This decommissioned ERA site remains active temporarily to support our final migration steps to https://ualberta.scholaris.ca, ERA's new home. All new collections and items, including Spring 2025 theses, are at that site. For assistance, please contact erahelp@ualberta.ca.
Theses and Dissertations
This collection contains theses and dissertations of graduate students of the University of Alberta. The collection contains a very large number of theses electronically available that were granted from 1947 to 2009, 90% of theses granted from 2009-2014, and 100% of theses granted from April 2014 to the present (as long as the theses are not under temporary embargo by agreement with the Faculty of Graduate and Postdoctoral Studies). IMPORTANT NOTE: To conduct a comprehensive search of all UofA theses granted and in University of Alberta Libraries collections, search the library catalogue at www.library.ualberta.ca - you may search by Author, Title, Keyword, or search by Department.
To retrieve all theses and dissertations associated with a specific department from the library catalogue, choose 'Advanced' and keyword search "university of alberta dept of english" OR "university of alberta department of english" (for example). Past graduates who wish to have their thesis or dissertation added to this collection can contact us at erahelp@ualberta.ca.
Items in this Collection
Results for "Probability Distributions on a Circle"
-
Fall 2016
In an online learning problem a player makes decisions in a sequential manner. In each round, the player receives some reward that depends on his action and an outcome generated by the environment while some feedback information about the outcome is revealed. The goal of the player can be various
few probes as possible. Then we study the side observation model in the regret minimization scenario. We derive a novel finite time distribution dependent lower bound and design asymptotically optimal and minimax optimal algorithms. Last we investigate the conservative bandit problem where the
. In this thesis we investigate several variants of online learning problems with different feedback models and objectives. First we consider the pure exploration problem with multi-action probes. We design algorithms that can find the best one or several actions with high probability while using as