This decommissioned ERA site remains active temporarily to support our final migration steps to https://ualberta.scholaris.ca, ERA's new home. All new collections and items, including Spring 2025 theses, are at that site. For assistance, please contact erahelp@ualberta.ca.
Theses and Dissertations
This collection contains theses and dissertations of graduate students of the University of Alberta. The collection contains a very large number of theses electronically available that were granted from 1947 to 2009, 90% of theses granted from 2009-2014, and 100% of theses granted from April 2014 to the present (as long as the theses are not under temporary embargo by agreement with the Faculty of Graduate and Postdoctoral Studies). IMPORTANT NOTE: To conduct a comprehensive search of all UofA theses granted and in University of Alberta Libraries collections, search the library catalogue at www.library.ualberta.ca - you may search by Author, Title, Keyword, or search by Department.
To retrieve all theses and dissertations associated with a specific department from the library catalogue, choose 'Advanced' and keyword search "university of alberta dept of english" OR "university of alberta department of english" (for example). Past graduates who wish to have their thesis or dissertation added to this collection can contact us at erahelp@ualberta.ca.
Items in this Collection
- 2Reinforcement learning
- 1Artificial Intelligence
- 1Data-driven control
- 1Deep Q-learning
- 1Demand-side Management
- 1Distributed Energy Resources
-
Spring 2024
The increasing demand for electricity driven by the widespread adoption of electric vehicles necessitates effective distribution network reconfiguration methods. However, existing distribution network reconfiguration approaches often rely on precise network parameters, leading to scalability and...
-
{Multi-Agent Deep Reinforcement Learning for Autonomous Energy Coordination in Demand Response Methods for Residential Distribution Networks
DownloadFall 2023
In the field of collaborative learning and decision-making, this thesis aims to explore the effects of individual and joint rewards on the performance and coordination of agents in complex environments. The research objectives encompass two main aspects: firstly, to determine the objective...