
Reinforcement Learning For Adaptive Distribution Network
Reconfiguration

by

Nastaran Gholizadeh

A thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Software Engineering and Intelligent Systems

Department of Electrical and Computer Engineering
University of Alberta

© Nastaran Gholizadeh, 2023

Abstract

The increasing demand for electricity driven by the widespread adoption of electric

vehicles necessitates effective distribution network reconfiguration methods. However,

existing distribution network reconfiguration approaches often rely on precise network

parameters, leading to scalability and optimality challenges. To overcome these

issues, this thesis proposes a data-driven reinforcement learning-based algorithm for

distribution network reconfiguration which is divided into three parts.

In the first part, five reinforcement learning algorithms, including deep Q-learning,

dueling deep Q-learning, deep Q-learning with prioritized experience replay, soft actor-

critic, and proximal policy optimization, are compared for the distribution network

reconfiguration problem in 33- and 136-node test systems. Additionally, a new deep

Q-learning-based action sampling method is introduced to reduce the action space

size and optimize system loss reduction.

In the second stage of this research, an innovative action-space sampling method

is developed which utilizes a graph theory-based algorithm named Yamada-Kataoka-

Watanabe to find all minimum spanning trees in the network structure as an undirected

graph. Subsequently, powerflow analysis is conducted for all these spanning tree

structures to rank them from the most optimal to the least in terms of system loss.

Notably, this new sampling method stands out from the previous deep Q-learning-

based approach as it offers greater versatility and can be seamlessly applied to any

test system. This method is applied to the 33-, 119-, and 136-node test systems.

Comparative analysis against conventional methods demonstrated the effectiveness,

scalability, and efficiency of the proposed method in reducing system losses and

ii

managing electricity demand effectively.

While reinforcement learning methods offer fast decision-making capabilities, the

lack of transparency in their decision processes hinders their application in critical

decision-making scenarios. In particular, distribution network reconfiguration involves

altering switch states, which can significantly impact switch lifespan, requiring careful

consideration. To address this transparency issue, in the third part of this study, a

novel approach is introduced that employs an explainer neural network to analyze and

interpret reinforcement learning-based decisions in distribution network reconfiguration.

The explainer network is trained using the reinforcement learning agent’s decisions,

considering active and reactive power of the buses as inputs and generating line

states as outputs. Later, the utilization of attribution methods enabled a deeper

understanding of the relationship between inputs and outputs, offering valuable insights

into the agent’s decision-making process.

Overall, this thesis presents a comprehensive and innovative approach to distribu-

tion network reconfiguration leveraging data-driven reinforcement learning algorithms

for decision making, graph theory-based action sampling for improving the optimality

of decisions, and an explainer neural network for decision interpretation.

iii

Preface

The research presented in this thesis was conducted at the ENergy digiTizAtIon Lab

(ENTAIL) under the guidance of Dr. Petr Musilek. This thesis is predicated on three

principal publications:

1. N. Gholizadeh, N. Kazemi and P. Musilek, “A Comparative Study of Reinforce-

ment Learning Algorithms for Distribution Network Reconfiguration With Deep

Q-Learning-Based Action Sampling,” IEEE Access, vol. 11, pp. 13714-13723,

2023.

2. N. Gholizadeh, and P. Musilek, “A Generalised Deep Reinforcement Learning

Model for Distribution Network Reconfiguration with Powerflow-based Action

Space Sampling,” Journal of Modern Power Systems and Clean Energy, 2023,

under review.

3. N. Gholizadeh, and P. Musilek, “Explainable Reinforcement Learning for Distri-

bution Network Reconfiguration,” Applied Energy, 2023, under review.

During my enriching journey through graduate studies, I dedicated myself to

exploring various projects that revolved around the fascinating realm of machine

learning applications in power systems. In addition to the content presented in this

thesis, there were noteworthy outcomes from these projects as follows that deserve

recognition:

4. N. Gholizadeh and P. Musilek, “Distributed Learning Applications in Power

Systems: A Review of Methods, Gaps, and Challenges,” Energies, vol. 14, no.

iv

12, p. 3654, Jun. 2021.

5. N. Gholizadeh, P. Musilek, “Federated Learning with Hyperparameter-Based

Clustering for Electrical Load Forecasting,” Internet of Things, Volume 17, 2022.

Chapter 2 presents our research detailed in the IEEE Access paper [26]. In this

chapter, I address the distribution network reconfiguration problem, formulating it as

a Markov decision process. Furthermore, I apply a range of cutting-edge reinforcement

learning algorithms to identify the most effective approach for solving this complex

problem. Through rigorous experimentation and analysis, we gain valuable insights

into the performance of these algorithms and their suitability for addressing the

distribution network reconfiguration problem.

Chapter 3 is based on the paper [27] submitted to the Journal of Modern Power

Systems and Clean Energy and is currently under review. Since the selection of

the action space in [26] remained largely random, we developed an improved action

space sampling method in this paper in order to make the proposed reinforcement

learning-based approach for network reconfiguration applicable to any test system.

Finally, chapter 4 draws from our third paper [29] which is submitted to Applied

Energy and addresses the transparency issue in reinforcement learning agent’s decision

making for distribution network reconfiguration by designing an explanation approach.

In all the mentioned three papers, I took charge of designing the research methodology,

writing the code, analyzing the results, and writing the paper. Dr. Petr Musilek, as

the supervisory author, offered significant help with concept formation and manuscript

editing.

v

Acknowledgements

I am immensely grateful for the unwavering support and guidance provided by my

esteemed supervisor Dr. Petr Musilek throughout this research. His invaluable

expertise and encouragement has been instrumental in shaping the success of this

project. I would also like to thank my family members for their emotional and mental

support and their encouragement during my PhD studies and my stay in Canada. I

am deeply appreciative of their unwavering faith in me, which has consistently fueled

my motivation. I am genuinely thankful for their existence in my life. Finally, I

would like to thank my friends and colleagues for their emotional and mental support

throughout this journey and the members of the ENTAIL group for their suggestions

to enhance this project.

vi

Table of Contents

1 Introduction 1

1.1 Thesis Motivations and Objectives 2

1.2 Comparing RL Algorithms for DNR 4

1.3 Action Space Sampling for DNR . 6

1.4 Explainable RL for DNR . 7

1.5 Thesis Outline . 8

2 A Comparative Study of Reinforcement Learning Algorithms for

Distribution Network Reconfiguration with Deep Q-learning-based

Action Sampling 9

2.1 Abstract . 9

2.2 Introduction . 10

2.3 Problem Formulation . 14

2.3.1 Preliminaries . 14

2.3.2 DNR Environment . 15

2.3.3 RL Algorithms . 17

2.3.4 Action Reduction . 23

2.4 Simulation and Results . 24

2.4.1 Experimental Data Setup . 24

2.4.2 33-Node Test System . 26

2.4.3 136-Node Test System . 28

2.4.4 Comparison of Results . 29

2.5 Conclusion . 32

3 A Generalised Deep Reinforcement Learning Model for Distribu-

tion Network Reconfiguration with Powerflow-based Action Space

Sampling 34

3.1 Abstract . 34

3.2 Introduction . 35

vii

3.2.1 Motivation and Literature Review 35

3.2.2 Related Work . 37

3.2.3 Contributions . 40

3.3 RL Foundations and Algorithms . 40

3.3.1 RL Preliminaries . 41

3.3.2 RL Algorithms . 42

3.4 Problem Formulation . 44

3.4.1 System Modeling . 44

3.4.2 Action Space Sampling . 45

3.5 Simulation and Results . 46

3.5.1 Experimental Setup and Data 47

3.5.2 Action Space Sampling . 48

3.5.3 33-Node Test System . 50

3.5.4 119-Node Test System . 51

3.5.5 136-Node Test System . 52

3.5.6 Sensitivity Analysis . 54

3.5.7 Comparative Study . 59

3.6 Conclusion . 61

4 Explainable Reinforcement Learning for Distribution Network Re-

configuration 62

4.1 Abstract . 62

4.2 Introduction . 63

4.3 Problem Formulation . 66

4.3.1 Foundations of RL in DNR 66

4.3.2 General Structure . 66

4.3.3 Attribution Methods . 69

4.4 Results and Discussion . 70

4.4.1 33-Bus System . 71

4.4.2 136-Bus System . 83

4.5 Conclusion . 85

5 Conclusion and Future Work 87

5.1 Conclusion . 87

5.2 Future Work . 90

Bibliography 93

viii

List of Tables

2.1 Parameters of RL Algorithms . 25

2.2 System Loss Obtained by Single-Hour DNR 31

2.3 Execution Time Comparison . 32

3.1 DQN and dueling DQN parameters 48

3.2 Tie switches of the DNR result for a single hour in 33-node system . . 51

3.3 Tie switches of the DNR result for a single hour in 119-node system . 53

3.4 Tie switches of the DNR result for a single hour in 136-node system . 55

3.5 Computational Speed Comparison . 59

3.6 Loss and Minimum Voltage Comparison by Different Methods 60

4.1 Operational Strategies of the DNR Agent in the 33-Bus System . . . 82

4.2 Operational Strategies of the DNR Agent in the 136-Bus System . . . 85

ix

List of Figures

2.1 Reinforcement learning framework . 15

2.2 30-step moving average of daily rewards and action values for 33-node

system with 300 actions . 26

2.3 30-step moving average of average daily rewards and action values for

136-node system with 1000 actions 26

2.4 33-node test system . 27

2.5 Average daily rewards for 33-node system during training using five RL

algorithms . 28

2.6 60-step moving average of daily rewards for 33-node system using five

RL algorithms . 28

2.7 Average daily rewards for 136-node system during training using five

RL algorithms . 29

2.8 60-step moving average of daily rewards for 136-node system using five

RL algorithms . 30

2.9 136-node test system . 30

3.1 Schematic diagram showing how RL works 41

3.2 Active power losses for a fully connected 33-node test system 47

3.3 33-node system sorted active power loss for 50,751 actions (top) and

1000 actions with maximum loss (bottom) 49

3.4 119-node system sorted active power loss for 3,500,000 actions (top)

and 2000 actions with maximum loss (bottom) 49

3.5 136-node system sorted active power loss for 3,500,000 actions (top)

and 2000 actions with maximum loss (bottom) 50

3.6 The mean daily rewards (top) and its 60-step moving average (bottom)

for 33-node system during training 52

3.7 The mean daily rewards (top) and its 60-step moving average (bottom)

for 119-node system during training 53

x

3.8 The mean daily rewards (top) and its 60-step moving average (bottom)

for 136-node system during training 54

3.9 60-step moving average of daily rewards for 33-node system with various

number of actions . 55

3.10 60-step moving average of daily rewards for 119-node system with

various number of actions . 56

3.11 60-step moving average of daily rewards for 136-node system with

various number of actions . 56

3.12 RL agent’s response to unforeseen loads in the 33-node system 57

3.13 RL agent’s response to unforeseen loads in the 119-node system . . . 58

3.14 RL agent’s response to unforeseen loads in the 136-node system . . . 58

4.1 Structure of the explainer network . 67

4.2 Steps of the proposed approach for explainable RL in DNR 68

4.3 Single line diagram of the 33-bus system and its line numbers in red . 70

4.4 BCE loss of the 33-bus explainer network over training 71

4.5 Total active and reactive power consumption of the 33-bus system in

24 hours . 72

4.6 Bar plot representing open and closed lines in the 33-bus system during

24 hours . 73

4.7 Active (top) and reactive (bottom) power consumption boxplot for the

33-bus system in 24 hours . 74

4.8 Heatmap representing the active power consumption in the 33-bus

system during 24 hours . 75

4.9 Heatmap representing the reactive power consumption in the 33-bus

system during 24 hours . 76

4.10 Heatmap representing the scores obtained by the Gradient*Input method

during high consumption hour in the 33-bus system (numbers 2-33 on

the left represent active power and the numbers on the right represent

reactive power of the buses) . 76

4.11 Heatmap representing the scores obtained by the Smoothgrad method

during high consumption hour in the 33-bus system (numbers 2-33 on

the left represent active power and the numbers on the right represent

reactive power of the buses) . 77

xi

4.12 Heatmap representing the scores obtained by the Gradient*Input method

during average consumption hour in the 33-bus system (numbers 2-

33 on the left represent active power and the numbers on the right

represent reactive power of the buses) 77

4.13 Heatmap representing the scores obtained by the Smoothgrad method

during average consumption hour in the 33-bus system (numbers 2-

33 on the left represent active power and the numbers on the right

represent reactive power of the buses) 78

4.14 Heatmap representing the scores obtained by the Gradient*Input method

during low consumption hour in the 33-bus system (numbers 2-33 on

the left represent active power and the numbers on the right represent

reactive power of the buses) . 78

4.15 Heatmap representing the scores obtained by the Smoothgrad method

during low consumption hour in the 33-bus system (numbers 2-33 on

the left represent active power and the numbers on the right represent

reactive power of the buses) . 79

4.16 33-bus system structure in high, average and low power consumption

times . 80

4.17 Heatmap representing the scores obtained by the Gradient*Input method

during hour 14 in the 33-bus system (numbers 2-33 on the left represent

active power and the numbers on the right represent reactive power of

the buses) . 81

4.18 Heatmap representing the scores obtained by the Smoothgrad method

during hour 14 in the 33-bus system (numbers 2-33 on the left represent

active power and the numbers on the right represent reactive power of

the buses) . 81

4.19 Heatmap representing the final scores by combining the result of three

attribution methods during low consumption hour in the 33-bus system

(numbers 2-33 on the left represent active power and the numbers on

the right represent reactive power of the buses) 82

4.20 Heatmap representing the final scores by combining the result of three

attribution methods during hour 14 in the 33-bus system (numbers

2-33 on the left represent active power and the numbers on the right

represent reactive power of the buses) 82

4.21 BCE loss of the 136-bus explainer network over training 83

4.22 Total active and reactive power consumption of the 136-bus system in

24 hours . 84

xii

4.23 136-bus system with lines numbers 85

xiii

Abbreviations

AACO Adaptive ant colony optimization.

BCE Binary cross-entropy.

BCSAC Batch-constrained soft actor-critic.

BDDQN Branching double deep Q-learning.

CDBAS Chaos disturbed beetle antennae search.

CNN Deep convolutional neural network.

CSA Cuckoo search algorithm.

DDPG Deep deterministic policy gradient.

DDQN Double deep Q-learning.

DG Distributed generation.

DMADQN Decomposed multi-agent deep Q-network.

DNR Distribution network reconfiguration.

DQN Deep Q-learning.

GA Genetic algorithm.

HHO Harris Hawks optimization.

LDBAS Levy flight and chaos disturbed beetle antennae search.

LSTM Long short-term memory.

MA-SAC Multi-agent soft actor-critic.

xiv

MDP Markov decision process.

MG Microgrid.

MIQP Mixed-integer quadratic programming.

MP Mathematical programming.

MPSAC Multi-policy soft actor-critic.

PD Probability distribution.

PPO Proximal policy optimization.

PSO Particle swarm optimization.

RL Reinforcement learning.

SAC Soft actor-critic.

SOE Switch opening and exchange.

TOPSIS Technique for order preference by similarity to an ideal solution.

TRPO Trust region policy optimization.

WCA Water cycle algorithm.

xv

Chapter 1

Introduction

The ever-increasing demand for electricity, coupled with the complexities of power

systems and the cost of expanding existing infrastructure, has driven power system

researchers to explore innovative approaches for optimizing power system operation.

Among the diverse techniques employed, distribution network reconfiguration (DNR)

has emerged as a critical method to minimize system losses and maintain controlled

voltage levels. However, achieving an efficient and effective DNR process is a challenging

task, demanding advanced tools that can handle the complexities of power systems.

Recently, the incorporation of machine learning methods has revolutionized the

power systems domain, offering new avenues for enhancing operational efficiency and

reliability. Various power system applications have effectively utilized machine learning

techniques with notable success. These include but are not limited to power system

security [114], anomaly detection [16], demand and generation forecasting [83], energy

storage control [35], unit commitment [68], reliability evaluation [55], voltage stability

prediction [87], and optimal power flow [19].

The focus of this research is on the utilization of reinforcement learning (RL) for

DNR optimization. As a branch of machine learning built upon the principles of

action and response, RL’s ability to learn and adapt over time makes it a compelling

candidate for automating the DNR process in power systems. By leveraging RL, the

proposed method aims to minimize network losses via DNR while ensuring compliance

1

with critical constraints such as voltage levels, radiality, and demand balance. One of

the standout features of this approach is its flexibility, allowing it to be seamlessly

applied to various distribution networks.

In the following sections, we delve into the details of our research focusing on the

RL-based DNR optimization. Through this innovative application of machine learning,

we aim to pave the way for more efficient and sustainable power grid management in

the face of mounting electricity demand and evolving grid complexities.

1.1 Thesis Motivations and Objectives

In the field of DNR optimization, the use of RL remains relatively limited, with existing

studies lacking comprehensive analysis, scalability, and flexibility. This research aims

to address these limitations by developing a flexible RL framework for DNR, leveraging

RL’s learning capabilities to expedite reconfiguration execution and avoid the DNR’s

NP-hard optimization problem without using any simplifications for radiality and AC

power flow constraints. The vast switching action space in power systems presents a

challenge, as many actions may be impractical in real distribution systems. Therefore,

a key objective is to devise an algorithm capable of identifying feasible actions within

the network. Furthermore, given the inherent opacity of RL algorithms, this study

explores the development of an explanation model to enhance understanding and trust

in RL-based systems. By achieving these objectives, this research seeks to advance

the application of RL in DNR and potentially contribute to improved efficiency and

reliability in power system operations. The motivations, objectives, and findings

derived from our research studies are summarized as follows:

Research Study 1: “A Comparative Study of Reinforcement Learning

Algorithms for Distribution Network Reconfiguration with Deep Q-learning-

based Action Sampling” [26] (Chapter 2)

Motivation: Current research employing RL for DNR optimization is limited and

often lacks comprehensive analysis and flexibility. Moreover, practical challenges, such

2

as the vastness of the switching action space and the impracticality of many actions

in real-world distribution systems, remain inadequately addressed.

Objective: The main objective of this study is to devise an algorithm capable

of identifying the feasible actions within the distribution network and perform a

comparative study of various RL algorithms to find the most suitable ones for the

DNR problem.

Findings: We have developed a method based on sequential opening of loops in

the network. This technique successfully identified 14,401 feasible actions for the

33-node system and 56,996 feasible actions for the 136-node system. However, due to

the large size of the feasible action space, we further introduced an advanced action

space sampling method based on deep Q-learning. This involved training a separate

agent using the deep Q-learning algorithm on a larger action space to effectively select

the DNR agent’s action space. However, since the action space selection for this agent

was random, the selection of the action space for the DNR agent remained largely

random.

Research Study 2: “A Generalised Deep Reinforcement Learning Model

for Distribution Network Reconfiguration with Powerflow-based Action

Space Sampling” [27] (Chapter 3)

Motivation: The feasible action space size in a DNR problem is still very large.

Our research showed that the feasible action space consisted of 50,751 actions for the

33-node system and over 3,500,000 actions for the 119- and 136-node test systems.

Therefore, once feasible actions are determined, the next step involves extracting the

most optimal action space for RL application.

Objective: The primary objective of this research is to develop a new action-space

sampling method for the RL algorithms and validate the effectiveness of this method

by comparing the optimality of the solutions obtained by the RL agent trained on

this action space against other math- and algorithm-based approaches in literature.

Findings: We adapted a graph analysis-based algorithm in this study to find

3

more feasible actions for our test systems. This method was based on the Yamada-

Kataoka-Watanabe algorithm and found 50,751 actions in the 33-node system and

over 3,500,000 actions in the 119- and 136-node test systems. To choose the action

space for the DNR agent, we proposed a new power flow-based method to rank the

actions from the most optimal to the least. Applying this method on the 33-, 119-,

and 136-bus test systems revealed that the DNR agent trained on this action space

was able to find solutions within 0.3% optimality gap of the best solution presented in

the literature for the 33-node system and within 10.58% and 1.95% optimality gap for

the 119- and 136-node test systems, respectively.

Research Study 3: “Explainable Reinforcement Learning for Distribution

Network Reconfiguration” [29] (Chapter 4)

Motivation: The motivation behind the third part of this research lies in the

inherent opacity of RL algorithms which leads to skepticism and mistrust among users

and poses challenges in ensuring the reliability, fairness, and acceptance of RL-based

systems in crucial domains such as DNR.

Objective: The third objective of this study is to develop an explanation model

for the trained RL agents to understand the logic behind their decision making in

DNR.

Findings: We developed a novel approach which involved training an explainer

network based on the DNR agent’s actions as outputs and system state as input and

used three attribution methods to explain the relationship between the inputs and the

outputs. The results showed that the reactive power of bus 30 had a major impact on

the reconfiguration of the 33-bus system. Additionally, the active power of bus 105

was crucial in determining the configuration of the 136-bus system.

1.2 Comparing RL Algorithms for DNR

DNR is a critical task in power system operation that involves altering the topology

of the distribution network by changing the status of switches and reconfiguring the

4

network layout. The objective of DNR is to minimize power losses, improve voltage

stability, and ensure load balancing while adhering to various constraints such as

radiality of the network. However, DNR optimization is known to be an NP-hard

mixed-integer nonlinear problem due to the non-linearity of AC power flow and the

radiality constraint [117]. Therefore, this research employs RL for DNR to circumvent

the challenges associated with addressing an NP-hard mixed-integer nonlinear problem.

In our first study [26], we concentrated on formulating the DNR problem within the

framework of a Markov decision process. Extensive experimentation was conducted to

determine the optimal representation of the actions and the content of the system state.

Initially, we tested a binary action space consisting of opening or closing single lines.

However, this approach often led to the creation of loops or network disconnections,

resulting in significantly negative rewards for the agent. Consequently, we had to

revise our action representation to a vector format, which encompassed commands for

the open/close state of all lines. This adjustment also prevented the agent’s neural

network from growing excessively as the system’s size increased.

Furthermore, we conducted an array of experiments to determine the most suitable

elements for inclusion in the system state. Initially, we considered solely incorporating

the active power of the buses as the system state. However, our experiments demon-

strated that including the information about reactive power and switch states led to

improved performance of our RL algorithm. In addition, we carefully fine-tuned the

coefficients in our reward function through a series of trial and errors.

After formulating the system as a Markov decision process, the primary challenge

was dealing with the vast action space. In its current binary format, a system with 33

lines yielded 233 possible actions. However, a significant portion of these actions led

to system loops or disconnections, making them impractical for real-world application

within a distribution system. Consequently, in this study, we also developed an

algorithm to find only the feasible actions. This algorithm centered around the

sequential opening of switches within the network until no loops remained within it.

5

It was found that the solutions produced by the RL agent did not attain the level of

optimality observed in existing literature. The optimality gap was notably substantial.

Consequently, we endeavored to enhance our approach by isolating the most optimal

actions from the feasible action space. For this purpose, we initiated a randomized

selection of n actions, and subsequently, employed deep Q-learning (DQN) and waited

until convergence. We selected our final action space by only keeping the actions with

the highest Q-values. This method effectively improved the optimality of solutions

achieved by the RL agent. Nonetheless, it’s worth noting that the agent’s performance

remained highly dependent on the initial random selection of the action space.

In addition to the previously mentioned research endeavors in this study, we have

also provided a thorough comparison of different RL algorithms for DNR, a topic that

has not been adequately addressed in prior literature.

1.3 Action Space Sampling for DNR

Our second study primarily centered on identifying the most optimal actions for RL

in the context of DNR. This study diverged significantly from our previous research

in that our main objective was to enhance the optimality of solutions generated by

RL agents in DNR, making them competitive with solutions proposed by advanced

methods in the existing literature. Furthermore, as our previous study largely relied

on random selection for the final action space, this investigation aimed to rectify this

deficiency.

To achieve this objective, our study employed a graph theory-based approach. We

conceptualized our network as an undirected graph, where buses served as nodes, and

power lines represented the edges. We adapted the Yamada-Kataoka-Watanabe graph

theory technique to identify all the minimum spanning trees within the network. This

method significantly expanded the number of feasible actions for our networks when

compared to the previous approach of sequentially opening switches, as outlined in

our prior study. Subsequently, we devised a power flow-based ranking system for these

6

actions, allowing us to select only the most optimal actions for integration into our

RL algorithm.

1.4 Explainable RL for DNR

While RL has shown remarkable success in solving complex optimization problems, its

inherent opacity raises significant concerns regarding the interpretability of decision-

making processes. The difficulty in understanding how and why RL models arrive

at their decisions has led to skepticism and mistrust among users. The lack of

transparency in RL algorithms creates a black box effect, making it challenging to

comprehend the rationale behind the actions taken by the RL agents. As a result, the

reliability and fairness of RL-based systems often come under scrutiny. To address

this critical issue, researchers have been focusing on the development of explainable

RL methods.

Explainable RL aims to elucidate the decision-making logic of RL agents, making

their actions more interpretable and understandable to humans. By providing insights

into the internal workings of RL models, explainable RL methods seek to enhance

trustworthiness, acceptance, and broader adoption of RL in crucial domains such as

autonomous systems, healthcare, finance, and more. Very few studies have focused on

developing models to explain the rationale behind the RL agent’s decision making pro-

cess. These studies have utilized statistical analysis [8], Shapley additive explanations

[113], and model trees [30] for this purpose.

Despite the progress in applying RL to DNR scenarios, a crucial research gap

remains: the lack of comprehensive approaches to explain the underlying logic behind

RL agents’ decision-making in DNR. Addressing this gap is essential to gain a deeper

understanding of how RL-based solutions can be leveraged to improve the reliability

and efficiency of power distribution networks. To fill this void, this study proposes

a novel methodology that involves generating a dataset based on the RL agent’s

decisions and training an explainer network to explain the decision-making process.

7

Attribution methods are later applied to this explainer network to find the relationship

between its inputs and outputs, facilitating a better comprehension of RL agents’

behavior in DNR scenarios. It is important to highlight that the main benefit of

explaining the RL agent’s actions is increasing humans’ trust in suggested solutions

and providing businesses with an AI-powered system that offers solid evidence to back

up its decisions and outcomes.

1.5 Thesis Outline

The remaining sections of this thesis are organized as follows. Chapter 2 focuses on

the development of an algorithm aimed at identifying the feasible action space for

RL. We evaluate several RL algorithms and determine the most suitable ones for our

purposes. This chapter is based on our study in [26]. In Chapter 3, we employ a novel

graph analysis-based algorithm to discover the feasible action space in various test

systems. Then, we utilize a power flow-based algorithm to extract the most optimal

action space for the DNR agent. This chapter draws upon the research conducted

in [27]. In Chapter 4, we focus on creating an explanation method that explains the

decision-making process of the trained DNR agent as presented in [29]. The final

chapter, Chapter 5, presents a comprehensive summary of our research findings and

contributions. Additionally, we provide valuable insights into potential avenues for

future research.

8

Chapter 2

A Comparative Study of
Reinforcement Learning Algorithms
for Distribution Network
Reconfiguration with Deep
Q-learning-based Action Sampling

2.1 Abstract

Distribution network reconfiguration (DNR) is one of the most important methods

to cope with the increasing electricity demand due to the massive integration of

electric vehicles. Most existing DNR methods rely on accurate network parameters

and lack scalability and optimality. This study uses model-free reinforcement learning

algorithms for training agents to take the best DNR actions in a given distribution

system. Five reinforcement algorithms are applied to the DNR problem in 33- and

136-node test systems and their performances are compared: deep Q-learning, dueling

deep Q-learning, deep Q-learning with prioritized experience replay, soft actor-critic,

and proximal policy optimization. In addition, a new deep Q-learning-based action

sampling method is developed to reduce the size of the action space and optimize the

loss reduction in the system. Finally, the developed algorithms are compared against

the existing methods in literature.

9

2.2 Introduction

Large-scale penetration of electric vehicles and integration of renewable energy re-

sources have increased the complexity of power distribution networks [28]. As a result,

more advanced control and optimization techniques are required to keep the system

within operational constraints, reduce losses, and supply demands [109]. Distribution

network reconfiguration (DNR) is the process of connecting and disconnecting different

distribution lines in a way that the system loss is minimized and the voltage level is

maintained. The non-linearity of AC power flow and the network radiality constraint

make DNR optimization an NP-hard, mixed-integer, nonlinear problem [117]. There-

fore, heuristic optimization algorithms [77] and mathematical simplifications [3] are

typically used for DNR optimization in the literature.

Majority of DNR studies are based on heuristic optimization algorithms. To this

end, a new social beetle swarm optimization algorithm considering two social behaviors

is developed in [14] to solve the multiobjective DNR problem which minimizes network

loss, load balance index, and maximum voltage deviation. The same method is coupled

with grey target decision-making in [13] to improve the process of selecting the best

beetle and solve the problem of conflicting objectives. Chaos disturbed beetle antennae

search (CDBAS) [98] and Levy flight and chaos disturbed beetle antennae search

(LDBAS) [97] algorithms are combined with grey target decision-making technique

to solve the DNR problem while minimizing the load balancing index, active power

loss, and the maximum node voltage deviation. A modified multi-objective Bayesian

learning-based evolutionary algorithm is proposed in [119] to balance the voltage

stability and the absorption rate of wind energy which is then combined by a technique

for order preference by similarity to an ideal solution (TOPSIS) to solve DNR. In [49], a

θ-modified bat algorithm is developed to solve the DNR problem while the uncertainties

associated with multiobjective DNR are handled via cloud theory constructed based

on fuzzy theory combined with the concept of probability. However, to solve the

10

DNR problem, all of these studies utilize heuristic or meta-heuristic algorithms which

are time-consuming, have high computational cost, and do not guarantee finding the

optimal solution.

In a different set of studies, mathematical models are utilized to solve the DNR

optimization [4]. For example, a distributionally robust chance-constrained DNR

approach for a three-phase unbalanced distribution network is proposed in [120]. It

optimizes the switching cost and the expected power supply cost from an upstream grid.

Later, the model is reduced to a mixed-integer, linear programming problem. A risk-

averse two-stage mixed-integer conic programming model is presented in [11] for grid

reconfiguration where the seasonal reconfiguration decisions of microgrids (MG) are

made in the first stage, and validated under stochastic islanding scenarios in the second

stage. In [85], Benders decomposition framework is combined with mixed-integer

quadratic programming (MIQP) to solve DNR and reduce voltage volatility. MIQP

and mixed-integer linear programming are used in [39] for operation mode adjustment

minimizing the active power loss and for service restoration maximizing restored loads.

The main drawback of these methods is that they simplify the powerflow equations.

Hence, the obtained solutions are neither accurate nor optimal.

There have been other studies which use algorithmic or fuzzy logic approaches.

Switch opening and exchange (SOE) method is developed in [112] for multi-hour

stochastic DNR which is based on sequential opening of switches until no loops

remain in the network and modifying the status of obtained branches. In [65], a

multiagent weight-based self reconfiguration algorithm with distributed generators is

presented for load sharing and reducing congestion in lines. An adaptively tunable

fuzzy logic controller is proposed in [105] for network reconfiguration during power

system restoration. Finally, intra-day dynamic reconfiguration [60] is solved using

time period reduction and decimal coding strategy to maximize the accommodation

revenue of distributed generation (DG) units and to minimize the operation cost of

distribution network. These methods can improve the quality of the solutions, but

11

as the system size grows, the number of decision variables increases and they cannot

guarantee optimality. In addition, their execution time becomes exponentially longer

with the increase in system size.

Recently, machine learning has also been successfully applied for DNR. By combining

original neural network algorithm with chaotic local search and quasi-oppositional-

based learning approaches, a new algorithm is developed in [91] to simultaneously

solve DG allocation and DNR optimization. However, artificial intelligence algorithms

used for optimization purpose still face the problems of poor convergence and falling

into local optima [97]. A deep neural network is developed in [118] to adaptively

learn the reference joint probability distributions (PD) of DG outputs and loads

from historical data. Later, three-phase unbalanced DNR is solved using a modified

column-and-constraint generation method under the worst-case PD scenarios. In this

study, neural network is only developed for forecasting the PD of DG outputs. In

[43], a deep convolutional neural network (CNN) is developed for DNR. It learns the

relationship between network topology and short-term voltage stability performance

from historical data. Since the model is only trained on historical network topologies,

it is unable to perform new reconfigurations that result in unperceived topologies.

Hence, the optimality of the reconfiguration actions is not guaranteed. In [58], a

hybrid data-driven and model-based DNR framework is proposed which uses long

short-term memory (LSTM) network to learn the mapping mechanism between load

distribution and optimal reconfiguration strategies. The model presented in [44] was

similar except that it also considered the switching cost in addition to the system

loss in the objective function. The main disadvantage of these two models is that

the dimension of the neural network needed for training grows with the size of the

network and the computational cost increases exponentially. In addition, they do not

search for optimal reconfiguration strategies for different load values as they are only

trained on a few reconfiguration topologies.

Most DNR algorithms discussed so far are model-based controllers. This means

12

that they need accurate values of distribution network parameters which is difficult to

obtain due to the expansive structure of distribution networks and seasonal weather

changes [24]. On the other hand, the computational burden of these algorithms

increases exponentially with the size of the network [75] which makes them impractical

for real-time control. Reinforcement learning (RL) is an area of machine learning

which uses various algorithms to train agents for taking best actions in an environment

[42]. This method allows building a model-free control approach for DNR since the

agent does not need to directly interact with the distribution network and it does

not need to know the transition probablities between different state and action pairs.

Only very few studies have used RL for DNR process. To this end, deep Q-learning

and NoisyNet deep Q-learning network (DQN) with automatic exploration is applied

to DNR in [52] and [95], respectively. However, in neither of these two studies, the

scalability of the proposed method is demonstrated on larger test systems. Moreover,

these studies compare the performance of only several DQN methods. DQN was

also applied to the DNR problem in [73]. However, DQN performance was only

compared with the brute-force search and genetic algorithms, but not with any other

RL algorithm. Batch-constrained soft actor-critic RL algorithm is developed in [25]. It

learns a control policy from a finite historical operational dataset without interacting

with the distribution network. The main drawback of this approach is that the agent

is only trained on historical operational dataset which means that it does not search

for new and more optimal reconfiguration strategies.

This study develops an RL model for DNR that samples from a very large action

space. Hence, it is not only based on historical operation. In addition, this study

compares the performance of five popular RL algorithms for DNR including DQN,

policy gradient methods, and actor-critic methods. Although there were studies

that implemented DQN and soft actor-critic (SAC) for DNR, no previous study

implemented dueling DQN, DQN with prioritized experience replay, and proximal

policy optimization (PPO) for this purpose. In addition, no study presented a

13

comprehensive comparison of these algorithms. The main contributions of the first

part of this thesis are as follows:

• Proposal of a new action search algorithm to find the feasible action space for

RL algorithms.

• Development of a new DQN-based action sampling method to reduce the size of

the action space and improve the optimality of the obtained DNR solutions by

RL.

• Implementation of five RL algorithms for DNR (including DQN, dueling DQN,

DQN with prioritized experience replay, SAC, and PPO) and comparison of

their performances.

2.3 Problem Formulation

This section covers the problem formulation for DNR as well as the RL algorithms.

2.3.1 Preliminaries

There are two main components in a standard RL structure: environment and agent.

As shown in Fig. 2.1, the agent selects an action at according to the environment state

st and receives the reward rt+1 and next state st+1 from the environment. The main

goal of RL algorithm is to train the agent to select the actions in the environment

that maximize its rewards. The environment for RL is modeled as a Markov decision

process (MDP). An MDP is denoted by (S,A,P ,R, γ, T) and consists of a state space

S (where, st ∈ S), action space A (at ∈ A), transition probability function P , reward

function R (rt ∈ R), discount factor γ ∈ [0, 1), and a time horizon T .

The agent finds the optimal control policy π for its environment by maximizing

the expected discounted return G =
∑︁T

t=0 γ
trt+1. By calculating the action-values

using Bellman equation, the agent decides which action to select in a given state.

14

Bellman equation, starting from state st and taking action at while following policy π,

is determined as

Qπ(st, at) = Ert,st+1∼π[r(st, at) + γQπ(st+1, π(st+1))], (2.1)

Figure 2.1: Reinforcement learning framework

2.3.2 DNR Environment

To apply RL algorithms to the DNR problem, DNR should be modeled as an MDP.

For this purpose, the switching actions are defined as at = [1, 1, 0, ..., 1] where the

open and close commands of the lines are represented by zeros and ones, respectively.

In this study, it is assumed that all lines have switches which can be opened or closed.

Therefore, the action dimension is equal to the number of lines in the system. The

state of the system is the switch states, active, and reactive power consumption at

different buses represented by st = [pt, qt, αt]. Here, αt = [α1t, α2t, ..., αmt] is the switch

states, pt = [p1t, p2t, ..., pnt] is the active power, and qt = [q1t, q2t, ..., qnt] is the reactive

power of different buses. Parameter n stands for the number of busses, and m for the

15

number of lines in the system. The transition probability between time-steps, P, is

assumed to be the random process of power injections.

The reward function for this RL problem is the negative of network loss which

needs to be maximized so that the loss will be minimized. It is defined as

R(st, at) = −C lplt(st+1)− Cv(st+1), (2.2)

where plt(st+1) is the total line losses of the system at state st+1 and C l is the penalty

for line losses in [1/kW]. The variable Cv(st+1) is the penalty of violating the network

voltage constraint defined as

Cv(st+1) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
λ if V max < max(Vt,n) or

min(Vt,n) < V min

0 otherwise

(2.3)

where λ is a large constant number to impose a highly negative reward for actions

that cause voltage violation in the system. Load balance and radiality constraints are

fulfilled while selecting the action space A.

The complete action space for DNR is very large. For example, a system with

20 lines has a total of 220 actions. However, most of these actions cause loops or

disconnections in the system and hence, are infeasible to be performed in a real

distribution system. To address this issue, Algorithm 1 is used to select only the

feasible actions as the action space for RL. In this algorithm, first, all lines are closed

to find all loops in the network (lines 3-4). Then, all of the switches that open these

loops are found (line 5). Finally, all combinations between these switches are found in

a way that no loops remain in the network and no disconnections occur (lines 6-23). It

should be noted that action space is a pool from which the agents choose their actions.

Algorithm 1 only changes the action space and it does not alter the action selection

strategy of the agents in any of the RL algorithms.

16

Algorithm 1 Structure Identification

1 Input: Topology information of the network
2 Output: Feasible action space
▷ Construct the network with graph analysis tools

3 Close all lines
4 Find all loops in the network l ∈ {1, 2, ..., N}
5 Find the set of all switches Sl that open each of these loops
6 Find the total number of combinations, M , between Sl from each loop
▷ Find all combination of lines for opening loops

7 for i ∈ {1, 2, ...,M} do
8 flag = 0
9 while flag = 0 do

10 for j ∈ {1, 2, ..., N} do
11 if loop j exists then
12 Open a line from loop j
13 if Network is disconnected then

Close the line and open a different line

14 if the line is already open then
15 Open a different line from loop j
16 if Network is disconnected then
17 Close the line and open a different line

18 Find all the loops l in the network
19 if l = 0 then
20 flag = 1
21 Save the current structure of the network as a feasible action

22 else
23 Repeat 5-21 for the new loops

2.3.3 RL Algorithms

RL algorithms are divided into two main categories: on-policy and off-policy. In

on-policy RL, the behavior policy which agent uses to select its actions and the

target policy which it tries to learn are the same. In off-policy RL, they are different.

Therefore, on-policy algorithms are more likely to converge to a sub-optimal policy.

This study implements and tests the performance of DQN, dueling DQN, DQN

with prioritized experience replay, and SAC as off-policy algorithms, and PPO as an

on-policy algorithm.

Algorithm 2 summarizes the DQN algorithm. First, the target neural network,

q-network, replay buffer, and greedy policy are initialized (lines 3-5). Then, for N

17

number of episodes, the environment is reset, for T number of steps (episode length),

an action is chosen by the policy and executed, the transitions are added to the replay

buffer, and finally, the loss over a batch of transitions is computed and gradient descent

is performed on the q-network to update its parameters and the policy (lines 6-15).

Every M episodes, the target and q-network are synchronized (line 16). It should be

noted that the q-network outputs actions values. The policy chooses the action with

the highest value.

Dueling DQN is an improvement over DQN [101]. The key motivation behind this

architecture is that, in some states, performing an action will not change the obtained

reward so it is unnecessary to know the value of each action at every time step. An

example of such condition is the Atari game Enduro where taking an action will not

change the obtained reward until collision is imminent. In general, the action value is

Algorithm 2 Deep Q-Learning

1 Input: Learning rate α, number of episodes N , discount factor γ,
batch size, environment

2 Output: Optimal policy
▷ Initialization

3 Initialize target network with parameters θtarg and q-network with parameters θtarg ← θ
4 Initialize replay buffer B
5 Initialize greedy policy π and ϵ-greedy policy πϵ
▷ Training

6 for Episode ∈ {1, 2, ..., N} do
7 Reset the environment and record s0
8 for t ∈ {0, 1, .., T − 1} do
9 Select action at using πϵ

10 Execute action at and receive st+1, rt+1

11 Add transition (st, at, rt+1, st+1) into buffer B
12 Set st = st+1

13 Choose a batch, b, of transitions from buffer B
14 Compute loss function for the selected batch

yi =

{︄
ri For terminal state

ri + γmax(Q(si, ai|θtarg)) For non− terminal state
L(θ) = 1

|b|
∑︁|b|

i=1[yi −Q(si, ai|θ)]2

15 Perform gradient descent for q-network and update its parameters θ

16 Every M episodes synchronize θtarg ← θ

18

defined as

Qπ(s, a) = Eπ[
T−1∑︂
t=0

γtrt|st = s, at = a], (2.4)

and the state value is defined as

Vπ(s) = Eπ[
T−1∑︂
t=0

γtrt|st = s]. (2.5)

The advantage value shows how advantageous selecting an action is relative to the

other actions at a given state. The advantage function is obtained by subtracting the

state value from the action value

Aπ(s, a) = Qπ(s, a)− Vπ(s). (2.6)

By separating Qπ(s, a) into Vπ(s) and Aπ(s, a), the dueling architecture learns the

state value without having to learn the effect of each action for each state. Vπ(s) and

Aπ(s, a) are combined into one equation as follows

Q(s, a; θ, α, β) = V (s; θ, β) + (A(s, a; θ, α)

− 1

|A|
∑︂
a′

A(s, a; θ, α)).
(2.7)

DQN with prioritized experience replay was first introduced by Google DeepMind

in 2015 [81]. The basic idea behind this algorithm is to prioritize the transitions in

the replay buffer that are rare but more helpful for the learning process. The metric

to measure the importance of each transition is the magnitude of a transition’s time

difference (TD) error, δ. However, an offset value should be added to prevent the

importance to become zero, i.e.

pi = |δi|+ ϵ. (2.8)

Using the priority, the probability of selecting each transition is defined as

Pi =
(pi)

a∑︁N
i=1(pi)

a
, (2.9)

where a is a factor that determines how much prioritization is used. Prioritized replay

introduces bias in training since it selects some transitions more frequently. To prevent

19

this, the neural network update step is changed to αwi instead of α, where wi is

defined as

wi = (
1

N
.
1

Pi
)b. (2.10)

The exponent b is used to control the bias correction which is more important later

during the training than at the beginning. Therefore, b starts at a low value and

gradually increases to 1 over time.

SAC is an off-policy reinforcement learning algorithm whose objective is not only

to maximize the rewards but also to increase the entropy. Entropy is the likeliness of

the algorithm to explore new actions. A high-entropy algorithm prevents premature

convergence to a bad local optima and encourages the state space exploration improving

the collected transition data. Therefore, the policy is trained to maximize the following

objective

J(θ) =
T∑︂
t=1

E(st,at)∼ρπθ [r(st, at) + αH(πθ(.|st))], (2.11)

where H(.) is the entropy measure, and the parameter α represents the entropy

temperature and controls the randomness of the policy versus the reward. In general,

there are three functions that SAC needs to learn: 1) the policy with parameter θ,

2) soft Q-value function with parameter w, and 3) soft state value function with

parameter ψ. Soft Q-value and state value are determined, respectively, by

Q(st, at) = r(st, at) + γEst+1∼ρπ(s)[V (st+1)], (2.12)

V (st) = Eat∼π[Qst,at − αlogπ(at|st)], (2.13)

To obtain the soft state value function parameters, the following mean squared

error is minimized

JV (ψ) = Est∼D[
1

2
(Vψ(st)− E[Qw(st, at)− logπθ(at|st)])2], (2.14)

20

where D is the replay buffer. The soft Q function parameters are obtained by

minimizing the soft Bellman residual

JQ(w) = E(st,at)∼D[
1

2
(Qw(st, at)− (r(st, at)+

γEst+1∼ρπ(s)[Vψ(st+1)]))
2],

(2.15)

where ψ is the target value function. Finally, the policy is optimized by minimizing

the KL-divergence

Jπ(θ) = Eat∼π[logπθ(at|st)−Qw(st, at) + logZw(st)], . (2.16)

Parameter Z is the partition function to normalize the distribution. Finally, the SAC

algorithm is implemented as Algorithm 3 [31]. First, the state value function, Q-value

function, policy, target value function, and replay buffer parameters are initialized

(lines 3-4). Then, for each episode, an action is selected by the policy and executed

and the transition is added to the buffer (lines 5-9). If it is time to update, state value

function, Q-value function, policy, and target value function are updated using the

previously introduced equations (lines 10-14).

Algorithm 3 Soft Actor-Critic

1 Input: Learning rate α, number of episodes N , discount factor γ,
batch size, environment, entropy temperature α

2 Output: Optimal policy
▷ Initialization

3 Initialize parameters θ, w, ψ, and ψ
4 Initialize replay buffer D
▷ Training

5 for Episode ∈ {1, 2, ..., N} do
6 for t ∈ {0, 1, .., T − 1} do
7 Select action at using policy πθ(at|st)
8 Execute the action at and receive st+1, rt+1

9 Add transition (st, at, rt+1, st+1) into buffer D
10 for each gradient update step do
11 Update state value function with parameter ψ
12 Update Q-value function with parameter w
13 Update policy with parameter θ

14 Update target value function with parameter ψ

As previously mentioned, PPO is an on-policy RL algorithm. It is a type of policy

gradient method that was introduced in 2017 [82] as an improvement over Trust

21

Region Policy Optimization (TRPO). PPO uses two neural networks, an actor network

whose input is the state and output is the list of probabilities for each action, a critic

network, whose input is the state and the output is state value. The objective function

of vanilla policy gradient methods is defined as

LPG(θ) = Êt[logπθ(at|st)Ât], (2.17)

where LPG(θ) is the policy loss, logπθ(at|st) is the log of probabilities from the actor

network, and Ât is the advantage function.

To prevent large policy updates, the policy gradient step is restricted by rst (θ) in

TRPO, defined as the probability ratio between the action under the current policy

and the action under the previous policy

rst (θ) =
πθ(at|st)
πθold(at|st)

(2.18)

As a result, the objective function in TRPO is defined as

Maximize Êt[
πθ(at|st)
πθold(at|st)

Ât] (2.19)

subject to Êt[KL[πθold(.|st), πθ(.|st)]] ≤ σ

Similarly, to restrict the update step in PPO, clipped surrogate objective is defined

as

LCLIP(θ) = Êt[min(rst (θ)Ât, clip(r
s
t (θ), 1− ϵ, 1 + ϵ)Ât)], (2.20)

To minimize the value function error and ensure enough exploration of the agent, the

final objective function is defined as

LCLIP+VF+S(θ) = Êt[LCLIP
t (θ)− c1LVF

t + c2S[πθ](st)], (2.21)

where LVF
t is value function error, S[πθ](st) is entropy bonus, and c1 and c2 are

hyperparameters. PPO algorithm is given in Algorithm 4. First, the replay buffer,

actor, and critic networks are initialized (lines 3-4). Then, for N number of episodes,

22

each actor runs the policy for T time steps, stores the transitions, and computes the

advantage functions (lines 5-9). Finally, for a batch of transitions every K epochs, the

objective function in Eq. (2.21) is optimized and the actor and critic parameters are

updated.

Algorithm 4 Proximal Policy Optimization

1 Input: Learning rate α, number of episodes N , discount factor γ,
batch size, environment, number of parallel agents Na

2 Output: Optimal policy
▷ Initialization

3 Initialize actor and critic networks
4 Initialize replay buffer B
▷ Training

5 for Episode ∈ {1, 2, ..., N} do
6 for actor ∈ {1, 2, ..., Na} do
7 Run policy πθold in environment for T timesteps
8 Store transitions in the replay buffer

9 Compute advantage estimates Â1, Â2, ..., ÂT

10 Optimize LCLIP+V F+S w. r. t. θ, with K epochs and batch size M ≤ NaT
11 θold ← θ

2.3.4 Action Reduction

The action space in DNR is quite large. Presented RL algorithms either would not

converge to the optimal solution with such a large action space, or they would require

a very long training time and computational resources. Therefore, the size of the

action space needs to be reduced while keeping only feasible actions.

To improve the quality of the DNR solutions found by RL algorithms, in this study,

the size of the action space is reduced in two stages. At the first stage, random

sampling is used to define an action space for RL. Then, using the selected actions,

DQN algorithm is implemented. At the end of the training, the agent has learned the

action values. Therefore, it is used to only select the actions with the highest q-values

to reduce the size of the action space at the second stage.

23

2.4 Simulation and Results

The proposed RL method is first applied to the IEEE 33-node system and then to a

136-node distribution system to demonstrate the scalability of the developed method.

The data and parameters used for simulations are presented in this section, along with

the obtained results.

2.4.1 Experimental Data Setup

The tuned parameters of the five described RL algorithms are given in Table 2.1.

Since the number and range of hyperparameters for RL algorithms are very large,

the hyperparameter tunning is performed manually, by changing the value of one

hyperparameter, observing the result, and then deciding the next value. The daily

load data is generated similar to [112] and then, considering a normal distribution and

15% standard deviation to the generated daily IEEE 33-node and 136-node network

loads, the load data is generated for the required number of days. The minimum and

maximum voltage limits are considered to be 0.95 p.u. and 1.05 p.u., respectively.

Parameter C l is set to 10,000 and λ to 100,000 based on empirical performance.

The neural networks are coded using PyTorch and in Python environment. All RL

algorithms use a four-layer neural network structure, with 1024 neurons in the first

hidden layer and 512 neurons in the second hidden layer. NetworkX package is used

as the graph analysis tool in Algorithm 1 and the power network is modeled using

pandapower package.

Algorithm 1 finds 14,401 feasible actions for 33-node system and 56,996 actions for

the 136-node system. The initial sampling randomly selects 300 and 1,000 actions

for the 33- and 136-node systems, respectively. After applying the initial DQN, the

convergence curve and action values for 33-node and 136-node systems are given in

Fig. 2.2 and Fig. 2.3, respectively. Among these actions, the top 80 actions with the

highest q-values are chosen as the action space for the 33-node test system and the

24

Table 2.1: Parameters of RL Algorithms

Algorithm Parameters Values

DQN

learning rate 10−3

number of hidden units {1024, 512}
batch size 512

discount factor 0.99

synchronize every 10

Dueling DQN

learning rate 10−3

number of hidden units {1024, 512}
batch size 512

discount factor 0.99

synchronize every 10

DQN with Prioritized

Experience Replay

learning rate 10−3

number of hidden units {1024, 512}
batch size 512

discount factor 0.99

synchronize every 10

parameter a 0.5

parameter b 0.4

SAC

learning rate 10−4

batch size 512

discount factor 0.99

number of hidden units {1024, 512}
initial temperature parameter 1

soft update interpolation factor 0.05

PPO

learning rate 3 · 10−4

discount factor 0.99

number of epochs (K) 512

batch size 256

clip rate 0.2

number of hidden units {1024, 512}
L2 regularization coefficient 0.5

entropy coefficient 10−3

entropy coefficient decay 0.99

25

top 400 are chosen as the action space of the 136-node system.

Figure 2.2: 30-step moving average of daily rewards and action values for 33-node
system with 300 actions

Figure 2.3: 30-step moving average of average daily rewards and action values for
136-node system with 1000 actions

2.4.2 33-Node Test System

The 33-node test system is depicted in Fig. 2.4. It is assumed that all lines can be

opened and closed using switches and the dashed lines are initially open.

26

Figure 2.4: 33-node test system

Average daily rewards and their moving averages for the five RL algorithms are

illustrated in Fig. 2.5 and Fig. 2.6, respectively. As can be seen, SAC has the fastest

convergence. However, the final obtained rewards are lower compared to DQN and

dueling DQN. DQN and dueling DQN have very similar performance and PPO has

the weakest performance among these algorithms.

Since in on-policy RL algorithms the agent uses the same behavior and target

policy, these algorithms are more likely to become trapped in a local minimum. As

a result, PPO, which is the only on-policy algorithm in this study, has the worst

performance among other algorithms. Policy gradient methods such as SAC and PPO

search directly for the optimal policy instead of estimating the action-value. These

methods require fresh samples from the environment obtained with the current policy.

However, value methods such as DQN can take advantage of the old data obtained

from an older policy stored in the memory. Therefore, policy methods usually require

more interaction with the environment to reach the most optimal solution. On the

other hand, since they search directly for the optimal policy, they might converge

faster.

27

Figure 2.5: Average daily rewards for 33-node system during training using five RL
algorithms

Figure 2.6: 60-step moving average of daily rewards for 33-node system using five RL
algorithms

2.4.3 136-Node Test System

The 136-node distribution system has a relatively complex structure, as depicted in

Fig. 2.9. The average daily rewards and their moving averages for the 136-node system

28

are shown in Fig. 2.7 and Fig. 2.8, respectively. Similar to the 33-node system, SAC

has the fastest convergence. However, the final obtained rewards are lower compared

to DQN and DQN with prioritized experience replay which obtain similar rewards at

the end of the training. However, DQN with prioritized experience replay converges

slightly faster. By comparison to the 33-node system, it can be seen that for larger

systems, the prioritized experience replay is more effective and converges faster.

Figure 2.7: Average daily rewards for 136-node system during training using five RL
algorithms

2.4.4 Comparison of Results

Table 2.2 shows the network loss after a single-hour DNR using each of the five RL

algorithms, the SOE method [112], genetic algorithm (GA) [12], adaptive ant colony

optimization (AACO) method [88], and cuckoo search algorithm (CSA) [72] from

the literature. Among the compared algorithms, DQN attains the lowest network

loss, outperforming other published methods. It can also be inferred that the DQN-

based action reduction approach was effective and that the resulting action space was

sufficient to reduce the system loss in the DQN, Dueling DQN, and SAC algorithms. It

can be concluded that, in terms of stability and optimality, DQN is the best-performing

29

Figure 2.8: 60-step moving average of daily rewards for 136-node system using five
RL algorithms

Figure 2.9: 136-node test system

30

algorithm. In terms of convergence speed, SAC performs the best.

Table 2.2: System Loss Obtained by Single-Hour DNR

Algorithm
Test System

33-node 136-node

DQN 6.201 51.606

Dueling DQN 6.188 72.401

Prioritized DQN 6.273 144.373

SAC 6.273 72.384

PPO 6.342 100.411

SOE [112] 6.740 51.651

GA [12] 6.740 51.911

AACO [88] 6.740 51.655

CSA [72] 6.740 -

Action Sampling DQN 6.266 90.197

The computational times of the RL methods are compared against SOE, AACO,

and mathematical programming (MP) methods (including mixed-integer linear and

mixed-integer nonlinear programming) [112] in Table 2.3. As it can be inferred from

this table, RL methods are at least eight times faster than SOE, AACO, and MP

methods for the 136-node system. The computational speed of the RL algorithms is

even more signified as the size of the system grows. However, RL algorithms can have

a very long training time, as presented in the same table.

31

Table 2.3: Execution Time Comparison

Algorithm
Execution Time [s]

33 bus 136 bus

PPO 0.206 0.776

DQN 0.207 0.786

Dueling DQN 0.502 1.911

SAC 0.453 1.916

Prioritized DQN 0.457 1.964

SOE [112] 1 16.9

AACO [88] 0.3 894.20

MP [112] 19 1, 236

Approximate RL Training Time 5, 727 25, 190

2.5 Conclusion

In this chapter, the DNR problem is formulated as a Markov decision process to

implement and compare five RL algorithms, including DQN, dueling DQN, DQN with

prioritized experience replay, SAC, and PPO. The proposed RL-based approach was

applied to the 33- and 136-node test systems. The results showed that among these

algorithms, SAC had the fastest convergence, while DQN performed best in terms

of stability and optimality. In addition, a new DQN-based action reduction method

was developed to reduce the size of the action space. The effectiveness of the new

reduction approach was tested by comparing the pre- and post-sampling results as

well as the results from the literature.

Future studies will focus on developing new action space sampling methods for RL

and performing sensitivity analysis for various action space selections. In addition,

various objectives for the RL agent will be defined and tested. Finally, the effec-

tiveness of the proposed method for increasing electric vehicle penetration will be

32

investigated.

33

Chapter 3

A Generalised Deep Reinforcement
Learning Model for Distribution
Network Reconfiguration with
Powerflow-based Action Space
Sampling

3.1 Abstract

Distribution network reconfiguration (DNR) is used by utilities to enhance power

system performance in various ways, such as reducing line losses. Conventional DNR

algorithms rely on accurate values of network parameters and lack scalability and

optimality. To tackle these issues, a new data-driven algorithm based on reinforcement

learning is developed for DNR in this chapter. The proposed algorithm is comprised

of two main parts. The first part, named action space sampling, aims at analyzing the

network structure, finding all feasible reconfiguration actions, and reducing the size of

action space to only most optimal actions. In the second part, deep Q-learning (DQN)

and Dueling DQN methods are used to train an agent to take the best switching

actions according to switch states and loads of the system. The results show that

both DQN and Dueling DQN are effective in reducing system losses through grid

reconfiguration. The proposed methods have faster execution time compared to the

conventional methods and are more scalable.

34

3.2 Introduction

The primary goal of distribution network reconfiguration (DNR) is to reduce power

losses in the system by altering the network’s topology and switch settings [7]. DNR has

become a fundamental part of distribution system operation due to power fluctuations

caused by increasing penetration of distributed generation (DG) units and electric

vehicles [70]. It can also increase the hosting capacity for distributed energy resources,

improve the voltage profile, and minimize DG power curtailments.

3.2.1 Motivation and Literature Review

The DNR problem can be classified as a mixed-integer nonlinear problem that falls

under the category of NP-hard problems, mathematically speaking [23]. The non-

linearity of AC power flow and the radiality constraint of the network contribute

to this classification. Therefore, it can only be optimized after simplifications [40]

or through search algorithms [88]. To this end, the Lévy flight and chaos disturbed

beetle antennae search (LDBAS) algorithm is used in [97] to solve a multi-objective

dynamic reconfiguration model minimizing active power loss, load balancing index, and

maximum node voltage deviation subject to stochastic power output from DG units

and electric vehicles. Similarly, a multi-objective optimization problem is formulated

in [13] and solved through a social beetle swarm algorithm to minimize network loss,

load imbalance, and voltage deviation. In [69], the water cycle algorithm (WCA)

is employed to address the network reconfiguration problem and to determine the

optimal size and location of the DG units. Other relevant methods to solve network

reconfiguration problem include molecular differential evolution algorithm [76], Harris

Hawks optimization (HHO) algorithm [34], Bayesian learning-based evolutionary algo-

rithm [119], modified particle swarm optimization (PSO) [22], and genetic algorithm

(GA) [12]. However, none of these methods can guarantee the optimality of the

obtained solutions since they are only search algorithms. Furthermore, the time taken

35

to execute them increases exponentially as the system size grows.

In the second type of studies, mathematical programming and optimization methods

are used to solve simplified formulations of the DNR problem. For instance, linear

DistFlow equations are used in [85] to measure the voltage volatility of a bus and a

Benders decomposition-based method is used to solve the proposed DNR problem as

a mixed-integer quadratic program (MIQP). Similarly, an MIQP model is proposed in

[3] for the DNR problem after linearizing the powerflow equations. The DNR problem

was addressed in [21] by formulating it as a mixed-integer linear model and solving it

with the commercial solver CPLEX. This was achieved through the linearization of

power flow equations and load models. The major drawback of this approach is that,

due to the linearization of powerflow equations and the use of simplified assumptions,

the obtained results are not accurate.

Several recent studies have used machine learning techniques to perform the DNR

procedure. The authors of [91] incorporated chaotic local search and quasi-oppositional-

based learning techniques into the original neural network algorithm to tackle the

challenges of network reconfiguration and distributed generation allocation concurrently.

Nevertheless, optimization-focused artificial intelligence algorithms tend to have poor

convergence and are highly susceptible to being trapped in local optima [97]. The

authors of [58] used a long-short-term memory (LSTM) network to capture the mapping

mechanism present between load distribution and the most effective reconfiguration

strategies. The study presented in [43] involved the training of a deep convolutional

neural network to establish the correlation between the network structure and the

short-term voltage stability performance by analyzing historical data. Once trained,

the network was used for the DNR process. The primary drawback of these two

techniques is that the size of the neural network required for training tends to increase

as the network size grows, resulting in an increase in computational expenses. Moreover,

as these networks are exclusively trained on past operational data, they cannot find

novel reconfiguration strategies. The study in [118] employed a deep neural network to

36

construct a probability distribution (PD) forecasting network that could anticipate the

joint PD for DG outputs and loads. Subsequently, a variant of column-and-constraint

generation technique with efficient scenario decomposition solved the DNR problem

in the worst-case scenario of PD for DG outputs and loads. In this instance, neural

networks were only used to predict PD of DG outputs.

Most current studies adopt a model-based control strategy for DNR, which requires

exact knowledge of distribution network parameters. However, obtaining accurate

parameter estimates is challenging for electric utilities due to the complex nature

of distribution networks and changes caused by weather-related fluctuations [24].

Moreover, as the network size grows, the computational complexity of model-based

algorithms rapidly increases, making real-time control infeasible [75].

3.2.2 Related Work

Reinforcement learning (RL) is a machine learning technique based on the action

and response process, which has been successful in solving many difficult sequential

decision-making problems [116]. In the process of transforming DNR into a Markov

decision process (MDP) for RL, each instance of manipulating various switches to

either open or close is regarded as a singular action. As a consequence, the action

space becomes notably expansive. Therefore, the primary challenge when using RL

for DNR lies in effectively managing this extensive action space, while also ensuring

the optimality of the achieved outcomes compared to alternative mathematical or

heuristic methods.

In terms of addressing this challenge, RL studies can be divided into three groups.

In the first set of studies, the RL agent is trained on only a very limited historical

operational dataset. To this end, the method proposed in [25] for DNR involves

training a batch-constrained soft actor-critic RL algorithm using a finite historical

operational dataset. However, the performance of this algorithm largely depends on

accurate historical DNR data which is difficult to obtain. In addition, the algorithm

37

does not search for new reconfiguration strategies since it is trained only on previous

strategies that might not be optimal.

In the second category of studies, a method for reducing the action space is devised

to minimize its dimensions. For instance, NoisyNet deep Q-learning (DQN) method

is adopted for DNR and coupled with a loop-based encoding to reduce the scale of

the action space in [95]. However, it is important to emphasize that the loop-based

encoding method finds a notably small set of configuration actions. Consequently,

the resultant solutions by the DNR agent lack a definitive assurance of optimality

or proximity to optimality. Additionally, the applicability of the method to large

networks is not demonstrated.

The third set of studies utilize the multi-agent RL approach to manage the extensive

action space. This is achieved by distributing the action space among multiple agents.

In [54], a complex multi-objective DNR model is introduced, considering multiple

factors, including renewable energy curtailment, voltage stability, power loss, and

generation cost. It is solved using a DQN-assisted multi-objective bacterial foraging

optimization algorithm. To reduce the action space size, the action space is divided

into smaller subspaces, with each subspace being handled by a separate DQN. The

study in [104] introduces a deep RL-based method to reconfigure distribution networks

during extreme events, creating microgrids to restore critical services. The approach

employs a multi-agent soft actor-critic (MA-SAC) strategy to efficiently control circuit

breakers for isolating sections of the network and accommodating various system states

and scales. In [46], a cloud-edge collaboration architecture is developed and combined

with a deep RL model for real-time optimal reconfiguration of urban distribution

networks. This approach involves multi-level dynamic reconfiguration, integrating

feeder, transformer, and substation levels, using a multi-agent system. The model

employs both offline and online learning phases, incorporating a Q-learning-based

multi-agent conservative Q-learning algorithm for stability in offline learning, and a

multi-agent deep deterministic policy gradient algorithm for exploration and experience

38

pool updates in online learning. The primary limitation of this methodology stems

from the extensive action space within large systems, such as the 136-node test system

encompassing over three million feasible actions. Consequently, even after partitioning

this action space among multiple agents, its sheer magnitude persists, presenting a

challenge for comprehensive action space exploration. Furthermore, all of these studies

lack direct comparisons with solutions documented in existing literature, thus, the

efficacy of the proposed approach remains uncertain.

Additionally, there is a collection of studies that do not present any approach for

reducing the dimensions of the action space. In such cases, it is not clear how the

action space for the DNR agent is selected. These studies include a branching double

DQN (BDDQN) and multi-policy soft actor-critic (MPSAC) for rapid decision-making

in sequential reconfiguration with soft open points in [110], a DQN method to address

DNR within both the IEEE 33-node system and a real-life, large-scale testing envi-

ronment in [52], a DQN-based network reconfiguration to enhance the reliability of

distribution networks, particularly when confronted with the fluctuating nature of

distributed renewable energy resources in [73] and [63]. Finally, a dynamic network

reconfiguration strategy aimed at minimizing operation costs and load shedding is

introduced in [10]. It employs a three-stage deep RL approach to optimize the recon-

figuration and set-points of distributed generators in real-time, enhancing distribution

network stability and reliability by quickly adapting to events and uncertainties. Dou-

ble DQN (DDQN) is used in the offline learning process for optimal reconfiguration

and three RL algorithms including deep deterministic policy gradient (DDPG), soft

actor-critic, and twin delayed DDPG (TD3) are evaluated to determine the real-time

set-points of distributed generators and energy storage systems. However, this study

does not describe any method to reduce the dimension of the action space.

39

3.2.3 Contributions

To address the limitations encountered in the existing literature regarding the effective

management of extensive action spaces within the DNR problem, this chapter intro-

duces an innovative approach for reducing the dimensions of action space. This method

leverages a graph-theory-based procedure, known as the Yamada-Kataoka-Watanabe

algorithm, in conjunction with powerflow analysis. Employing the DQN and dueling

DQN methodologies, this approach trains agents to select optimal switching actions

across a range of distribution systems. A comprehensive comparative analysis is

conducted between these two advanced techniques and the conventional methodologies

in the literature. Through this comparison, we elucidate the respective merits and

drawbacks, as well as the optimality of the obtained solutions. The following are the

key contributions of the second part of this thesis:

• Development of a novel method rooted in graph theory and power flow analysis,

aimed at reducing the size of the action space which enhances the optimality

and convergence of solutions generated by RL algorithms;

• Conducting a comprehensive sensitivity analysis of the action space dimensions,

elucidating the impact of varying the size of the action space;

• Thorough comparative analysis between the proposed method and conventional

DNR methods in terms of execution speed and optimality of the obtained

solutions.

3.3 RL Foundations and Algorithms

This section focuses on the fundamental principles and key algorithms that form the

basis of RL. It lays the groundwork by explaining the core concepts of RL, including the

agent-environment interaction, states, actions, rewards, and the objective of learning

40

optimal strategies. The section further explores various RL algorithms, providing

insights into their workings, advantages, and applications.

3.3.1 RL Preliminaries

In a standard RL structure, an agent interacts with an environment E for a number

of steps and receives an instant reward rt+1 for each action at that it performs inside

E at time-step t. After performing the action at at time t according to state st, the

environment arrives at a new state st+1. The process is illustrated in Fig. 3.1. The

aim of the agent is to increase its cumulative reward over time. To use RL, it is

necessary to create an environment that can be modeled as an MDP. This involves

defining the action space A, state space S, reward function R, transition probabilities

P , discount factor γ, and time horizon T .

Figure 3.1: Schematic diagram showing how RL works

Based on the present state st ∈ S, the agent chooses an action at ∈ A. After

the agent executes the selected action in the environment, it receives a reward rt+1

determined by the current state st and the action taken at. Subsequently, the agent

transitions to a new state determined by the state transition probability function

P. The control process can either continue indefinitely with T → ∞, or it can end

when the time step t reaches the final time T . Finally, the agent determines the

41

optimal control policy π that maximizes the expected discounted return G computed

by taking the sum of the rewards obtained at each time step in episodic tasks and as

Gt =
∑︁∞

j=0 γ
jrt+j+1 in continuous tasks. Bellman optimality equation is used in each

state to find the optimal action value function denoted by Qπ(st, at). In each state,

the optimal policy is the one that maximizes the rewards, hence π∗ = argmaxaQ
∗(s, a).

However, at the beginning of the training, the optimal Q-values are unknown. In deep

RL algorithms, the q-values are determined using a target neural network (Qtarg) and

Bellman equation. Therefore, the policy neural network is updated by minimizing the

following temporal difference error

δ = Qπ(st, at)− (r(st, at) + γmax
a
Qtarg(st+1, a)). (3.1)

3.3.2 RL Algorithms

The behavior policy refers to the policy adopted by the agent to make its action

choices, while the target policy is the one that the agent aims to acquire through

learning. In general, there are two types of RL algorithms: on-policy and off-policy.

On-policy learning refers to a method where the behavior and target policies used

by the agent are the same, whereas in off-policy learning, they are distinct. As a

result, on-policy learning has a higher chance of being stuck in a suboptimal policy.

Therefore, in this DNR study, two off-policy methods are implemented and tested:

DQN and dueling DQN.

In DQN, the policy is determined by a neural network. The input of this neural

network is the state of the agent and the output is the Q-value for each action in

the action space. DQN overcomes unstable learning by using experience replay and

target network. Using experience replay, previous transitions are stored in a memory

as (st, at, rt+1, st+1). Later, these transitions are sampled from the memory in mini-

batches and used to update the neural network. This way, the correlation between

experiences to update the neural network is reduced and catastrophic forgetting is

prevented by reusing past transitions. Catastrophic forgetting or policy collapse is a

42

common issue in policy gradient methods where the agent starts to forget a policy it

had learned before.

Algorithm 5 briefly describes the general trainig process of RL algorithms. For a

specified number of steps, an action is chosen by the policy and executed to get a full

trajectory (st, at, rt+1, st+1) (lines 3-5). The transitions are added to the memory and

a batch of transitions are chosen from the memory to compute the loss and update

the policy (lines 6-8).

Algorithm 5 RL Training Procedure

1 Input: Environment, N , learning rate α, discount factor γ, batch size
2 Output: Optimal policy π
3 for Step ∈ {1, 2, ..., N} do
4 Choose action at based on policy
5 Perform the action at in the environment
6 Append trajectory (st, at, rt+1, st+1) into memory
7 Select a batch, b, of trajectories from the memory
8 Update the policy minimizing Loss(θ)

yi =

{︄
ri If terminal state

ri + γmax(Q(si, ai|θtarg)) If non-terminal state

Loss(θ) = 1
|b|

∑︁|b|
i=1[yi −Q(si, ai|θ)]2

Dueling DQN is an improved version of DQN. In some states, performing an

action does not always increase the obtained reward. Therefore, in this method, it is

unnecessary to know the value of each action at every time step instead, the state

value and advantage function is used to find the optimal policy. The state value is the

expected sum of discounted returns when starting from that state and is expressed as

Vπ(s) = Eπ[
T−1∑︂
t=0

γtrt|st = s]. (3.2)

The difference between the action value and the state value is computed to obtain the

advantage function, which can be expressed as

Aπ(s, a) = Qπ(s, a)− Vπ(s). (3.3)

The advantage function is utilized to determine the relative benefit of choosing an

action compared to other actions at a particular state. In dueling DQN method,

43

one neural network with two streams is used to compute both the state value and

advantage function. Then, the Q-value for the policy network is calculated according

to

Qπ(st, at) = V (st) + (A(st, at)−
1

|A|
∑︂
a

A(st, a)). (3.4)

Similarly to the DQN method, a target neural network (which is a copy of the policy

neural network) is used to calculate the values of V targ(st+1), A
targ(st+1, at+1), and

eventually Qtarg(st, a). The policy network is iteratively updated using the temporal

difference error from Eq. 3.1.

3.4 Problem Formulation

In this section, the basics of RL are first discussed. Then, DNR problem is reformulated

as an MDP. Finally, the powerflow-based action space sampling method is proposed

and two RL algorithms for training the agents are presented.

3.4.1 System Modeling

In reconstructing the DNR as an MDP problem, the opening and closing of each line

is considered an action. The system receives the action in binary format where a zero

value shows an open line and one shows a closed line. In this study, an agent can

open or close as many lines as needed in a single action. For example, changing the

line states from [1, 1, 1, 0, 1, 0] to [1, 1, 1, 1, 0, 1] is considered one action. This

form of representation allows avoiding loops or disconnections in the system while

opening or closing lines. The state of the system shown as st = [pt, qt, αt] is the real

pt = [p1t, p2t, ..., pnt] and reactive qt = [q1t, q2t, ..., qnt] power consumption of the buses

as well as the switch states αt = [α1t, α2t, ..., αmt]. Parameters n and m denote the

number of busses and lines in the system, respectively. After each action, the time t

is incremented by 1. The random process of power injections is assumed to represent

the transition probability, P , between time-steps.

44

Since the aim of DNR in this thesis is to minimize the total line losses, the reward

function is defined as

R(st, at) = −Rlplt(st+1)−Rv(st+1). (3.5)

In this equation, the penalty function for line losses in [1/kW] is represented by Rl,

and plt(st+1) denotes the total line losses at state st+1. The second term is defined as

the penalty function Rv(st+1) for violating the voltage constraint of the system and is

computed as

Rv(st+1) =

⎧⎪⎨⎪⎩
λ(max(Vt,n)− 1) if V max < max(Vt,n)

λ(1−min(Vt,n)) if min(Vt,n) < V min

0 otherwise

. (3.6)

Here, a significantly high value is assigned to the variable λ to represent a highly

negative reward when an action causes voltage violation in the system. Other system

constraints including radiality and load balance constraints are imposed while selecting

the action space A, as described in the following subsection.

3.4.2 Action Space Sampling

The original action space for DNR is extremely vast. If there are 33 lines in the

system and all lines have switches to be opened and closed, the complete action space

will contain 233 actions. However, the majority of these actions are not practical

to be executed in an actual distribution system because they can cause loops or

disconnections in the network. Therefore, a graph-theory-based algorithm named

Yamada-Kataoka-Watanabe [107] is used in this study to form the action space for

RL by only selecting the feasible actions. The Yamada-Kataoka-Watanabe algorithm

can identify every minimum spanning tree present in an undirected graph. All power

networks can be considered undirected graphs where each bus is a node and the power

lines are edges. A minimum spanning tree refers to a selection of edges from a graph,

which connects all nodes without forming any cycles. Therefore, using this algorithm,

45

a set of all reconfigurations and actions that cause no disconnections and loops in the

power system can be found. This set is called feasible action space.

The feasible action space for power networks can still be fairly large. Therefore,

a rational action space sampling method is needed to only select the most optimal

actions as the final action space. For instance, consider the schematic diagram of

IEEE 33-node distribution system [112] depicted in Fig. 3.2. Although opening the

lines 2-19, 9-10, 15-14, 25-29, 32-22, and closing the line 7-8 and the rest of the lines

is a feasible reconfiguration action, it cannot be considered an optimal action since it

would open a line very close to the substation and would put too much load on other

lines increasing the system loss.

To address the this issue, a new powerflow-based action space sampling method is

developed in this thesis to only select the most optimal actions as the DNR action

space. At the same time, this reduces the action space size and further improves the

convergence of the RL algorithm. In this method, a powerflow is performed first,

considering the standard load values and assuming that all lines are closed. Then,

active power losses of each line are calculated. This is shown by red numbers in Fig.

3.2. Finally, the total system losses for each of the feasible actions are calculated and

the actions are sorted based on the system loss. The most optimal actions are the ones

with higher calculated system loss. This is because, according to Fig. 3.2, lines near

main substation carry more current and have more active power losses. Therefore,

disconnecting these lines will cause more reduction in overall system losses. As a

result, the actions with higher calculated losses disconnect lines further away from the

substation and are more optimal.

3.5 Simulation and Results

To verify the effectiveness of the proposed method, it is applied to solve DNR in

33-, 119-, and 136-node test systems. Section 3.5.1 presents the parameters of the

algorithms used for the simulations. Section 3.5.2 presents the results of the action

46

Figure 3.2: Active power losses for a fully connected 33-node test system

space sampling. Sections 3.5.3 to 3.5.5 describe the results obtained by applying the

proposed method on test systems. Sensitivity analysis is discussed in Section 3.5.6.

Finally, the proposed method is compared with other studies in Section 3.5.7.

3.5.1 Experimental Setup and Data

The lower and upper limits for the voltage levels in the constraint 3.6 are defined as

0.95 p.u. and 1.05 p.u., respectively. Based on empirical performance, the value of

parameter Rl is assigned as 10,000 and λ as 1,000,000. The pandapower package in

Python is used to create a model of the power network, and the Newton-Raphson

method to perform power flow calculations. The graph analysis is performed using

the NetworkX package and the Yamada-Kataoka-Watanabe algorithm. Hourly load

data for 3000 days is generated by assuming a normal distribution with a standard

deviation of 15% to the standard 33-, 119-, and 136-bus network loads. The tuned

parameters of the DQN and Dueling DQN algorithms are given in Table 3.1.

47

Table 3.1: DQN and dueling DQN parameters

Parameters Values

learning rate (α) 0.001

batch size (b) 512

discount factor (γ) 0.99

neural network structure {1024, 1024}

experience replay memory size 30, 000, 000

3.5.2 Action Space Sampling

When applying the Yamada-Kataoka-Watanabe algorithm to the 33-node test system,

50,751 feasible actions are found. Applying the same algorithm to the 119- and

136-node test systems found more than 3,500,000 feasible actions. However, to prevent

the memory overflow problem, the number of feasible actions is restricted to 3,500,000.

Using the proposed action space sampling methodology, the sorted values of losses for

the 33-node system are depicted in Fig. 3.3. The top illustration presents the sorted

active power loss for all the feasible actions in the 33-node system. On the other hand,

the lower illustration presents an enlarged perspective of the aforementioned upper

illustration, focusing on a subset of 2000 actions from the right side. Since the active

power reduction slope decreases after 300 actions, the top 300 actions are chosen as

the optimal actions for the 33-node system.

The sorted values of active power losses for different actions in the 119- and 136-node

test systems are illustrated in Figs. 3.4 and 3.5, respectively. Similarly, the top 600

actions are selected as the most optimal actions to form the action space for the RL

algorithms in the 119- and 136-node systems, as it provides a trade-off between loss

reduction and the action space size. It is important to note that a comprehensive

sensitivity analysis on the action space size is conducted in Section 3.5.6.

This study makes a significant contribution by introducing a new action space

sampling method, which greatly improves the efficacy of RL agents in achieving

48

Figure 3.3: 33-node system sorted active power loss for 50,751 actions (top) and 1000
actions with maximum loss (bottom)

Figure 3.4: 119-node system sorted active power loss for 3,500,000 actions (top) and
2000 actions with maximum loss (bottom)

49

Figure 3.5: 136-node system sorted active power loss for 3,500,000 actions (top) and
2000 actions with maximum loss (bottom)

optimal solutions. Additionally, by careful hyperparameter tuning, factors such as

the balance between exploration and exploitation, neural network size for function

approximation, and learning rate are adjusted to ensure optimal rewards and solutions.

In essence, ensuring the accuracy of DQN and dueling DQN involves a holistic

approach that encompasses comprehension of their theoretical foundations, thorough

analysis of components like function approximation and experience replay, strategic

hyperparameter optimization, and rigorous empirical assessments to validate their

performance across diverse tasks.

3.5.3 33-Node Test System

The IEEE 33-node test system is a very popular network for power system studies.

This network is operated at 12.66 kV and has a total demand of 22,709 MW and

17,041 MVAr. Given the persistent interaction of RL agent with the environment

spanning over 50,000 iterations, the obtained rewards tend to exhibit fluctuations

when directly visualized. Therefore, a good strategy for assessing the progression of

50

reward accumulation is to calculate the mean value of daily rewards. Additionally,

to effectively represent the upward trend of these rewards, it is conventional in the

field of RL to employ a technique known as the ”n-step moving average” of rewards.

Applying these techniques to the 33-node system, Fig. 3.6 shows the average daily

rewards and its 60-step moving average for the DQN and dueling DQN algorithms as

they train and converge. When the obtained rewards stabilize, it is an indication of

convergence of the RL algorithm and the training can be stopped. In the visualized

figures, the higher the obtained rewards, the better the algorithm has performed. It

appears from these figures that the RL agent can find a control policy that minimizes

system losses. Therefore, the obtained rewards increase over time. In addition, DQN

converges faster than dueling DQN.

The small fluctuations after convergence are mainly due to load fluctuations at

different hours and the exploration property of the algorithms. Table 3.2 presents the

DNR solution obtained using DQN and dueling DQN in the 33-node system for a

single hour. The tie switches represent the open lines.

Table 3.2: Tie switches of the DNR result for a single hour in 33-node system

Algorithm Tie Switches System Loss [kW]

DQN 7-8, 10-11, 14-15, 28-29, 32-33 140.71

Dueling DQN 7-8, 9-10, 14-15, 28-29, 32-33 139.98

3.5.4 119-Node Test System

To demonstrate the scalability of the proposed method, it is applied to a large-scale

119-node test system [92]. The nominal voltage of this network is 11 kV, and the total

demand is 22,709 MW and 17,041 MVAr. The average daily rewards using DQN and

its 60-step moving average are depicted in Fig. 3.7. These curves show that the agent

learns to choose better actions and maximize rewards over time. Also, the convergence

51

Figure 3.6: The mean daily rewards (top) and its 60-step moving average (bottom)
for 33-node system during training

time is acceptable.

The DNR result for a single hour is given in Table 3.3. Overall, the results show

that the proposed method performs well for a large-scale distribution system and that

the convergence time is at an acceptable level.

3.5.5 136-Node Test System

To demonstrate the applicability of the proposed method on a real test system, it

is tested on a 136-node system in the Midwest of Brazil [94]. This network has a

relatively complex structure and operates at 13.8 kV. Figure 3.8 shows the average

daily rewards and its moving average during training in the 136-node test system.

52

Figure 3.7: The mean daily rewards (top) and its 60-step moving average (bottom)
for 119-node system during training

Table 3.3: Tie switches of the DNR result for a single hour in 119-node system

Algorithm Tie Switches System Loss [kW]

DQN

23-24, 32-33, 72-73, 109-110, 46-27,

1025.9817-27, 54-43, 62-49, 37-62, 9-40, 58-96,

88-75, 99-77, 108-83, 105-86

Dueling DQN

20-21, 34-35, 72-73, 109-110, 46-27,

1015.0417-27, 54-43, 62-49, 37-62, 9-40,

58-96, 88-75, 99-77, 108-83, 105-86

53

Similar to the other test cases, rewards increase over time, indicating agent learning,

and DQN converges faster than dueling DQN. DNR results for a single operating hour

are given in Table 3.4.

Figure 3.8: The mean daily rewards (top) and its 60-step moving average (bottom)
for 136-node system during training

3.5.6 Sensitivity Analysis

To investigate the effect of selecting a different number of actions on the results,

simulations are repeated with various sizes of action sets. The results are presented in

Figs. 3.9–3.11. It can be observed from Fig. 3.9 that increasing the action space size

from 200 to 500 does not have much impact on the rewards obtained in the 33-node

54

Table 3.4: Tie switches of the DNR result for a single hour in 136-node system

Algorithm Tie Switches System Loss [kW]

DQN

47-62, 89-90, 105-106, 134-135,

288.84

46-27, 7-73, 9-24, 15-83, 25-51,

50-96, 55-98, 66-79, 79-131, 84-135,

91-104, 90-129, 92-104, 92-132,

96-120, 126-76, 128-77, 135-98

Dueling DQN

31-35, 48-51, 89-90, 106-107,

294.33

7-73, 9-24, 15-83, 50-96, 55-98,

62-120, 66-79, 79-131, 84-135,

91-104, 90-129, 92-104, 92-132,

96-120, 126-76, 128-77, 135-98

system. However, choosing a much smaller action space (e.g. 100) significantly reduces

the obtained rewards. Therefore, it can be concluded that the most optimal actions

are within the first batch of 200 actions.

Figure 3.9: 60-step moving average of daily rewards for 33-node system with various
number of actions

In the 119-node test system, action space sizes of 200, 400, 600, and 800 obtain

55

similar rewards. However, increasing the size to 1000, significantly improves the

obtained rewards. This indicates that the most optimal actions lie within the initial

batch of 1000 actions. In the 136-node system, action-space sizes of 200–1000 all

obtain similar rewards, since the best actions are within the first batch of 200 actions.

Figure 3.10: 60-step moving average of daily rewards for 119-node system with various
number of actions

Figure 3.11: 60-step moving average of daily rewards for 136-node system with various
number of actions

56

To show the robustness of the proposed method under extreme load fluctuation

events, the load values are intentionally changed to significantly deviate from the

average load on which the RL algorithms were trained. For this purpose, the standard

deviation of these loads is set at 35% of the previous average loads. The system loss

and minimum system voltage in this case are shown in Figs. 3.12–3.14 for the 33-, 119-

and 136-node systems, respectively. Comparing the obtained results with the base case

where there is no DNR in the system reveals that, using DQN and dueling DQN, the

loss is lower and the voltage is higher, and the agent chooses the actions that minimize

the system loss and improve the voltage profile. In the 119- and 136-node test systems,

the dueling DQN sometimes chooses actions that are not optimal. Therefore, it can

be concluded that DQN is more robust to unforeseen states or extreme events.

Figure 3.12: RL agent’s response to unforeseen loads in the 33-node system

57

Figure 3.13: RL agent’s response to unforeseen loads in the 119-node system

Figure 3.14: RL agent’s response to unforeseen loads in the 136-node system

58

3.5.7 Comparative Study

In this section, the computational speed of the proposed method and the optimality of

its results are compared with published results obtained using the switch opening and

exchange (SOE) [112], mathematical programming (MP) methods (which encompass

mixed-integer linear and mixed-integer nonlinear programming) [112], adaptive ant

colony optimization (AACO) method [88], GA [12], MIQP [3], and two RL methods

including BCSAC [25] and NoisyNet DQN [95]. The DNR execution times of all these

methods are given in Table 3.5. As can be inferred from this table, the execution

times for DQN and dueling DQN are quite similar, and both are significantly faster

compared to other non-RL methods in the 136-node system, with a speed improvement

factor of at least twenty. The efficiency of the RL algorithms becomes even more

important as the system size increases. The offline training times for DQN and dueling

DQN algorithms are given in the last row of the same table. Training was carried out

on a system with an Intel i9-9820X 3.30GHz CPU and 100 GB of RAM.

Table 3.5: Computational Speed Comparison

Algorithm
Execution Time [s]

33 bus 119 bus 136 bus

DQN 0.21 0.88 0.78

Dueling DQN 0.21 0.88 0.79

BCSAC [25] 0.4 2.2 -

NoisyNet DQN [95] 0.48 − −

SOE [112] 1 12.3 16.9

MIQP [3] 3.2 39.4 188.4

AACO [88] 0.3 430.74 894.20

MP [112] 19 4007 1236

Approximate RL
Training Time

15145 45454 53000

59

Finally, the optimality of the results obtained by the proposed method is compared

with other published results in Table 3.6. As can be seen, the results for the small

33-node system are within only 0.3% optimality gap of the best solution presented

in the literature and the maximum optimality gap that occurs for the 119-node

system is only 10.58%. In heuristic methodologies, adherence to system constraints

is ensured by imposing large penalties when they are violated. As a consequence,

these methods occasionally find solutions that effectively minimize the objective

function; nonetheless, their feasibility may be compromised. Such challenges are

often encountered in solutions documented in the existing literature. Conversely, the

results obtained by the approach proposed in this study do not exhibit any constraint

violations.

Table 3.6: Loss and Minimum Voltage Comparison by Different Methods

Algorithm

Test System

33-node 119-node 136-node

loss voltage loss voltage loss voltage

DQN 140.70 0.94 958.90 0.93 285.34 0.96

Dueling DQN 139.98 0.94 954.62 0.93 286.32 0.96

SOE [112] 139.55 0.94 853.58 0.93 280.94 0.96

MIQP [3] 139.55 0.94 871.23 0.93 261.97 0.96

AACO [88] 139.55 0.94 865.86 0.93 279.75 0.96

MP [112] 139.55 - 853.58 - 280.14 -

No DNR 202.68 0.91 1298.09 0.87 320.36 0.93

Optimality Gap 0.3% 10.58% 1.95%

60

3.6 Conclusion

This study employed a Markov decision process as a modeling technique for the DNR

problem and leveraged two RL algorithms, namely DQN and dueling DQN, to tackle

the problem. First, the feasible action space for DNR was obtained using the Yamada-

Kataoka-Watanabe algorithm. Then, a powerflow-based action sampling method

was applied to reduce the size of the action space. This was done to facilitate faster

convergence of the RL algorithms and optimize the results. The proposed method

was applied to 33-, 119-, and 136-node test systems to demonstrate its scalability.

The results indicated that the learning performances of DQN and dueling DQN are

very similar. However, DQN has faster convergence. In addition, comparison with

conventional methods proved that the proposed RL-based method is at least 20-times

faster and that the obtained results are within a maximum 10.58% optimality gap of

the best solution presented in the literature. This demonstrated that the proposed

powerflow-based action space sampling method was effective and it only chose the

most optimal actions. Future studies will focus on implementing the same method for

semi-open lines to increase the electric vehicle hosting capacity and balance network

loads.

61

Chapter 4

Explainable Reinforcement
Learning for Distribution Network
Reconfiguration

4.1 Abstract

Reinforcement learning methods have been successful in tackling a wide variety of

control problems, owing to their remarkable ability to make fast decisions and learn

effectively from data. Nevertheless, the lack of transparency regarding the decision-

making process has resulted in a significant dearth of trust towards these models,

subsequently limiting their utilization in critical decision-making applications. The

use of reinforcement learning in distribution network reconfiguration is an inherently

sensitive application due to the need to change the states of the switches, which

can significantly impact the lifespan of the switches. Consequently, executing this

process requires meticulous and deliberate consideration. This study presents a

new methodology to analyze and elucidate reinforcement learning-based decisions in

distribution network reconfiguration. The proposed approach involves the training of

an explainer neural network based on the decisions of the reinforcement learning agent.

The explainer network receives as input the active and reactive power of the buses at

each hour and outputs the line states determined by the agent. To delve deeper into

the inner workings of the explainer network, attribution methods are employed. These

62

techniques facilitate the examination of the intricate relationship between the inputs

and outputs of the network, offering valuable insights into the agent’s decision-making

process. The efficacy of this novel approach is demonstrated through its application

to both the 33- and 136-bus test systems, and the obtained results are presented.

4.2 Introduction

In the realm of machine learning, particularly in the context of reinforcement learning

(RL), a significant concern arises from the opacity of decision-making processes. It is

not uncommon for individuals to harbor reservations and a lack of trust in machine

learning models, largely due to the inherent difficulty of understanding how and why

these models arrive at their decisions. The complexity of these algorithms often creates

a black box effect, leaving users and stakeholders questioning the reliability and fairness

of the results [18]. Consequently, there is a growing imperative to demystify and shed

light on these methods, as explaining the inner workings of machine learning models

can significantly improve their trustworthiness and acceptance in critical domains [36].

To this end, Bellotti et al. [8] develop a framework consisting of three types of

data analysis (including episode timeline, frame by frame, and aggregated statistical

analysis) to quantitatively interpret the actions of an autonomous driving agent trained

through deep RL in a highway-env simulation environment. Yun et al. [111] introduce

an explainable multi-agent deep RL method, called decomposed multi-agent deep

Q-network (DMADQN), which utilizes an analytical manufacturing system model to

decompose the energy management objective and production requirement to the agent

level. This results in interpretable actions and reduced energy costs in controlling

a section of an automotive assembly line. Policy-guided RL is used by Yang et

al. [108] to interpret the intent in multi-turn dialogue by identifying interpretable

paths of inference based on specific characteristics of the dialogue text. To explain

the actions of the RL agent in power system emergency control, Zhang et al. [113]

propose a backpropagation deep explainer based on Shapley additive explanations. It

63

quantifies the importance of input features and incorporates feature classification and

probabilistic analysis for improved clarity. Gjærum et al. [30] examine and analyze

various methods for constructing model trees, which serve as surrogate models to

explain real-time decision-making processes of deep RL agents in robotic tasks.

In addition to these studies, explainable RL has been used for various other

applications. One such application is mixed-mode ventilation in the tropics, where

it helps uncover novel insights for enhanced ventilation control [17]. Furthermore,

explainable RL has found application in recommendation systems by providing tangible

paths and the underlying reasoning behind the recommendations [89]. Finally, it has

been employed to explain the rationale behind RL decisions in automating docking

procedures on fully actuated vessels [61], autonomous navigation for unmanned aerial

vehicles [33], and the behavior of dopamine neurons [9].

RL has emerged as a new technique for solving complex optimization problems, such

as distribution network reconfiguration (DNR) [41, 115]. It has proven to be beneficial

in this domain due to its speed, model-free nature, and ability to provide near-optimal

solutions. DNR is known to be an NP-hard mixed integer nonlinear problem [117],

making it particularly challenging to solve for traditional optimization methods. These

methods often struggle to find good solutions and suffer from slow computation

times. In contrast, RL leverages its ability to learn and adapt through trial and error,

enabling it to efficiently explore the problem space and discover effective reconfiguration

strategies. By leveraging its speed and model-free nature, RL offers a promising avenue

for addressing the challenges posed by DNR and obtaining high-quality solutions. To

this end, the batch-constrained soft actor-critic RL algorithm is employed by Gao et

al. [25] to learn DNR strategies from a finite historical operational dataset. The DNR

problem has also been addressed using deep Q-learning (DQN) [52] and NoisyNet

DQN [95]. An RL-based online DNR scheme is developed by Oh et al. [73] which

alters the network’s configuration to adjust power flow and address reliability issues

in self-sufficient distribution networks with high variability in distributed renewable

64

energy. A multi-agent soft actor-critic method is used by Wu et al. [104] to reconfigure

distribution networks during extreme events, enabling critical service restoration

through the formation of isolated sections within the distribution network. Other

studies include an RL-based multilevel dynamic reconfiguration method in a cloud-

edge collaboration architecture [46], a three-stage deep RL-based method to find the

optimal reconfiguration and set points of distributed generators in real-time operation

[10], and a DQN-based method to increase the reliability of the distribution network

by reducing the failure rate [63].

Although numerous studies have explored the application of RL in DNR scenarios,

an intriguing research gap exists: no previous study has presented a comprehensive

approach to investigate the underlying logic behind RL agents’ decision-making in

DNR. To bridge this gap, this study introduces a novel methodology that involves

generating a dataset based on the decisions made by the RL agent, which is then used

to train an additional neural network called the explainer network. The explainer

network takes the system state as its input and outputs the agent’s decisions. In

the next step, three distinct attribution methods, named Gradient*Input, Occlusion

analysis, and Smoothgrad, are used to explain the relationship between the inputs

and outputs of this explainer network. Using this approach, a deeper understanding

can be achieved of the decision-making logic behind RL agents performing DNR. The

main contributions of this study are as follows:

• Formulation, for the first time, of a new approach to explain actions of RL

agents in various DNR scenarios;

• Development of an explainer network trained on RL agents’ actions and corre-

sponding states of the system;

• Examination of three different attribution methods to find the relationship

between the explainer network’s inputs and outputs, and to explain RL agents’

actions.

65

This chapter is organized in four sections. Section 4.3 formualtes the addressed

problem. The simulation results are presented and discussed in Section 4.4. Concluding

remarks are given in Section 4.5, along with possible directions for future work.

4.3 Problem Formulation

This section presents a comprehensive description of the proposed method, offering a

detailed explanation of the actions taken by the DNR agent. Furthermore, it provides

a concise, yet informative overview of the methodologies employed throughout the

process.

4.3.1 Foundations of RL in DNR

Every RL problem consists of an agent and an environment. The agent receives a

reward for every action it performs in the environment, which is an indication of how

good that action was. The agent’s goal is to select actions that result in the highest

rewards. In the DNR problem, the actions are the opening and closing of various lines,

and the reward is the negative of line losses. This process results in the minimization

of line losses. In addition, the agent receives a highly negative reward for violating any

of the system constraints such as the voltage and demand balance constraints. The

agent selects its actions based on the system state. In the DNR problem, the state of

the system consists of the active and reactive power of the buses and the state of the

lines. The DNR agents used in this study are trained using the DQN algorithm as

it was concluded in [26] that DQN algorithm exhibits superior performance in DNR

tasks.

4.3.2 General Structure

To provide a comprehensive understanding of the DNR agent’s actions, a meticulous

process is followed. It begins with the creation of a dataset that encompasses the

active and reactive power of the buses, together with the configuration suggested

66

by the DNR agent for the specific loading condition. Subsequently, a deep neural

network is trained using the active and reactive power of the buses as input and the

line states as the desired output. It should be noted that certain lines within the

system remain unchanged (e.g., the first line after the substation) and, therefore,

they are deliberately excluded from the output. This neural network is called the

explainer network throughout this study. For a visual representation of the proposed

neural network, refer to Fig. 4.1. When this neural network is trained, the intricate

relationship between the active and reactive power of the buses and the proposed

configuration of the DNR agent is revealed.

It is important to highlight that the explainer network’s structure in this study

significantly differs from that of the RL agent’s deep neural network. In the RL agent’s

network, the output consists of action values, each corresponding to a specific action

within a predefined action space. However, these actions are defined in a closed format,

restricting direct access to the individual open/close states of each line involved in an

action. For instance, in ’action 1’, lines 33 and 36 are opened, while the remaining lines

are closed, but the specific states of each line within this action cannot be individually

accessed or modified. This limitation makes the RL agent’s deep neural network

unsuitable to be utilized as an explainer network in this study.

Figure 4.1: Structure of the explainer network

67

Attribution methods are considered among the most crucial explanation techniques

for machine learning models. These methods play an important role in assigning attri-

bution scores to individual input dimensions. These scores determine the contribution

of each input element towards generating a specific output. By providing insights

into the relative importance of different inputs, attribution methods help understand

the intricate workings of machine learning models. Three of the most commonly

used attribution methods are Gradient*Input, Occlusion analysis, and Smoothgrad

methods.

After successfully training the explainer network, the mentioned attribution methods

are leveraged to elucidate the relationship between the line states and the active and

reactive power input. This comprehensive analysis uncovers the specific dependencies

between line states and the active/reactive power originating from individual buses.

The application of these attribution methods yields attribution scores, which can be

effectively visualized using a heatmap, facilitating a more intuitive comprehension of

the results. The workflow outlining this innovative approach is depicted in fig. 4.2.

Figure 4.2: Steps of the proposed approach for explainable RL in DNR

68

4.3.3 Attribution Methods

Gradient*Input method is a fast and simple method to explain neural network models

that are differentiable. Every differentiable function has a gradient which is a vector

composed of the partial derivatives of the function with respect to each of its dimensions.

The gradient provides information about how this function changes at any point when a

small step is taken in any direction within the d-dimensional input space. Additionally,

it indicates the direction in which the function will experience the greatest increase.

Thus, when the gradient of the neural network model to a specific input is high, it

means that small changes in that input will result in large changes in the output. In

the Gradient*Input method, the gradient of the output with respect to each of the

inputs is multiplied by the input value. This way, the gradient shows the importance

of each input and the input value represents how strongly this input is expressed for a

given data.

To find the importance of each input in Occlusion analysis, the model is assessed

by excluding that specific input and noting the resulting alterations in the output.

However, in machine learning, the models are trained over a specific data distribution,

therefore, the changes in the input data distribution might result in an arbitrary output.

As a result, in this study, different levels of change in input values are analyzed.

The Smoothgrad method aims to provide a smoother and more interpretable

visualization of feature importance by reducing noise and emphasizing salient regions.

In this method, the input data are perturbed multiple times by adding noise, and the

gradients of the output with respect to the perturbed input are recorded and averaged

over the number of perturbations. The averaging process reduces random noise and

highlights consistent patterns. As can be inferred, this method has two important

parameters which are the noise value and the number of samples. According to [84],

10%-20% noise level and a sample size of around 50 shows the best performance.

69

4.4 Results and Discussion

The proposed method was successfully applied to the 33- and 136-bus systems. How-

ever, to ensure clarity and a thorough understanding of the results, a more detailed

explanation is provided for the 33-bus system. A schematic diagram of this system

with labeled line numbers is shown in Fig. 4.3. This focused examination sheds light

on the specific nuances, patterns, and implications that emerged during the analysis of

this system. By emphasizing the findings of this particular system, we aim to facilitate

a more comprehensive understanding of the capabilities of the proposed method and

the insights gained from its application. The explainer network used in both systems

consists of two hidden layers with 512 neurons in the first layer and 256 neurons in the

second. The learning rate of Adam optimizer in both networks is 10−5. The activation

function for the last layer is Sigmoid while for other layers it is ReLU.

Figure 4.3: Single line diagram of the 33-bus system and its line numbers in red

70

4.4.1 33-Bus System

The RL agent employed to optimize DNR in this system underwent rigorous training,

incorporating a dataset comprising 200 feasible actions. For more information on this

approach and training results, see our previous study [26]. The dashed lines in the

diagram of Fig. 4.3 represent the lines that undergo status changes. The proposed

explainer network was trained considering the status of these tie lines as its output.

The binary cross-entropy (BCE) loss of this network during the training process is

depicted in Fig. 4.4. The graph clearly shows a consistent downward trend, which

serves as compelling evidence of a highly effective training procedure. This decreasing

pattern signifies that the explainer network has progressively improved its performance,

steadily reducing the errors encountered during the training process. Thus, it can be

concluded that the training of this neural network has been remarkably successful.

Figure 4.4: BCE loss of the 33-bus explainer network over training

In this study, the effectiveness of the proposed method is assessed by analyzing

three distinct time periods, namely high consumption, average consumption, and low

consumption within a 24-hour interval. Conducting the evaluations hourly would be

an arduous task, as numerous heatmaps would need to be generated for each hour.

Taking into account the space constraints of this thesis, it is impractical to include

such a voluminous amount of data. The output of the explainer network for the

71

24-hour duration was carefully analyzed, ensuring that every prediction was accurate,

ultimately yielding a zero BCE loss. As the load patterns tend to remain consistent

from day to day, this approach can be considered sufficient.

The total active and reactive power consumptions for the 24-hour interval are given

in Fig. 4.5. Based on the data presented in the figure, it is evident that hour 17

exhibits the highest consumption rate, while hour 12 reflects an average consumption

level, and hour 5 has the lowest consumption during the specified period. The status

of the tie lines for the 24-hour interval is visualized in Fig. 4.6, employing a barplot

for better comprehension. The y-axis represents the line numbers, and the open lines

are signified using a dark blue color.

Figure 4.5: Total active and reactive power consumption of the 33-bus system in 24
hours

The 24-hour boxplot in Fig. 4.7 provides valuable insight into the active and reactive

power of the 33-bus system. This visual representation allows easier identification of

buses that exhibit significant variations in their active and reactive power levels. Buses

with pronounced fluctuations in their power profiles can be recognized by examining

this figure. Eventually, the heat maps depicted in Figs. 4.8 and 4.9, respectively,

provide a comprehensive visualization of the active and reactive power consumption

at every hour across all bus locations.

72

Figure 4.6: Bar plot representing open and closed lines in the 33-bus system during
24 hours

First, the highest consumption hour, hour 17, is given to the explainer network. Fig.

4.10 illustrates the heatmap of the attribution scores generated by the Gradient*Input

method. Notably, on the x-axis, the first set of numbers (ranging from 2 to 33)

represents the active power of the corresponding buses, while the second set of

numbers represents the reactive power of the buses. Observing the heatmap, it

becomes evident that lines 32, 36, and 37 are most reliant on the reactive power of bus

30 when employing this method. However, it is important to note that, despite being

the highest value in the heatmap, this dependency is still extremely low and almost

negligible. Consequently, it can be inferred that no significant changes occurred in the

system as a result of the consumption variation during this hour. In fact, a careful

examination of Fig. 4.6 makes it evident that the configuration of the system between

hours 15 and 18 remains the same.

Based on the Occlusion analysis, only decreasing the reactive power of bus 30

by 90% will alter the line states and trigger the opening of lines 6, 10, and 36,

73

Figure 4.7: Active (top) and reactive (bottom) power consumption boxplot for the
33-bus system in 24 hours

while simultaneously causing the closure of lines 7 and 32. The attribution scores

generated by the Smoothgrad method are depicted as a heatmap in Fig. 4.11 and show

similar results as the Gradient*Input method. Akin to the Gradient*Input method,

the heatmap illustrates that even the highest value recorded remains close to zero,

emphasizing that dependencies observed in this hour are negligible.

The heatmaps illustrating the results of the Gradient*Input and Smoothgrad

methods for the average consumption period can be observed in Fig. 4.12 and Fig.

4.13, respectively. As can be seen, none of the lines exhibit sensitivity to variations in

the active and reactive power of the buses. In Occlusion analysis, even reducing the

input values to zero does not change the output at this hour.

Finally, the heatmaps for the Gradient*Input and Smoothgrad methods during the

74

Figure 4.8: Heatmap representing the active power consumption in the 33-bus system
during 24 hours

low consumption period are given in Fig. 4.14 and Fig. 4.15, respectively. According

to Fig. 4.14, the Gradient*Input method indicates that all lines have the highest

reliance on the reactive power of bus 30. They also have some dependence on the

active power of buses 32 and 25. On the other hand, based on the Smoothgrad results

given in Fig. 4.15, lines 25, 26, 28, 32, 36 highly depend on the reactive power of bus

30. In addition, this method reveals that line 15 also has some dependence on the

reactive power of bus 30. It should be noted that lines 25, 26, 28, 32, and 36 also

exhibit a certain level of dependence on the active power of bus 32.

Through occlusion analysis, it becomes apparent that altering the reactive power

of bus 30 by 50% exclusively affects the states of the lines. Moreover, if the input

values are decreased by 60%, only the variations in the active power of buses 23 and

30 and the reactive power of bus 30, will alter the original output. Modifying the

75

Figure 4.9: Heatmap representing the reactive power consumption in the 33-bus
system during 24 hours

Figure 4.10: Heatmap representing the scores obtained by the Gradient*Input method
during high consumption hour in the 33-bus system (numbers 2-33 on the left represent
active power and the numbers on the right represent reactive power of the buses)

active power of buses 22, 23, 30, and the reactive power of bus 30 by 70% results in

an alteration of the output. Finally, when setting the inputs to zero individually, only

76

Figure 4.11: Heatmap representing the scores obtained by the Smoothgrad method
during high consumption hour in the 33-bus system (numbers 2-33 on the left represent
active power and the numbers on the right represent reactive power of the buses)

Figure 4.12: Heatmap representing the scores obtained by the Gradient*Input method
during average consumption hour in the 33-bus system (numbers 2-33 on the left
represent active power and the numbers on the right represent reactive power of the
buses)

the active power of buses 6, 22, 23, 30, along with the reactive power of bus 30, affect

the line states.

Figure 4.16 illustrates the structure of the system in the three distinct time periods.

A notable observation is that the system’s structure remains largely consistent between

the high- and average-consumption periods, indicating minimal dependence on any

specific input. Consequently, the attribution scores associated with these periods were

nearly negligible. However, during the low consumption hour, the system structure

deviates significantly, which explains the significant attribution scores obtained during

77

Figure 4.13: Heatmap representing the scores obtained by the Smoothgrad method
during average consumption hour in the 33-bus system (numbers 2-33 on the left
represent active power and the numbers on the right represent reactive power of the
buses)

Figure 4.14: Heatmap representing the scores obtained by the Gradient*Input method
during low consumption hour in the 33-bus system (numbers 2-33 on the left represent
active power and the numbers on the right represent reactive power of the buses)

this time.

An analysis of the system’s structure under the highest possible load condition

reveals that the network’s configuration during hour 17 proves to be the most opti-

mal configuration. Consequently, this finding elucidates why the attribution scores

were considerably low, as there exists no alternative optimal configuration for the

system. Regardless of the increase in consumption, the network configuration remains

unchanged.

Finally, to ascertain the effectiveness of the proposed method, a critical evaluation

78

Figure 4.15: Heatmap representing the scores obtained by the Smoothgrad method
during low consumption hour in the 33-bus system (numbers 2-33 on the left represent
active power and the numbers on the right represent reactive power of the buses)

is conducted at hour 14, just before the system undergoes a transition into a high-load

configuration. The Occlusion analysis shows that the active power of buses 25 and 32

and the reactive power of bus 30 have the highest impact on line states. Additionally,

the attribution scores obtained by the Gradient*Input and Smoothgrad methods are

illustrated in Fig. 4.17 and Fig. 4.18, respectively. According to the Smoothgrad

method, which is more reliable, line 6 depends the most on the active power of bus 25

and the reactive power of bus 30. Additionally, line 32 depends on the reactive power

of bus 30 and the active power of bus 25. Lines 36 and 37 also show some reliance on

these buses.

To combine the results from the three attribution methods, the Smoothgrad method

is repeated multiple times by varying the sample size from 25 to 200 and the noise level

from 5% to 25% and the attribution scores are averaged. Furthermore, the results of

the occlusion analysis are translated into scores. For instance, if altering input i by 30%

affects output j, a score of 0.7 is given to the score map between input i and output j.

The scores from Gradient*Input, Smoothgrad, and Occlusion methods are brought to a

same scale by normalizing the values to be between -1 and 1. Subsequently, a weighted

average of these normalized scores is calculated. In this computation, the Smoothgrad

and Occlusion analysis methods are deemed more reliable, and therefore, assigned a

79

Figure 4.16: 33-bus system structure in high, average and low power consumption
times

higher weight of 2 each. On the other hand, the Gradient*Input method is allocated a

weight of 1 as it is considered less reliable [5]. This weighting rationale stems from the

observation that the Gradient*Input method can occasionally yield noisy outcomes by

capturing minor fluctuations. Moreover, the attribution scores from Gradient*Input

80

Figure 4.17: Heatmap representing the scores obtained by the Gradient*Input method
during hour 14 in the 33-bus system (numbers 2-33 on the left represent active power
and the numbers on the right represent reactive power of the buses)

Figure 4.18: Heatmap representing the scores obtained by the Smoothgrad method
during hour 14 in the 33-bus system (numbers 2-33 on the left represent active power
and the numbers on the right represent reactive power of the buses)

tend to be less stable in comparison to methods like Smoothgrad, which employs

smoothing techniques to create more consistent scores. Additionally, the Occlusion

analysis facilitates more interpretable results by systematically eliminating features

to assess their impact, thereby simplifying the interpretation and justification of the

outcomes. The final scores for minimum load and transition to high load condition are

illustrated in Fig. 4.19 and Fig. 4.20, respectively. Based on this, the logic behind the

DNR agent’s decisions for the 33-bus system can be summarized as shown in Table

4.1.

81

Figure 4.19: Heatmap representing the final scores by combining the result of three
attribution methods during low consumption hour in the 33-bus system (numbers 2-33
on the left represent active power and the numbers on the right represent reactive
power of the buses)

Figure 4.20: Heatmap representing the final scores by combining the result of three
attribution methods during hour 14 in the 33-bus system (numbers 2-33 on the left
represent active power and the numbers on the right represent reactive power of the
buses)

Table 4.1: Operational Strategies of the DNR Agent in the 33-Bus System

Time Action Explanation

Peak load (h=17) Line states do not change in response to small variations in bus loads.

Transition to high-load
condition (h=14)

Line states change mainly in response to variations in
active power of buses 25, 30, 31, 32 and the reactive power of bus 30.

Average load (h=12) Line states do not change in response to small variations in bus loads.

Minimum load (h=5)
Line states change mainly in response to variations in

active power of buses 24, 25, 32 and the reactive power of bus 30.

82

4.4.2 136-Bus System

The BCE loss of the explainer network for the 136-bus system, illustrated in Fig. 4.21,

significantly decreases during the training process, indicating a successful learning.

Similarly to the 33-bus system, a 24-hour interval is selected for analysis, focusing

first on evaluating the performance during the peak-load hour using the proposed

approach. The 24-hour active and reactive demand are illustrated in Fig. 4.22. Due

to the extensive number of inputs in this system, totaling 270 (comprising active and

reactive power), it is not feasible to visually represent the results using a heatmap for

this particular test system. Consequently, only the most significant observations are

presented here.

Figure 4.21: BCE loss of the 136-bus explainer network over training

During the highest load condition, both the Gradient*Input and Smoothgrad

methods yield zero attribution scores. Furthermore, through Occlusion analysis, it was

determined that setting any individual input value to zero would have no impact on the

system’s output. These findings were also consistent across the average consumption

hours.

During the low-demand hour, Gradient*Input method indicates that line 155 exhibits

a minor dependency on the active power of bus 105. However, this dependence is

extremely insignificant and almost zero. Through occlusion analysis, it is revealed

83

Figure 4.22: Total active and reactive power consumption of the 136-bus system in 24
hours

that the active power of buses 34 and 105, as well as the reactive power of buses 80

and 105, play a role in the line states. Moreover, employing the Smoothgrad method,

it has been determined that various lines, specifically lines 2, 51, 54, 62, 75, 99, 119,

136, 140, 141, 142, 143, and 154, exhibit a dependency on the active power of bus 105.

These line numbers are colored red in Figure 4.23.

Finally, the last hour before the high-demand period (hour 14) is analyzed. The

application of the Gradient*Input method failed to reveal any notable patterns or

insights. However, through Occlusion analysis, it was discovered that the output

exhibits changes solely in response to variations in the active power of bus 105. This

finding highlights the pivotal role played by bus 105’s active power in driving alterations

in the output. Furthermore, applying the Smoothgrad method, it was determined

that lines 49 and 54 are particularly dependent on the active power of bus 105, further

emphasizing its significance in shaping the outcome. By combining the results from

three attribution methods, the logic behind the DNR agent’s decisions for the 136-bus

system is summarized in Table 4.2.

84

Figure 4.23: 136-bus system with lines numbers

Table 4.2: Operational Strategies of the DNR Agent in the 136-Bus System

Time Action Explanation

Peak load (h=16) Line states do not change in response to small variations in bus loads.

Transition to high-load
condition (h=14)

Line states change mainly in response to variations in
active power of buses 62, 105 and the reactive power of buses 74, 134.

Average load (h=12) Line states do not change in response to small variations in bus loads.

Minimum load (h=5)
Line states change mainly in response to variations in

active and reactive power of bus 105.

4.5 Conclusion

This study describes a novel approach to explain the decisions made by an RL agent

for DNR. The proposed methodology involves training an explainer neural network

that takes the active and reactive power of the buses as input and the line states

determined by the DNR agent as output. Next, three different attribution methods are

85

used to explain the relationship between the inputs and outputs of this network. This

approach was applied to the 33- and 136-bus test systems. The results demonstrate

that the reactive power of bus 30 and the active power of bus 105 play a crucial role

in determining the line states in the 33- and 136-bus systems, respectively.

The knowledge gained from this study can be applied to optimize power grid

operations and improve grid stability and efficiency. By identifying key factors that

influence the state of the lines, power grid operators can make informed decisions during

different demand scenarios, leading to more effective and reliable power management.

Additionally, this technique is scalable and can be applied to any test system.

Possible future directions for this study include dynamic analysis and examining

how the importance of input features and their relationships change over time. This

dynamic perspective would be particularly relevant in the context of managing power

systems where conditions constantly change. Additionally, integrating the explainer

neural network into the RL agent’s training process is a promising future direction.

By doing so, the RL agent can potentially benefit from the insights gained from the

explainer network, leading to improved performance and interpretability.

86

Chapter 5

Conclusion and Future Work

5.1 Conclusion

In conclusion, this research endeavors to address the limitations in the field of dis-

tribution network reconfiguration (DNR) optimization by harnessing the potential

of reinforcement learning (RL). The existing studies in this area lack comprehensive

analysis, scalability, and flexibility, which motivates this research to develop a flexible

RL framework for DNR. By applying RL to DNR, power system operators can leverage

RL’s learning capabilities to expedite reconfiguration execution and avoid the DNR’s

NP-hard optimization problem without using any simplifications for radiality and

AC power flow constraints, thus, potentially contributing to improved efficiency and

reliability in power system operations.

The key objectives of this research have been successfully achieved through three

insightful studies. In the first study, we formulated the DNR problem as a Markov

decision process. The state of the system was defined as the active and reactive power

consumption at system buses and the line states while the actions were defined as the

opening or closing of each line. Next, we developed an algorithm capable of identifying

the feasible actions within the distribution network, addressing the challenge posed by

the vast switching action space in power systems. The introduction of a new deep

Q-learning-based action reduction method demonstrated promising results in terms of

convergence and optimality. This study also performed a comparative analysis of five

87

RL algorithms for DNR, highlighting their respective strengths and capabilities. It was

found that deep Q-learning and dueling deep Q-learning have the best performance in

terms of optimality of the obtained solutions while the soft actor-critic method has

the fastest convergence.

The second study contributed to the advancement of RL-based DNR by proposing

a generalized deep RL model and a new power flow-based action space sampling

method. A graph theory-based algorithm named Yamada-Kataoka-Watanabe was

utilized to find significantly more feasible actions in the 33-, 119-, and 136-bus test

systems. Using this approach, it was discovered that the DNR agent successfully

found solutions with optimality gaps of only 0.3%, 10.58%, and 1.95% for the 33-,

119-, and 136-bus test networks, respectively. Additionally, comparing the proposed

RL method with traditional methods for DNR revealed that the RL-based method

had at least 20 times faster execution time.

Furthermore, the third study tackled the inherent opacity of RL algorithms, which

can lead to skepticism and mistrust among users. By developing an explanation model

for the RL agents’ decision-making process, this research enhanced the interpretability

and trustworthiness of RL-based control in DNR. The proposed explanation approach

involved training of an explainer neural network based on the actions of the trained

DNR agent as its output and the active and reactive system loads as the input. In

the next step, three attribution methods were used to assign importance scores to

each input and explain the relationship between the explainer network’s inputs and

outputs. This method was applied to the 33- and 136-bus test systems and it was

found that the reactive power of bus 30 had a crucial role in determining the 33-bus

network’s configuration. In the 136-bus system, the active power of bus 105 was

the most important factor in changing network’s configuration. The insights gained

from this study have the potential to optimize power grid operations, improve grid

stability, and facilitate effective decision-making during different demand scenarios.

By recognizing crucial elements that impact the condition of the lines, power grid

88

operators can make well-informed choices in response to various demand situations,

resulting in more efficient and dependable power management. Moreover, this method

is adaptable and can be implemented in any test system.

In summary, the motivation and main contributions of each study are as follows:

Research Study 1: “A Comparative Study of Reinforcement Learning

Algorithms for Distribution Network Reconfiguration with Deep Q-learning-

based Action Sampling”

Motivation: No previous study presented a comprehensive comparison of RL

algorithms for DNR. Additionally, no prior research has introduced an approach to

reduce the action space size in DNR.

Contributions: A new DQN-based method was developed to reduce the size of

the action space for RL in DNR. The performance of five on-policy and off-policy RL

algorithms were tested and compared for the DNR problem.

Research Study 2: “A Generalised Deep Reinforcement Learning Model

for Distribution Network Reconfiguration with Powerflow-based Action

Space Sampling”

Motivation: The feasible action space size in a DNR problem is very large.

Although a method was developed in our previous study to reduce the action space

size, the initial sampling of the actions in this method remained largely random. None

of the previous studies, have focused on developing an action space sampling method

for DNR while selecting the most optimal actions.

Contributions: A new method for sampling the action space in DNR problem

was devised which was based on the Yamada-Kataoka-Watanabe algorithm for fea-

sible action extraction and was based on the power flow study for determining the

optimality of each action. A comprehensive sensitivity analysis and comparison with

the traditional methods was conducted at the end of this study.

Research Study 3: “Explainable Reinforcement Learning for Distribution

Network Reconfiguration”

89

Motivation: The inherent opacity in RL agent’s decision making leads to skepticism

and mistrust among users. However, no prior research has studied the explainability

of the RL agent’s decisions in DNR.

Contributions: An explanation model for RL agent’s decisions in DNR was

developed for the first time to understand the logic behind the agent’s decision making

and increase trust.

Collectively, these research studies have made significant contributions to the

application of RL in DNR. The developed flexible RL framework, efficient action

space sampling methods, and the introduction of explanation models have paved

the way for future investigations in the area of RL-based power system optimization.

By addressing the identified limitations and challenges, this research has set a solid

foundation for achieving improved efficiency, reliability, and trust in power system

operations, ultimately benefiting utilities through enhanced power grid management

and operation. As the field of RL continues to evolve, the findings from this research

will remain invaluable for researchers and power system operators alike in their pursuit

of innovative solutions for the dynamic challenges of modern power systems.

5.2 Future Work

Our research successfully addressed several fundamental gaps in applying RL to DNR.

Nevertheless, there remain exciting and promising avenues for future research that

deserve thorough exploration.

• Designing an efficient action space exploration method: In our study,

we tackled the challenge of identifying the action space in the system by finding

the whole feasible action space and sampling from it. Although this approach

identified the most optimal actions in the network, searching for the feasible

action space, especially in the case of large systems like the 119- or 136-bus

systems (containing over 3,500,000 actions), was extremely memory-intensive.

90

This significant memory requirement and computational burden necessitate a

new method to identify optimal actions directly without having to search the

entire feasible action space. Future research could focus on developing innovative

techniques that efficiently find optimal actions for DNR without exhaustive

exploration.

• Integrating explainer neural networks to the RL agent’s training: One

promising future research direction involves integrating the explainer neural

networks into the training process of the RL agent. By making the model’s

decisions more interpretable, explainable RL can help identify which state

features are most influential in making decisions. This information can be used

to simplify the state representation or modify the feature engineering process.

• Developing hybrid RL and metaheuristic algorithms: Combining RL

with metaheuristic algorithms, such as genetic algorithms or particle swarm opti-

mization, could offer a powerful approach for solving large-scale DNR problems

efficiently. This hybridization may leverage the exploration capabilities of RL

while exploiting the optimization strengths of metaheuristic algorithms, leading

to improved convergence and reduced computational burden.

• Transfer learning for DNR: Investigating transfer learning techniques for

DNR could enable leveraging knowledge gained from one distribution network to

improve the learning process on another network. This approach can potentially

accelerate convergence and reduce the data requirements for training RL agents.

• Scalable state representation: Finding an efficient and compact representa-

tion of the distribution network state is essential to handle large-scale systems.

Future research could explore dimensionality reduction techniques or graph-based

embeddings to represent complex networks more efficiently.

By addressing these future research directions, the application of RL to DNR can

91

be further advanced, contributing to more reliable, sustainable, and efficient power

distribution systems.

92

Bibliography

[1] M. Abdelaziz, “Distribution network reconfiguration using a genetic algorithm
with varying population size,” Electric Power Systems Research, vol. 142, pp. 9–
11, 2017, issn: 0378-7796. doi: https://doi.org/10.1016/j.epsr.2016.08.026.

[2] M. Abdelaziz, “Distribution network reconfiguration using a genetic algorithm
with varying population size,” Electric Power Systems Research, vol. 142, pp. 9–
11, 2017, issn: 0378-7796. doi: https://doi.org/10.1016/j.epsr.2016.08.026.

[3] H. Ahmadi and J. R. Mart́ı, “Distribution system optimization based on a
linear power-flow formulation,” IEEE Transactions on Power Delivery, vol. 30,
no. 1, pp. 25–33, 2015. doi: 10.1109/TPWRD.2014.2300854.

[4] P. Akaber, B. Moussa, M. Debbabi, and C. Assi, “Automated post-failure service
restoration in smart grid through network reconfiguration in the presence of
energy storage systems,” IEEE Systems Journal, vol. 13, no. 3, pp. 3358–3367,
2019. doi: 10.1109/JSYST.2019.2892581.

[5] M. Ancona, E. Ceolini, C. Öztireli, and M. Gross, “Gradient-based attribution
methods,” in Explainable AI: Interpreting, Explaining and Visualizing Deep
Learning, W. Samek, G. Montavon, A. Vedaldi, L. K. Hansen, and K.-R.
Müller, Eds. Cham: Springer International Publishing, 2019, pp. 169–191, isbn:
978-3-030-28954-6. doi: 10.1007/978-3-030-28954-6 9.

[6] D. Anteneh, B. Khan, O. P. Mahela, H. H. Alhelou, and J. M. Guerrero,
“Distribution network reliability enhancement and power loss reduction by
optimal network reconfiguration,” Computers & Electrical Engineering, vol. 96,
p. 107 518, 2021, issn: 0045-7906. doi: https://doi.org/10.1016/j.compeleceng.
2021.107518.

[7] A. Azizi, B. Vahidi, and A. F. Nematollahi, “Reconfiguration of active distribu-
tion networks equipped with soft open points considering protection constraints,”
Journal of Modern Power Systems and Clean Energy, vol. 11, no. 1, pp. 212–222,
2023.

[8] F. Bellotti, L. Lazzaroni, A. Capello, M. Cossu, A. De Gloria, and R. Berta,
“Explaining a deep reinforcement learning (drl)-based automated driving agent
in highway simulations,” IEEE Access, vol. 11, pp. 28 522–28 550, 2023.

[9] M. Bertin, N. Schweighofer, and K. Doya, “Multiple model-based reinforcement
learning explains dopamine neuronal activity,” Neural Networks, vol. 20, no. 6,
pp. 668–675, 2007, issn: 0893-6080.

93

https://doi.org/https://doi.org/10.1016/j.epsr.2016.08.026
https://doi.org/https://doi.org/10.1016/j.epsr.2016.08.026
https://doi.org/10.1109/TPWRD.2014.2300854
https://doi.org/10.1109/JSYST.2019.2892581
https://doi.org/10.1007/978-3-030-28954-6_9
https://doi.org/https://doi.org/10.1016/j.compeleceng.2021.107518
https://doi.org/https://doi.org/10.1016/j.compeleceng.2021.107518

[10] V.-H. Bui and W. Su, “Real-time operation of distribution network: A deep
reinforcement learning-based reconfiguration approach,” Sustainable Energy
Technologies and Assessments, vol. 50, p. 101 841, 2022, issn: 2213-1388.

[11] X. Cao, J. Wang, J. Wang, and B. Zeng, “A risk-averse conic model for
networked microgrids planning with reconfiguration and reorganizations,” IEEE
Transactions on Smart Grid, vol. 11, no. 1, pp. 696–709, 2020. doi: 10.1109/
TSG.2019.2927833.

[12] J. C. Cebrian and N. Kagan, “Reconfiguration of distribution networks to
minimize loss and disruption costs using genetic algorithms,” Electric Power
Systems Research, vol. 80, no. 1, pp. 53–62, 2010, issn: 0378-7796. doi: https:
//doi.org/10.1016/j.epsr.2009.08.005.

[13] Q. Chen, W. Wang, H. Wang, J. Wu, X. Li, and J. Lan, “A social beetle swarm
algorithm based on grey target decision-making for a multiobjective distribution
network reconfiguration considering partition of time intervals,” IEEE Access,
vol. 8, pp. 204 987–205 013, 2020. doi: 10.1109/ACCESS.2020.3036898.

[14] Q. Chen, W. Wang, H. Wang, J. Wu, and J. Wang, “An improved beetle
swarm algorithm based on social learning for a game model of multiobjective
distribution network reconfiguration,” IEEE Access, vol. 8, pp. 200 932–200 952,
2020. doi: 10.1109/ACCESS.2020.3035791.

[15] M. Cikan and B. Kekezoglu, “Comparison of metaheuristic optimization tech-
niques including equilibrium optimizer algorithm in power distribution network
reconfiguration,” Alexandria Engineering Journal, vol. 61, no. 2, pp. 991–1031,
2022, issn: 1110-0168. doi: https://doi.org/10.1016/j.aej.2021.06.079.

[16] M. Cui, J. Wang, and M. Yue, “Machine learning-based anomaly detection
for load forecasting under cyberattacks,” IEEE Transactions on Smart Grid,
vol. 10, no. 5, pp. 5724–5734, 2019. doi: 10.1109/TSG.2018.2890809.

[17] X. Dai, S. Cheng, and A. Chong, “Deciphering optimal mixed-mode venti-
lation in the tropics using reinforcement learning with explainable artificial
intelligence,” Energy and Buildings, vol. 278, p. 112 629, 2023, issn: 0378-7788.

[18] P. M. Dassanayake, A. Anjum, A. K. Bashir, J. Bacon, R. Saleem, and W.
Manning, “A deep learning based explainable control system for reconfig-
urable networks of edge devices,” IEEE Transactions on Network Science and
Engineering, vol. 9, no. 1, pp. 7–19, 2022. doi: 10.1109/TNSE.2021.3083990.

[19] R. Dobbe, O. Sondermeijer, D. Fridovich-Keil, D. Arnold, D. Callaway, and
C. Tomlin, “Toward distributed energy services: Decentralizing optimal power
flow with machine learning,” IEEE Transactions on Smart Grid, vol. 11, no. 2,
pp. 1296–1306, 2020. doi: 10.1109/TSG.2019.2935711.

[20] A. M. Eldurssi and R. M. O’Connell, “A fast nondominated sorting guided
genetic algorithm for multi-objective power distribution system reconfiguration
problem,” IEEE Transactions on Power Systems, vol. 30, no. 2, pp. 593–601,
2015. doi: 10.1109/TPWRS.2014.2332953.

94

https://doi.org/10.1109/TSG.2019.2927833
https://doi.org/10.1109/TSG.2019.2927833
https://doi.org/https://doi.org/10.1016/j.epsr.2009.08.005
https://doi.org/https://doi.org/10.1016/j.epsr.2009.08.005
https://doi.org/10.1109/ACCESS.2020.3036898
https://doi.org/10.1109/ACCESS.2020.3035791
https://doi.org/https://doi.org/10.1016/j.aej.2021.06.079
https://doi.org/10.1109/TSG.2018.2890809
https://doi.org/10.1109/TNSE.2021.3083990
https://doi.org/10.1109/TSG.2019.2935711
https://doi.org/10.1109/TPWRS.2014.2332953

[21] J. F. Franco, M. J. Rider, M. Lavorato, and R. Romero, “A mixed-integer lp
model for the reconfiguration of radial electric distribution systems considering
distributed generation,” Electric Power Systems Research, vol. 97, pp. 51–60,
2013, issn: 0378-7796. doi: https://doi.org/10.1016/j.epsr.2012.12.005.

[22] Y.-Y. Fu and H.-D. Chiang, “Toward optimal multiperiod network reconfig-
uration for increasing the hosting capacity of distribution networks,” IEEE
Transactions on Power Delivery, vol. 33, no. 5, pp. 2294–2304, 2018. doi:
10.1109/TPWRD.2018.2801332.

[23] H. Gao et al., “Multi-objective dynamic reconfiguration for urban distribution
network considering multi-level switching modes,” Journal of Modern Power
Systems and Clean Energy, vol. 10, no. 5, pp. 1241–1255, 2022.

[24] Y. Gao, B. Foggo, and N. Yu, “A physically inspired data-driven model for
electricity theft detection with smart meter data,” IEEE Transactions on
Industrial Informatics, vol. 15, no. 9, pp. 5076–5088, 2019. doi: 10.1109/TII.
2019.2898171.

[25] Y. Gao, W. Wang, J. Shi, and N. Yu, “Batch-constrained reinforcement learning
for dynamic distribution network reconfiguration,” IEEE Transactions on Smart
Grid, vol. 11, no. 6, pp. 5357–5369, 2020. doi: 10.1109/TSG.2020.3005270.

[26] N. Gholizadeh, N. Kazemi, and P. Musilek, “A comparative study of reinforce-
ment learning algorithms for distribution network reconfiguration with deep
q-learning-based action sampling,” IEEE Access, vol. 11, pp. 13 714–13 723,
2023. doi: 10.1109/ACCESS.2023.3243549.

[27] N. Gholizadeh and P. Musilek, “A generalized deep reinforcement learning
model for distribution network reconfiguration with powerflow-based action
space sampling,” Journal of Modern Power Systems and Clean Energy, 2023,
under review.

[28] N. Gholizadeh and P. Musilek, “Distributed learning applications in power
systems: A review of methods, gaps, and challenges,” Energies, vol. 14, no. 12,
2021, issn: 1996-1073. doi: 10.3390/en14123654.

[29] N. Gholizadeh and P. Musilek, “Explainable reinforcement learning for distri-
bution network reconfiguration,” Applied Energy, 2023, under review.

[30] V. B. Gjærum, I. Strümke, J. Løver, T. Miller, and A. M. Lekkas, “Model tree
methods for explaining deep reinforcement learning agents in real-time robotic
applications,” Neurocomputing, vol. 515, pp. 133–144, 2023, issn: 0925-2312.

[31] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor, 2018.
doi: 10.48550/ARXIV.1801.01290. [Online]. Available: https://arxiv.org/abs/
1801.01290.

[32] A. Hagberg, P. Swart, and D. S Chult, “Exploring network structure, dynamics,
and function using networkx,” Los Alamos National Lab.(LANL), Los Alamos,
NM (United States), Tech. Rep., 2008.

95

https://doi.org/https://doi.org/10.1016/j.epsr.2012.12.005
https://doi.org/10.1109/TPWRD.2018.2801332
https://doi.org/10.1109/TII.2019.2898171
https://doi.org/10.1109/TII.2019.2898171
https://doi.org/10.1109/TSG.2020.3005270
https://doi.org/10.1109/ACCESS.2023.3243549
https://doi.org/10.3390/en14123654
https://doi.org/10.48550/ARXIV.1801.01290
https://arxiv.org/abs/1801.01290
https://arxiv.org/abs/1801.01290

[33] L. He, N. Aouf, and B. Song, “Explainable deep reinforcement learning for
uav autonomous path planning,” Aerospace Science and Technology, vol. 118,
p. 107 052, 2021, issn: 1270-9638.

[34] A. M. Helmi, R. Carli, M. Dotoli, and H. S. Ramadan, “Efficient and sustainable
reconfiguration of distribution networks via metaheuristic optimization,” IEEE
Transactions on Automation Science and Engineering, vol. 19, no. 1, pp. 82–98,
2022. doi: 10.1109/TASE.2021.3072862.

[35] G. Henri and N. Lu, “A supervised machine learning approach to control
energy storage devices,” IEEE Transactions on Smart Grid, vol. 10, no. 6,
pp. 5910–5919, 2019. doi: 10.1109/TSG.2019.2892586.

[36] A. Heuillet, F. Couthouis, and N. Dı́az-Rodŕıguez, “Explainability in deep
reinforcement learning,” Knowledge-Based Systems, vol. 214, p. 106 685, 2021,
issn: 0950-7051.

[37] H. Hizarci, O. Demirel, and B. E. Turkay, “Distribution network reconfigura-
tion using time-varying acceleration coefficient assisted binary particle swarm
optimization,” Engineering Science and Technology, an International Journal,
p. 101 230, 2022, issn: 2215-0986. doi: https://doi.org/10.1016/j.jestch.2022.
101230.

[38] H. Hizarci, O. Demirel, and B. E. Turkay, “Distribution network reconfigura-
tion using time-varying acceleration coefficient assisted binary particle swarm
optimization,” Engineering Science and Technology, an International Journal,
vol. 35, p. 101 230, 2022, issn: 2215-0986. doi: https://doi.org/10.1016/j.jestch.
2022.101230.

[39] H. Hong, Z. Hu, R. Guo, J. Ma, and J. Tian, “Directed graph-based distribution
network reconfiguration for operation mode adjustment and service restoration
considering distributed generation,” Journal of Modern Power Systems and
Clean Energy, vol. 5, no. 1, pp. 142–149, 2017. doi: 10.1007/s40565-016-0198-3.

[40] H. Hong, Z. Hu, R. Guo, J. Ma, and J. Tian, “Directed graph-based distribution
network reconfiguration for operation mode adjustment and service restoration
considering distributed generation,” Journal of Modern Power Systems and
Clean Energy, vol. 5, no. 1, pp. 142–149, 2017.

[41] W. Hua, B. Stephen, and D. C. Wallom, “Digital twin based reinforcement
learning for extracting network structures and load patterns in planning and
operation of distribution systems,” Applied Energy, vol. 342, p. 121 128, 2023,
issn: 0306-2619.

[42] C. Huang, H. Zhang, L. Wang, X. Luo, and Y. Song, “Mixed deep reinforcement
learning considering discrete-continuous hybrid action space for smart home
energy management,” Journal of Modern Power Systems and Clean Energy,
vol. 10, no. 3, pp. 743–754, 2022. doi: 10.35833/MPCE.2021.000394.

96

https://doi.org/10.1109/TASE.2021.3072862
https://doi.org/10.1109/TSG.2019.2892586
https://doi.org/https://doi.org/10.1016/j.jestch.2022.101230
https://doi.org/https://doi.org/10.1016/j.jestch.2022.101230
https://doi.org/https://doi.org/10.1016/j.jestch.2022.101230
https://doi.org/https://doi.org/10.1016/j.jestch.2022.101230
https://doi.org/10.1007/s40565-016-0198-3
https://doi.org/10.35833/MPCE.2021.000394

[43] W. Huang, W. Zheng, and D. J. Hill, “Distribution network reconfiguration for
short-term voltage stability enhancement: An efficient deep learning approach,”
IEEE Transactions on Smart Grid, vol. 12, no. 6, pp. 5385–5395, 2021. doi:
10.1109/TSG.2021.3097330.

[44] X. Ji, Z. Yin, Y. Zhang, B. Xu, and Q. liu, “Real-time autonomous dynamic
reconfiguration based on deep learning algorithm for distribution network,”
Electric Power Systems Research, vol. 195, p. 107 132, 2021, issn: 0378-7796.
doi: https://doi.org/10.1016/j.epsr.2021.107132.

[45] X. Ji, Z. Yin, Y. Zhang, B. Xu, and Q. liu, “Real-time autonomous dynamic
reconfiguration based on deep learning algorithm for distribution network,”
Electric Power Systems Research, vol. 195, p. 107 132, 2021, issn: 0378-7796.
doi: https://doi.org/10.1016/j.epsr.2021.107132.

[46] S. Jiang, H. Gao, X. Wang, J. Liu, and K. Zuo, “Deep reinforcement learning
based multi-level dynamic reconfiguration for urban distribution network: A
cloud-edge collaboration architecture,” Global Energy Interconnection, vol. 6,
no. 1, pp. 1–14, 2023, issn: 2096-5117.

[47] J. Jose and A. Kowli, “Path-based distribution feeder reconfiguration for
optimization of losses and reliability,” IEEE Systems Journal, vol. 14, no. 1,
pp. 1417–1426, 2020.

[48] M. Kaur and S. Ghosh, “Network reconfiguration of unbalanced distribution net-
works using fuzzy-firefly algorithm,” Applied Soft Computing, vol. 49, pp. 868–
886, 2016, issn: 1568-4946. doi: https://doi.org/10.1016/j.asoc.2016.09.019.

[49] A. Kavousi-Fard, T. Niknam, and M. Fotuhi-Firuzabad, “A novel stochastic
framework based on cloud theory and θ -modified bat algorithm to solve the
distribution feeder reconfiguration,” IEEE Transactions on Smart Grid, vol. 7,
no. 2, pp. 740–750, 2016. doi: 10.1109/TSG.2015.2434844.

[50] H. M. Khodr, J. Martinez-Crespo, M. A. Matos, and J. Pereira, “Distribution
systems reconfiguration based on opf using benders decomposition,” IEEE
Transactions on Power Delivery, vol. 24, no. 4, pp. 2166–2176, 2009. doi:
10.1109/TPWRD.2009.2027510.

[51] N. C. Koutsoukis, D. O. Siagkas, P. S. Georgilakis, and N. D. Hatziargyriou,
“Online reconfiguration of active distribution networks for maximum integration
of distributed generation,” IEEE Transactions on Automation Science and
Engineering, vol. 14, no. 2, pp. 437–448, 2017. doi: 10.1109/TASE.2016.2628091.

[52] O. B. Kundačina, P. M. Vidović, and M. R. Petković, “Solving dynamic distri-
bution network reconfiguration using deep reinforcement learning,” Electrical
Engineering, vol. 104, 1487–1501, 2022. doi: https://doi.org/10.1007/s00202-
021-01399-y.

97

https://doi.org/10.1109/TSG.2021.3097330
https://doi.org/https://doi.org/10.1016/j.epsr.2021.107132
https://doi.org/https://doi.org/10.1016/j.epsr.2021.107132
https://doi.org/https://doi.org/10.1016/j.asoc.2016.09.019
https://doi.org/10.1109/TSG.2015.2434844
https://doi.org/10.1109/TPWRD.2009.2027510
https://doi.org/10.1109/TASE.2016.2628091
https://doi.org/https://doi.org/10.1007/s00202-021-01399-y
https://doi.org/https://doi.org/10.1007/s00202-021-01399-y

[53] L.-L. Li, J.-L. Xiong, M.-L. Tseng, Z. Yan, and M. K. Lim, “Using multi-
objective sparrow search algorithm to establish active distribution network
dynamic reconfiguration integrated optimization,” Expert Systems with Appli-
cations, vol. 193, p. 116 445, 2022, issn: 0957-4174. doi: https://doi.org/10.
1016/j.eswa.2021.116445.

[54] Y. Li, G. Hao, Y. Liu, Y. Yu, Z. Ni, and Y. Zhao, “Many-objective distribution
network reconfiguration via deep reinforcement learning assisted optimization
algorithm,” IEEE Transactions on Power Delivery, vol. 37, no. 3, pp. 2230–
2244, 2022.

[55] T. Lin and C. Shang, “Reliability evaluation on a joint machine learning and
optimization framework,” IEEE Transactions on Power Systems, vol. 36, no. 1,
pp. 49–57, 2021. doi: 10.1109/TPWRS.2020.3007618.

[56] B. Liu, K. Meng, Z. Y. Dong, P. K. C. Wong, and X. Li, “Load balancing
in low-voltage distribution network via phase reconfiguration: An efficient
sensitivity-based approach,” IEEE Transactions on Power Delivery, vol. 36,
no. 4, pp. 2174–2185, 2021. doi: 10.1109/TPWRD.2020.3022061.

[57] J. Liu and H.-D. Chiang, “Maximizing available delivery capability of unbal-
anced distribution networks for high penetration of distributed generators,”
IEEE Transactions on Power Delivery, vol. 32, no. 3, pp. 1196–1202, 2017. doi:
10.1109/TPWRD.2014.2359291.

[58] N. Liu, C. Li, L. Chen, and J. Wang, “Hybrid data-driven and model-based
distribution network reconfiguration with lossless model reduction,” IEEE
Transactions on Industrial Informatics, vol. 18, no. 5, pp. 2943–2954, 2022. doi:
10.1109/TII.2021.3103934.

[59] Y. Liu, J. Li, and L. Wu, “Coordinated optimal network reconfiguration and
voltage regulator/der control for unbalanced distribution systems,” IEEE
Transactions on Smart Grid, vol. 10, no. 3, pp. 2912–2922, 2019. doi: 10.1109/
TSG.2018.2815010.

[60] Z. Liu, Y. Liu, G. Qu, X. Wang, and X. Wang, “Intra-day dynamic network
reconfiguration based on probability analysis considering the deployment of
remote control switches,” IEEE Access, vol. 7, pp. 145 272–145 281, 2019. doi:
10.1109/ACCESS.2019.2944917.

[61] J. Løver, V. B. Gjærum, and A. M. Lekkas, “Explainable ai methods on a deep
reinforcement learning agent for automatic docking∗∗this work was supported
by the research council of norway through the exaigon project, project number
304843.,” IFAC-PapersOnLine, vol. 54, no. 16, pp. 146–152, 2021, 13th IFAC
Conference on Control Applications in Marine Systems, Robotics, and Vehicles
CAMS 2021, issn: 2405-8963.

98

https://doi.org/https://doi.org/10.1016/j.eswa.2021.116445
https://doi.org/https://doi.org/10.1016/j.eswa.2021.116445
https://doi.org/10.1109/TPWRS.2020.3007618
https://doi.org/10.1109/TPWRD.2020.3022061
https://doi.org/10.1109/TPWRD.2014.2359291
https://doi.org/10.1109/TII.2021.3103934
https://doi.org/10.1109/TSG.2018.2815010
https://doi.org/10.1109/TSG.2018.2815010
https://doi.org/10.1109/ACCESS.2019.2944917

[62] M. Mahdavi, H. H. Alhelou, A. Bagheri, S. Z. Djokic, and R. A. V. Ramos,
“A comprehensive review of metaheuristic methods for the reconfiguration of
electric power distribution systems and comparison with a novel approach
based on efficient genetic algorithm,” IEEE Access, vol. 9, pp. 122 872–122 906,
2021. doi: 10.1109/ACCESS.2021.3109247.

[63] S. Malekshah, A. Rasouli, Y. Malekshah, A. Ramezani, and A. Malekshah,
“Reliability-driven distribution power network dynamic reconfiguration in pres-
ence of distributed generation by the deep reinforcement learning method,”
Alexandria Engineering Journal, vol. 61, no. 8, pp. 6541–6556, 2022, issn:
1110-0168.

[64] M. A. Mejia, L. H. Macedo, G. Muñoz-Delgado, J. Contreras, and A. Padilha-
Feltrin, “Active distribution system planning considering non-utility-owned
electric vehicle charging stations and network reconfiguration,” Sustainable
Energy, Grids and Networks, vol. 35, p. 101 101, 2023, issn: 2352-4677. doi:
https://doi.org/10.1016/j.segan.2023.101101.

[65] R. K. Mishra and K. S. Swarup, “Adaptive weight-based self reconfiguration
of smart distribution network with intelligent agents,” IEEE Transactions on
Emerging Topics in Computational Intelligence, vol. 2, no. 6, pp. 464–472, 2018.
doi: 10.1109/TETCI.2018.2822832.

[66] M. J. H. Moghaddam, A. Kalam, J. Shi, S. A. Nowdeh, F. H. Gandoman,
and A. Ahmadi, “A new model for reconfiguration and distributed generation
allocation in distribution network considering power quality indices and network
losses,” IEEE Systems Journal, vol. 14, no. 3, pp. 3530–3538, 2020.

[67] P. Moghari, R. M. Chabanloo, and H. Torkaman, “Distribution system re-
configuration based on milp considering voltage stability,” Electric Power
Systems Research, vol. 222, p. 109 523, 2023, issn: 0378-7796. doi: https :
//doi.org/10.1016/j.epsr.2023.109523.

[68] F. Mohammadi, M. Sahraei-Ardakani, D. N. Trakas, and N. D. Hatziargyriou,
“Machine learning assisted stochastic unit commitment during hurricanes with
predictable line outages,” IEEE Transactions on Power Systems, vol. 36, no. 6,
pp. 5131–5142, 2021. doi: 10.1109/TPWRS.2021.3069443.

[69] M. A. Muhammad, H. Mokhlis, K. Naidu, A. Amin, J. F. Franco, and M. Oth-
man, “Distribution network planning enhancement via network reconfiguration
and dg integration using dataset approach and water cycle algorithm,” Journal
of Modern Power Systems and Clean Energy, vol. 8, no. 1, pp. 86–93, 2020.
doi: 10.35833/MPCE.2018.000503.

[70] M. Naguib, W. A. Omran, and H. E. A. Talaat, “Performance enhancement of
distribution systems via distribution network reconfiguration and distributed
generator allocation considering uncertain environment,” Journal of Modern
Power Systems and Clean Energy, vol. 10, no. 3, pp. 647–655, 2022.

99

https://doi.org/10.1109/ACCESS.2021.3109247
https://doi.org/https://doi.org/10.1016/j.segan.2023.101101
https://doi.org/10.1109/TETCI.2018.2822832
https://doi.org/https://doi.org/10.1016/j.epsr.2023.109523
https://doi.org/https://doi.org/10.1016/j.epsr.2023.109523
https://doi.org/10.1109/TPWRS.2021.3069443
https://doi.org/10.35833/MPCE.2018.000503

[71] T. T. Nguyen, T. T. Nguyen, N. A. Nguyen, and T. L. Duong, “A novel
method based on coyote algorithm for simultaneous network reconfiguration
and distribution generation placement,” Ain Shams Engineering Journal, vol. 12,
no. 1, pp. 665–676, 2021, issn: 2090-4479. doi: https://doi.org/10.1016/j.asej.
2020.06.005.

[72] T. T. Nguyen and A. V. Truong, “Distribution network reconfiguration for
power loss minimization and voltage profile improvement using cuckoo search
algorithm,” International Journal of Electrical Power & Energy Systems, vol. 68,
pp. 233–242, 2015, issn: 0142-0615. doi: https://doi.org/10.1016/j.ijepes.2014.
12.075.

[73] S. H. Oh, Y. T. Yoon, and S. W. Kim, “Online reconfiguration scheme of
self-sufficient distribution network based on a reinforcement learning approach,”
Applied Energy, vol. 280, p. 115 900, 2020, issn: 0306-2619. doi: https://doi.
org/10.1016/j.apenergy.2020.115900.

[74] V. B. Pamshetti, S. Singh, and S. P. Singh, “Combined impact of network
reconfiguration and volt-var control devices on energy savings in the presence
of distributed generation,” IEEE Systems Journal, vol. 14, no. 1, pp. 995–1006,
2020.

[75] R. A. Pegado and Y. P. M. Rodriguez, “Distribution network reconfiguration
with the opendss using improved binary particle swarm optimization,” IEEE
Latin America Transactions, vol. 16, no. 6, pp. 1677–1683, 2018. doi: 10.1109/
TLA.2018.8444386.

[76] C. Peng, L. Xu, X. Gong, H. Sun, and L. Pan, “Molecular evolution based dy-
namic reconfiguration of distribution networks with dgs considering three-phase
balance and switching times,” IEEE Transactions on Industrial Informatics,
vol. 15, no. 4, pp. 1866–1876, 2019. doi: 10.1109/TII.2018.2866301.

[77] E. Quintana and E. Inga, “Optimal reconfiguration of electrical distribution
system using heuristic methods with geopositioning constraints,” Energies,
vol. 15, no. 15, 2022, issn: 1996-1073. doi: 10.3390/en15155317.

[78] S. Rasheed and A. R. Abhyankar, “Efficient operational planning of active
distribution network by embedding uncertainties and network reconfiguration,”
Electric Power Systems Research, vol. 216, p. 109 036, 2023, issn: 0378-7796.
doi: https://doi.org/10.1016/j.epsr.2022.109036.

[79] S.-M. Razavi, H.-R. Momeni, M.-R. Haghifam, and S. Bolouki, “Multi-objective
optimization of distribution networks via daily reconfiguration,” IEEE Trans-
actions on Power Delivery, vol. 37, no. 2, pp. 775–785, 2022. doi: 10.1109/
TPWRD.2021.3070796.

[80] S. F. Santos, M. Gough, D. Z. Fitiwi, J. Pogeira, M. Shafie-khah, and J. P. S.
Catalão, “Dynamic distribution system reconfiguration considering distributed
renewable energy sources and energy storage systems,” IEEE Systems Journal,
vol. 16, no. 3, pp. 3723–3733, 2022. doi: 10.1109/JSYST.2021.3135716.

100

https://doi.org/https://doi.org/10.1016/j.asej.2020.06.005
https://doi.org/https://doi.org/10.1016/j.asej.2020.06.005
https://doi.org/https://doi.org/10.1016/j.ijepes.2014.12.075
https://doi.org/https://doi.org/10.1016/j.ijepes.2014.12.075
https://doi.org/https://doi.org/10.1016/j.apenergy.2020.115900
https://doi.org/https://doi.org/10.1016/j.apenergy.2020.115900
https://doi.org/10.1109/TLA.2018.8444386
https://doi.org/10.1109/TLA.2018.8444386
https://doi.org/10.1109/TII.2018.2866301
https://doi.org/10.3390/en15155317
https://doi.org/https://doi.org/10.1016/j.epsr.2022.109036
https://doi.org/10.1109/TPWRD.2021.3070796
https://doi.org/10.1109/TPWRD.2021.3070796
https://doi.org/10.1109/JSYST.2021.3135716

[81] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, Prioritized experience replay,
2015. doi: 10.48550/ARXIV.1511.05952. [Online]. Available: https://arxiv.org/
abs/1511.05952.

[82] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, Proximal
policy optimization algorithms, 2017. doi: 10 . 48550/ARXIV . 1707 . 06347.
[Online]. Available: https://arxiv.org/abs/1707.06347.

[83] H. Shi, M. Xu, and R. Li, “Deep learning for household load forecasting—a
novel pooling deep rnn,” IEEE Transactions on Smart Grid, vol. 9, no. 5,
pp. 5271–5280, 2018. doi: 10.1109/TSG.2017.2686012.

[84] D. Smilkov, N. Thorat, B. Kim, F. Viégas, and M. Wattenberg, Smoothgrad:
Removing noise by adding noise, 2017. arXiv: 1706.03825 [cs.LG].

[85] Y. Song, Y. Zheng, T. Liu, S. Lei, and D. J. Hill, “A new formulation of
distribution network reconfiguration for reducing the voltage volatility induced
by distributed generation,” IEEE Transactions on Power Systems, vol. 35,
no. 1, pp. 496–507, 2020. doi: 10.1109/TPWRS.2019.2926317.

[86] B. Stojanović, T. Rajić, and D. Šošić, “Distribution network reconfiguration and
reactive power compensation using a hybrid simulated annealing – minimum
spanning tree algorithm,” International Journal of Electrical Power & Energy
Systems, vol. 147, p. 108 829, 2023, issn: 0142-0615. doi: https://doi.org/10.
1016/j.ijepes.2022.108829.

[87] H.-Y. Su and H.-H. Hong, “An intelligent data-driven learning approach
to enhance online probabilistic voltage stability margin prediction,” IEEE
Transactions on Power Systems, vol. 36, no. 4, pp. 3790–3793, 2021. doi:
10.1109/TPWRS.2021.3067150.

[88] A. Swarnkar, N. Gupta, and K. Niazi, “Adapted ant colony optimization for
efficient reconfiguration of balanced and unbalanced distribution systems for loss
minimization,” Swarm and Evolutionary Computation, vol. 1, no. 3, pp. 129–
137, 2011, issn: 2210-6502. doi: https://doi.org/10.1016/j.swevo.2011.05.004.

[89] S. Tao, R. Qiu, Y. Ping, and H. Ma, “Multi-modal knowledge-aware reinforce-
ment learning network for explainable recommendation,” Knowledge-Based
Systems, vol. 227, p. 107 217, 2021, issn: 0950-7051.

[90] L. Thurner et al., “Pandapower—an open-source python tool for convenient
modeling, analysis, and optimization of electric power systems,” IEEE Trans-
actions on Power Systems, vol. 33, no. 6, pp. 6510–6521, 2018. doi: 10.1109/
TPWRS.2018.2829021.

[91] T. V. Tran, B.-H. Truong, T. P. Nguyen, T. A. Nguyen, T. L. Duong, and D. N.
Vo, “Reconfiguration of distribution networks with distributed generations
using an improved neural network algorithm,” IEEE Access, vol. 9, pp. 165 618–
165 647, 2021. doi: 10.1109/ACCESS.2021.3134872.

101

https://doi.org/10.48550/ARXIV.1511.05952
https://arxiv.org/abs/1511.05952
https://arxiv.org/abs/1511.05952
https://doi.org/10.48550/ARXIV.1707.06347
https://arxiv.org/abs/1707.06347
https://doi.org/10.1109/TSG.2017.2686012
https://arxiv.org/abs/1706.03825
https://doi.org/10.1109/TPWRS.2019.2926317
https://doi.org/https://doi.org/10.1016/j.ijepes.2022.108829
https://doi.org/https://doi.org/10.1016/j.ijepes.2022.108829
https://doi.org/10.1109/TPWRS.2021.3067150
https://doi.org/https://doi.org/10.1016/j.swevo.2011.05.004
https://doi.org/10.1109/TPWRS.2018.2829021
https://doi.org/10.1109/TPWRS.2018.2829021
https://doi.org/10.1109/ACCESS.2021.3134872

[92] T. T. Tran, K. H. Truong, and D. N. Vo, “Stochastic fractal search algorithm
for reconfiguration of distribution networks with distributed generations,” Ain
Shams Engineering Journal, vol. 11, no. 2, pp. 389–407, 2020, issn: 2090-4479.

[93] T. T. Tran, K. H. Truong, and D. N. Vo, “Stochastic fractal search algorithm
for reconfiguration of distribution networks with distributed generations,” Ain
Shams Engineering Journal, vol. 11, no. 2, pp. 389–407, 2020, issn: 2090-4479.
doi: https://doi.org/10.1016/j.asej.2019.08.015.

[94] T. S. UNESP-FEIS Electrical Energy Systems Planning Laboratory Homepage,
Accessed: Feb 10, 2022. [Online]. Available: https://www.feis.unesp.br/#!
/lapsee.

[95] B. Wang, H. Zhu, H. Xu, Y. Bao, and H. Di, “Distribution network recon-
figuration based on noisynet deep q-learning network,” IEEE Access, vol. 9,
pp. 90 358–90 365, 2021. doi: 10.1109/ACCESS.2021.3089625.

[96] H.-J. Wang, J.-S. Pan, T.-T. Nguyen, and S. Weng, “Distribution network
reconfiguration with distributed generation based on parallel slime mould
algorithm,” Energy, vol. 244, p. 123 011, 2022, issn: 0360-5442. doi: https:
//doi.org/10.1016/j.energy.2021.123011.

[97] J. Wang, W. Wang, H. Wang, and H. Zuo, “Dynamic reconfiguration of
multiobjective distribution networks considering dg and evs based on a novel
ldbas algorithm,” IEEE Access, vol. 8, pp. 216 873–216 893, 2020. doi: 10.1109/
ACCESS.2020.3041398.

[98] J. Wang, W. Wang, Z. Yuan, H. Wang, and J. Wu, “A chaos disturbed
beetle antennae search algorithm for a multiobjective distribution network
reconfiguration considering the variation of load and dg,” IEEE Access, vol. 8,
pp. 97 392–97 407, 2020. doi: 10.1109/ACCESS.2020.2997378.

[99] W. Wang, J. Xu, G. Zhang, M. Yang, X. Xu, and H. Armghan, “A novel chance
constrained joint optimization method under uncertainties in distribution
networks,” International Journal of Electrical Power & Energy Systems, vol. 147,
p. 108 849, 2023, issn: 0142-0615. doi: https://doi.org/10.1016/j.ijepes.2022.
108849.

[100] X. Wang, Y. Gu, Y. Cheng, A. Liu, and C. L. P. Chen, “Approximate policy-
based accelerated deep reinforcement learning,” IEEE Transactions on Neural
Networks and Learning Systems, vol. 31, no. 6, pp. 1820–1830, 2020. doi:
10.1109/TNNLS.2019.2927227.

[101] Z. Wang, T. Schaul, M. Hessel, H. van Hasselt, M. Lanctot, and N. de Freitas,
Dueling network architectures for deep reinforcement learning, 2015. doi: 10.
48550/ARXIV.1511.06581. [Online]. Available: https://arxiv.org/abs/1511.
06581.

[102] L. Wells and T. Bednarz, “Explainable ai and reinforcement learning—a system-
atic review of current approaches and trends,” Frontiers in Artificial Intelligence,
vol. 4, 2021, issn: 2624-8212. doi: 10.3389/frai.2021.550030. [Online]. Available:
https://www.frontiersin.org/articles/10.3389/frai.2021.550030.

102

https://doi.org/https://doi.org/10.1016/j.asej.2019.08.015
https://www.feis.unesp.br/#!/lapsee
https://www.feis.unesp.br/#!/lapsee
https://doi.org/10.1109/ACCESS.2021.3089625
https://doi.org/https://doi.org/10.1016/j.energy.2021.123011
https://doi.org/https://doi.org/10.1016/j.energy.2021.123011
https://doi.org/10.1109/ACCESS.2020.3041398
https://doi.org/10.1109/ACCESS.2020.3041398
https://doi.org/10.1109/ACCESS.2020.2997378
https://doi.org/https://doi.org/10.1016/j.ijepes.2022.108849
https://doi.org/https://doi.org/10.1016/j.ijepes.2022.108849
https://doi.org/10.1109/TNNLS.2019.2927227
https://doi.org/10.48550/ARXIV.1511.06581
https://doi.org/10.48550/ARXIV.1511.06581
https://arxiv.org/abs/1511.06581
https://arxiv.org/abs/1511.06581
https://doi.org/10.3389/frai.2021.550030
https://www.frontiersin.org/articles/10.3389/frai.2021.550030

[103] H. Wu, P. Dong, and M. Liu, “Distribution network reconfiguration for loss
reduction and voltage stability with random fuzzy uncertainties of renewable
energy generation and load,” IEEE Transactions on Industrial Informatics,
vol. 16, no. 9, pp. 5655–5666, 2020. doi: 10.1109/TII.2018.2871551.

[104] T. Wu, J. Wang, X. Lu, and Y. Du, “Ac/dc hybrid distribution network
reconfiguration with microgrid formation using multi-agent soft actor-critic,”
Applied Energy, vol. 307, p. 118 189, 2022, issn: 0306-2619.

[105] N. Xia et al., “Fuzzy logic based network reconfiguration strategy during power
system restoration,” IEEE Systems Journal, vol. 16, no. 3, pp. 4735–4743, 2022.
doi: 10.1109/JSYST.2021.3123325.

[106] J. Xin, PPO-discrete-pytorch, https://github.com/XinJingHao/PPO-Discrete-
Pytorch, 2022.

[107] T. Yamada, S. Kataoka, and K. Watanabe, “Listing all the minimum spanning
trees in an undirected graph,” International Journal of Computer Mathematics,
vol. 87, no. 14, pp. 3175–3185, 2010.

[108] K. Yang, X. Kong, Y. Wang, J. Zhang, and G. De Melo, “Reinforcement
learning over knowledge graphs for explainable dialogue intent mining,” IEEE
Access, vol. 8, pp. 85 348–85 358, 2020.

[109] T. Yang, Y. Guo, L. Deng, H. Sun, and W. Wu, “A linear branch flow model for
radial distribution networks and its application to reactive power optimization
and network reconfiguration,” IEEE Transactions on Smart Grid, vol. 12, no. 3,
pp. 2027–2036, 2021. doi: 10.1109/TSG.2020.3039984.

[110] Z. Yin, S. Wang, and Q. Zhao, “Sequential reconfiguration of unbalanced
distribution network with soft open points based on deep reinforcement learning,”
Journal of Modern Power Systems and Clean Energy, vol. 11, no. 1, pp. 107–119,
2023.

[111] L. Yun, D. Wang, and L. Li, “Explainable multi-agent deep reinforcement
learning for real-time demand response towards sustainable manufacturing,”
Applied Energy, vol. 347, p. 121 324, 2023, issn: 0306-2619.

[112] J. Zhan, W. Liu, C. Y. Chung, and J. Yang, “Switch opening and exchange
method for stochastic distribution network reconfiguration,” IEEE Transactions
on Smart Grid, vol. 11, no. 4, pp. 2995–3007, 2020. doi: 10.1109/TSG.2020.
2974922.

[113] K. Zhang, J. Zhang, P.-D. Xu, T. Gao, and D. W. Gao, “Explainable ai in deep
reinforcement learning models for power system emergency control,” IEEE
Transactions on Computational Social Systems, vol. 9, no. 2, pp. 419–427, 2022.

[114] T. Zhang, M. Sun, J. L. Cremer, N. Zhang, G. Strbac, and C. Kang, “A
confidence-aware machine learning framework for dynamic security assessment,”
IEEE Transactions on Power Systems, vol. 36, no. 5, pp. 3907–3920, 2021. doi:
10.1109/TPWRS.2021.3059197.

103

https://doi.org/10.1109/TII.2018.2871551
https://doi.org/10.1109/JSYST.2021.3123325
https://github.com/XinJingHao/PPO-Discrete-Pytorch
https://github.com/XinJingHao/PPO-Discrete-Pytorch
https://doi.org/10.1109/TSG.2020.3039984
https://doi.org/10.1109/TSG.2020.2974922
https://doi.org/10.1109/TSG.2020.2974922
https://doi.org/10.1109/TPWRS.2021.3059197

[115] X. Zhang, W. Hua, Y. Liu, J. Duan, Z. Tang, and J. Liu, “Reinforcement
learning for active distribution network planning based on monte carlo tree
search,” International Journal of Electrical Power & Energy Systems, vol. 138,
p. 107 885, 2022, issn: 0142-0615.

[116] Z. Zhang, D. Zhang, and R. C. Qiu, “Deep reinforcement learning for power
system applications: An overview,” CSEE Journal of Power and Energy Systems,
vol. 6, no. 1, pp. 213–225, 2020. doi: 10.17775/CSEEJPES.2019.00920.

[117] W. Zheng, W. Huang, D. J. Hill, and Y. Hou, “An adaptive distributionally
robust model for three-phase distribution network reconfiguration,” IEEE
Transactions on Smart Grid, vol. 12, no. 2, pp. 1224–1237, 2021. doi: 10.1109/
TSG.2020.3030299.

[118] W. Zheng, W. Huang, D. J. Hill, and Y. Hou, “An adaptive distributionally
robust model for three-phase distribution network reconfiguration,” IEEE
Transactions on Smart Grid, vol. 12, no. 2, pp. 1224–1237, 2021. doi: 10.1109/
TSG.2020.3030299.

[119] T. Zhong, H.-T. Zhang, Y. Li, L. Liu, and R. Lu, “Bayesian learning-based
multi-objective distribution power network reconfiguration,” IEEE Transactions
on Smart Grid, vol. 12, no. 2, pp. 1174–1184, 2021. doi: 10.1109/TSG.2020.
3027290.

[120] A. Zhou, H. Zhai, M. Yang, and Y. Lin, “Three-phase unbalanced distribution
network dynamic reconfiguration: A distributionally robust approach,” IEEE
Transactions on Smart Grid, vol. 13, no. 3, pp. 2063–2074, 2022. doi: 10.1109/
TSG.2021.3139763.

104

https://doi.org/10.17775/CSEEJPES.2019.00920
https://doi.org/10.1109/TSG.2020.3030299
https://doi.org/10.1109/TSG.2020.3030299
https://doi.org/10.1109/TSG.2020.3030299
https://doi.org/10.1109/TSG.2020.3030299
https://doi.org/10.1109/TSG.2020.3027290
https://doi.org/10.1109/TSG.2020.3027290
https://doi.org/10.1109/TSG.2021.3139763
https://doi.org/10.1109/TSG.2021.3139763

	Introduction
	Thesis Motivations and Objectives
	Comparing RL Algorithms for DNR
	Action Space Sampling for DNR
	Explainable RL for DNR
	Thesis Outline

	A Comparative Study of Reinforcement Learning Algorithms for Distribution Network Reconfiguration with Deep Q-learning-based Action Sampling
	Abstract
	Introduction
	Problem Formulation
	Preliminaries
	DNR Environment
	RL Algorithms
	Action Reduction

	Simulation and Results
	Experimental Data Setup
	33-Node Test System
	136-Node Test System
	Comparison of Results

	Conclusion

	A Generalised Deep Reinforcement Learning Model for Distribution Network Reconfiguration with Powerflow-based Action Space Sampling
	Abstract
	Introduction
	Motivation and Literature Review
	Related Work
	Contributions

	RL Foundations and Algorithms
	RL Preliminaries
	RL Algorithms

	Problem Formulation
	System Modeling
	Action Space Sampling

	Simulation and Results
	Experimental Setup and Data
	Action Space Sampling
	33-Node Test System
	119-Node Test System
	136-Node Test System
	Sensitivity Analysis
	Comparative Study

	Conclusion

	Explainable Reinforcement Learning for Distribution Network Reconfiguration
	Abstract
	Introduction
	Problem Formulation
	Foundations of RL in DNR
	General Structure
	Attribution Methods

	Results and Discussion
	33-Bus System
	136-Bus System

	Conclusion

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography

