This decommissioned ERA site remains active temporarily to support our final migration steps to https://ualberta.scholaris.ca, ERA's new home. All new collections and items, including Spring 2025 theses, are at that site. For assistance, please contact erahelp@ualberta.ca.
Theses and Dissertations
This collection contains theses and dissertations of graduate students of the University of Alberta. The collection contains a very large number of theses electronically available that were granted from 1947 to 2009, 90% of theses granted from 2009-2014, and 100% of theses granted from April 2014 to the present (as long as the theses are not under temporary embargo by agreement with the Faculty of Graduate and Postdoctoral Studies). IMPORTANT NOTE: To conduct a comprehensive search of all UofA theses granted and in University of Alberta Libraries collections, search the library catalogue at www.library.ualberta.ca - you may search by Author, Title, Keyword, or search by Department.
To retrieve all theses and dissertations associated with a specific department from the library catalogue, choose 'Advanced' and keyword search "university of alberta dept of english" OR "university of alberta department of english" (for example). Past graduates who wish to have their thesis or dissertation added to this collection can contact us at erahelp@ualberta.ca.
Items in this Collection
- 3Functional data analysis
- 1ASIMPQR
- 1Cervical Vertebrae
- 1Multiple Sclerosis
- 1PQR
- 1Quantile Regression
-
Fall 2011
Functional data analysis (FDA) is a fast-growing area in statistics with the aim of estimating a set of related functions or curves rather than focusing on a single entity, like estimating a point, as in classical statistics. FDA has a wide range of applications in different fields such as...
-
Fall 2017
In this thesis, we study the partial quantile regression methods in functional data analysis. In the first part, we propose a prediction procedure for the functional linear quantile regression model by using partial quantile covariance techniques and develop a simple partial quantile regression...
-
Statistical Learning and Inference For Functional Predictor Models via Reproducing Kernel Hilbert Space
DownloadFall 2024
Functional regression is a cornerstone for understanding complex relationships where predictors or responses (or both) are functions. A particularly powerful framework within this domain is the Reproducing Kernel Hilbert Space (RKHS), which facilitates the handling of infinite-dimensional data...