Time series forecast PI Coversjeomparison for up to 10 day-ahead forecast
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Figure6.35. Percentage change of uncertainty forecabio§kBARCH compared to ARIMA
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Figure6.36. Time series forecast Pl resolution comparfsoap to 10 day-ahead forecast
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To have a closer look at the skill of the predictiaterval forecasts from GARCH
Figure6.35 plots the relative change of skill in GARCHwmared to ARIMA in terms of
percentage. The better skill of forecasts in th& feads is evident in this graph. There is
also a lower accuracy of prediction interval forgsaobserved in the 4, 5 and 6-hour-
ahead forecasts. This is possibly due the wealesepce of the autoregressive structure
of variance in further leads. However, by also wersng the significantly higher
resolution of the interval forecasts from the GAR@iddel (Figures.36) this model may
be preferred for uncertainty modeling especiallydimaller leads.

The empirical results confirm the advantage of thme series model in the
application of weather forecast uncertainty modglim a practical set up the time series
model can be utilized to provide better point amerival forecasts for up to 6 hours and

SPQR can be employed for further leads to obtarofitimal result.

6.11. Conclusions

In this chapter, we looked into the applicatioriinfe series models for the modeling
of uncertainty. After basic time series analysistttdé NWP temperature forecast error
time series, different ARIMA models that incorp@aeasonality, regression and cross-
correlation were fitted to the series in two stasioRather than using theoretical relations
for conditional variance forecasting, heteroscedasine series models (i.e. GARCH)
were also studied as tools of modeling forecasenamty. These models explicitly focus
on conditional variance as an independent timeesemodel. In the experiments we
applied these approaches along with some baseiimee deries models into the NWP
forecasts and computed out-of-sample forecastsooft mnd prediction interval. The

results clearly confirm the better skill of intel¥arecasts from the ARIMA and GARCH
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models in the first few leads when compared toltbst quantile regression model (i.e.
SPQR). The point forecast accuracy of the ARIMA elazlitperforms that of SPQR for
up to 1-day-ahead forecasts. Also, the GARCH modgderforms the ARIMA model in
terms of uncertainty forecasts in the first threarhleads. This model also consistently
provides prediction intervals with higher resolatidt can be generally concluded that in
a practical set up the GARCH model and SPQR cattilised simultaneously to provide
forecasts in the first leads and longer leads,acsgely.

As directions for future research, alternative wars of the GARCH model such as
Asymmetric GARCH models can be investigated. Agaplication and adaption of non-

linear time series for the modeling of NWP foreaastertainty is of interest.
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Chapter 7
Conclusions and Future Directions

This chapter ends the thesis by providing conclydiemarks about the various
methods and experiments, the limitations of thedystand open directions for

enhancements and future research.

7.1. Summary and Discussion

In this thesis we studied the problem of modeling/M forecast uncertainty by
utilizing the point forecast accuracy records wathiocus on learning methods. In this
regard, we developed a comprehensive methodologybtain accurate prediction
interval forecasting models from NWP performancdry. Firstly, clustering algorithms
were proposed as an improvement over the classpgabach of manual grouping of the
forecast situations. Various clustering methodsnglowith different distribution
estimation methods were applied for this purpose.

Two different data sets of NWP forecasts and NCAReovations were used to
practically test these uncertainty prediction medeA comprehensive evaluation
framework was developed and used in the experimiiaisadd the crucial aspect of
sampling uncertainty in forecast skill measuremenéggorly absent in similar previous
studies. The evaluation results clearly confirm thgher accuracy of the prediction
interval forecasts obtained from these models {Epaity the Fuzzy C-means model)
when compared to the baseline and previously pexpasethods. In addition, these
models do not suffer from the dimensionality litivas of the previous methods.

In the next step, we further extended our methagolby implementation and
evaluation of a wide range of quantile regressi@thwds as alternative solutions to the
prediction interval forecasting problem. Extensiegperiments affirm the superior

performance of some quantile regression methodecifgmlly Spline Quantile
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Regression) when compared to the best clusterirtbads. It should be noted however,
that the uncertainty models obtained using clusgemethods have the advantage of
directly providing the full density for the fored¢aarget.

Time series modeling of the forecast error serias the focus of the last phase of
this thesis. Various time series models includirepsenal ARIMA models using
exogenous elements were fitted to the forecastr esevies to obtain forecasts of
prediction intervals and expected error into theurfe in increasing forecast horizons.
Also, heteroscedastic models of forecast targeanee which can model the conditional
variance of NWP forecast error as an independearmtgss were studied as alternative
solutions to the problem of prediction interval mabdg. Elaborate experimental studies
proved that the best time series models (spedificabmbination of ARIMA and
GARCH) can provide significantly more skilful pretion interval forecast for up to 6
hours ahead. In longer forecast horizons the tienes model is outperformed by SPQR
but yet can maintain a nearly comparable performawben compared to quantile
regression and still outperforms the clustering lbaskeline models.

Based on this study, in a practical scenario a @oaion of the two best models can
be employed, i.e. the ARIMA-GARCH time series mofiel the near future prediction
interval forecasts (first 6 hours) and SPQR fotHer time steps into the future. It is also
shown that these models are able to significantlyrove the accuracy of the NWP point
forecasts by incorporating a dynamic de-biasinggse.

The research conducted in this thesis, leadingpggptoposed methodology, clearly
confirms the feasibility and benefits of using fofarecast performance databases to
extend these forecasts into prediction intervads dan also provide critical information
about the uncertainty of the forecasts. This uagay is modeled dynamically and is
dependent on various influential aspects inclugethe model such as the current and
recent past weather attributes (forecasted sitogticthe recent past accuracy of the
system and station attributes such as elevatiooh $uformation is of high value in
various applications utilizing these forecastseagigion making and optimization process

such as DTR and wind energy markets.

7.2. Future Directions
A limitation of this study was the unavailability @ sufficiently large NWP forecast
performance database which is well geographicabByiduted to study spatial aspects

and dependencies in uncertainty modeling. Moreovarious meteorological analytics
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can be performed to provide new features (such etsction of troughs) that can

potentially improve the accuracy of the uncertaimgdels. It will be also interesting to

incorporate various ensemble-based uncertaintgéste in the evaluation studies.

The algorithms and methods studied in this worklmaextended in a few interesting

directions:

(1)

(I

()

(V)

(V)

(V1)

Improving the clustering prediction interval modelsy developing
technigues to guide the clustering process (e.gginge and splitting of
clusters) using characteristics of forecast erigtridution in the clusters.

In the operational use of the PI forecasting methade model should be
adaptive and update its parameters as the accwfaogw forecasts are
revealed. Evolving Clustering Methods (ECM] can be employed in this
context.

Developing proper kernel functions to optimally agfficiently learn non-
linear quantile regression functions. Also usingifisial Neural Network
(ANN) for faster learning of nonlinear quantile fttions[11].

Currently, the quantiles of various confidence lew&an happen to cross one
another in the quantile regression models. Althoulya frequency of such
cases is very low, approaches imposing constrainthe learning problem
can alleviate this problem in future study.

Application of alternative versions of the GARCH deb such as
Asymmetric GARCH model$31]. Also, application and adaption of non-
linear time series for the modeling of NWP foreaastertainty is of interest.
Modeling the conditional density of the time serfesecasts using models
that consider a wider range of distribution momearid characteristics such

as the method proposed[80].
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