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Abstract

In this thesis, we study the partial quantile regression methods in functional data

analysis. In the first part, we propose a prediction procedure for the functional lin-

ear quantile regression model by using partial quantile covariance techniques and

develop a simple partial quantile regression (SIMPQR) algorithm to efficiently ex-

tract partial quantile regression (PQR) basis for estimating functional coefficients.

In the second part, we propose and implement an alternative formulation of partial

quantile regression (APQR) for functional linear model by using block relaxation

ideas and finite smoothing techniques. Such reformulation leads to insightful re-

sults and motivates new theory, demonstrating consistency and establishing conver-

gence rates by applying advanced techniques from empirical process theory. In the

third part, we propose and implement the generalization of PQR procedure to mul-

tidimensional functional linear model using tensor decomposition techniques. We

also establish and demonstrate the corresponding asymptotic properties. In all three

parts, extensive simulations and real data are investigated to show the superiority

of our proposed methods, while the advantages of our proposed PQR basis are well

demonstrated in various settings for functional linear quantile regression model.
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Chapter 1

Introduction and Overview of the

Thesis

Functional data analysis (FDA) is about the analysis of information on curves, im-

ages, functions or more general objects where the primary object of observation can

be viewed as a function [61]. While it has become a major branch of nonparamet-

ric statistics, it is still fast evolving as more data of larger scale and more complex

structure emerge. As a popular tool, functional linear regression is often considered

useful by statisticians to deal with such data [16, 29, 44, 80].

In imaging data analysis, massive functional data are observed/calculated at the

same design points, such as time for functional images (e.g., PET and fMRI) and ar-

clength for structure imaging (e.g. DTI). As an illustration, we present a smoothed

functional data that we encounter in neuroimaging studies. We plot one diffusion

property, called fractional anisotropy (FA), measured at 83 grid points along the

midsagittal corpus callosum (CC) skeleton (Figure 1.1) from 30 randomly selected

infants from the NIH Alzheimer’s Disease Neuroimaging Initiative (ADNI) study.

The corpus callosum (CC) is the largest fiber tract in the human brain and is a to-
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pographically organized structure. It is responsible for much of the communication

between the two hemispheres and connects homologous areas in the two cerebral

hemispheres. Scientists are particularly interested in delineating the structure of the

variability of these functional FA data and their prediction ability on mini-mental

state examination (MMSE) with a set of covariates of interest, such as genetic in-

formation. MMSE is one of the most widely used screening tests on Alzheimer’s

Disease to provide brief and objective measures of cognitive functioning [70].

arclength

FA

0.
2

0.
4

0.
6

0.
8

1.
0

10 20 30 40 50 60 70 80

Figure 1.1: Representative functional neuroimaging data: Fractional anisotropy
(FA) along the midsagittal corpus callosum (CC) skeleton from 30 randomly se-
lected subjects from the NIH Alzheimer’s Disease Neuroimaging Initiative (ADNI)
study.

In order to predict the MMSE states, we can use the functional linear model:

y = α + xTβ +

∫
I
zT (t)γ(t)dt + ε, (1.1)

where y is a scalar response, and x and z(t) are scalar and functional covariates. In

the ADNI study discussed above, y is the MMSE states, x is the demographic in-

formation of each patients, and z(t) is the fractional anisotropy (FA) measured at 83
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grid points along the midsagittal corpus callosum (CC) skeleton (Figure 1.1). The

contributions of z(t) towards the variation of y is characterized by the functional co-

efficients γ(t) and change by t. For simplicity, we often assume that t ∈ I = [0, 1].

Model (1.1) is a generalization of the classical linear regression model correspond-

ing to the case γ(t) is a constant. If it is not constant, the contributions of z(t) char-

acterized by γ(t) change in terms of t. The model has been well studied and applied

in many fields including neuroimaging data analysis [3, 36, 47, 66]. To facilitate the

estimation of γ(t), we usually require that it satisfies certain smoothness conditions

and restrict it onto a functional space. For example, we may require that its second

derivative exists and that the square of γ(t) is integrable, that is, γ(t) ∈ L2[0, 1].

Even in such a case, the estimation is still an infinite-dimensional problem.

The common practice is to project γ(t) into a functional space with a finite

functional basis. There are three major methods to choose the functional basis:

general basis, functional principal component basis (fPC), and partial least square

basis (PLS). There are various options on the selection of general basis, for exam-

ple B-spline basis [8, 12], wavelet basis [79] and so on. In order to provide a good

approximation of the functional coefficients, a large number of basis should be cho-

sen. However, this may cause overfitting of the model and to remedy that various

penalty methods have been proposed [16, 80]. The fPC method has been exten-

sively studied [29, 44] where the fPC of z(t) serve as the basis. Its generalization

to the reproducing kernel Hilbert space (RKHS) was proposed by Cai and Yuan [9]

and Yuan and Cai [78] who also studied its minimax rates. Although fPC basis are

more data-adapted than the general basis as they use the information of functional

covariates and the formed space can explain most of the variation of z(t), it is not

necessary all the fPC basis will contribute to the variation of the responses. There-

fore, another appealing choice is the PLS basis which utilize both the information
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of functional covariates and the responses and use the linear projects of z(t) which

best predict the responses Delaigle and Hall [20].

An alternative to model (1.1) is the functional linear quantile regression where

the conditional quantiles of the responses are modeled by a set of scalar covariates

and functional covariates. In recent years, quantile regression, which was intro-

duced by the seminal work of Koenker and Bassett [41], has been well developed

and recognized in functional linear regression [37, 76]. In this thesis, we consider

the functional linear quantile regression model:

Qτ(y|x, z(t)) = ατ + xTβτ +

∫ 1

0
zT (t)γτ(t)dt, (1.2)

where Qτ(y|x, z(t)) is the τ-th conditional quantile of response y given scalar co-

variates x and functional covariate z(t) for a fixed quantile level τ ∈ (0, 1). As an

alternative to least squares regression, the quantile regression method is more ef-

ficient and robust when the responses are non-normal, errors are heavy tailed, or

outliers are present. It is also capable of dealing with the heteroscedasticity issues

and providing a more complete picture of the response [38].

In the existing literature, model (1.2) has been well studied and various meth-

ods have been proposed. As in functional linear regression, to estimate functional

coefficients γτ(t) it is convenient to restrict it onto a functional space with a finite

basis. Similarly, general basis like B-spline can be used to approximate the coeffi-

cient functions [11, 68]. fPC basis have also been throughly investigated with and

without scalar covariate x while only one functional covariate presents [37, 52, 69].

However, there is no analogue to the PLS method in functional linear regression

model. Therefore, none of the existing methods for model (1.2) is able to pro-

vide more efficient prediction by extracting information from the responses which
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motivates us to propose a new method, partial quantile regression (PQR), to study

functional linear quantile regression problem. The existing and proposed methods

are summarized in Table 1.1.

Least Squares Regression Quantile Regression

General Fourier, wavelet or B-spline [12, 30] Smoothing splines [11]

Unsupervised Functional PC [8, 29] Functional PC [37, 52, 69]

Supervised Partial Least Square [20, 60] Partial Quantile Regression [proposed]

Table 1.1: The summary of existing and proposed methods in functional linear
regression.

In Chapter 2, we propose a prediction procedure for the functional linear quan-

tile regression model (1.2) by using partial quantile covariance techniques and de-

velop an algorithm inspired by simple partial linear regression, SIMPLS [17], to ef-

ficiently extract partial quantile regression (PQR) basis for estimating functional co-

efficients. We further extend our partial quantile covariance techniques to functional

composite quantile regression (CQR) [87] by defining partial composite quantile

covariance. The major contributions of this chapter can be summarized as follows.

We first define partial quantile covariance between two scalar variables through

linear quantile regression. Motivated by extracting PLS basis in functional linear

regression, we found PQR basis by sequentially maximizing the partial quantile co-

variance between the response and projections of functional covariates. In order to

efficiently extract PQR basis, we develop a simple partial quantile regression (SIM-

PQR) algorithm analogue to SIMPLS. Under the homoscedasticity assumption, we
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extend our techniques to partial composite quantile covariance and use it to find

the partial composite quantile regression (PCQR) basis. The SIMPQR algorithm is

then modified to obtain the SIMPCQR algorithm.

However, although the functional PQR approach appears to be an enticing choice

alternative to the principal component method, there are certain limitations to un-

covering the asymptotic properties mainly because of its iterative nature and the

non-differentiability of the quantile loss functions. The difficulty due to the itera-

tive formulation used to exist for functional PLS too. To deal with it, an alternative

but equivalent PLS formulation (APLS) was proposed by Delaigle and Hall [20].

Based on the fact that there exists an equivalence between fPC space and functional

APLS space, it is then possible to verify the consistency and convergence rates. Un-

fortunately, such equivalence does not exist between PQR and fPC spaces because

of the non-additivity of conditional quantiles. In addition, the non-differentiability

of the quantile loss function ρτ(·) can prevent many methods and properties being

directly applied in quantile regression context [75, 81].

To address these problems, in Chapter 3, we firstly propose a smoothing approx-

imation for the quantile loss function by applying the finite smoothing techniques

[13, 54]. The approximation function should uniformly converge towards the quan-

tile loss function so that the minimizer of the former converges to the minimizer

of the latter in a compact set. Replacing ρτ by such smoothing approximation,

the quantile objective function becomes differentiable. Then for a given fixed K,

namely the number of PQR basis, the original PQR formulation can be modified

according to the block relaxation ideas [19] which updates and obtains the basis as

a “block” instead of one by one sequentially. The value of K can be chosen using

BIC or cross validation (CV) as in choosing the number of fPC basis adapted by

Kato and other authors [37, 52, 69]. Such modification provides an alternative to
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the original formulation for PQR (APQR) basis which leads to insightful results

and motivates new theory. In particular, we can demonstrate consistency and estab-

lish convergence rates by applying advanced techniques from empirical processes

theory (for more background of empirical processes, see van der Vaart [72]).

The functional covariate z can also be taken as a multidimensional function, i.e.

its input is made up of multiple variables. In particular, without loss of generality,

we let t ∈ [0, 1]q where q ≥ 2 and z(t) ∈ R. Suppose that the multidimensional

function covariates and coefficients, namely z(t) and γ(t) ∈ R with t ∈ [0, 1]q. In

particular, for a scalar response, a q-dimensional functional linear regression (qD-

FLR) model is of the form:

y = α + xTβ +

∫ 1

0
· · ·

∫ 1

0
z(t1, . . . , tq)γ(t1, . . . , tq)dtq · · · dt1 + ε, (1.3)

where α is the intercept, β is a p-dimensional vector of scalar coefficients, γ(t1, . . . , tq)

is a q-dimensional functional coefficient, and ε is an error term usually with zero

mean and finite variance.

Under the context of quantile regression, analogue to model (4.3), and for a

given quantile level τ ∈ (0, 1), the q-dimensional functional linear quantile regres-

sion (qD-FLQR) model is defined as:

Qy|x,z(τ|x, z) = ατ + xTβτ +

∫ 1

0
· · ·

∫ 1

0
z(t1, . . . , tq)γτ(t1, . . . , tq)dtq · · · dt1, (1.4)

where Qy|x,z(τ|x, z) is τ-th conditional quantile of y given scalar covariates x and

multidimensional functional z.

Having z(t) properly discretized, we can use Z ∈ RI1×···×Iq , a q-dimensional

array, to represent z(t), where the j-th element of t is observed at 0 = t1 < · · · <
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tI j = 1. Such data of q-dimensional array, also known as order-q tensor, is quite

common in medical imaging. A notable example is magnetic resonance imaging

(MRI) data where the anatomical MRI images can be observed as a matrix (order-

2 tensor) of size 256 by 256. To predict certain clinical outcomes using tensor,

a naive attempt to re-arrange Z into a vector then perform regression. However

such practice is evidently unsatisfactory. First, the re-arranged (vectorized) vector

of image covariates is of size 2562 = 65, 536, implicitly requiring large number of

regression parameters. Both computational cost and theoretical properties can be

severely compromised due to such ultra-high dimensional setting. Furthermore, the

vectorized Z loses information about the original data structure, so the regression

model based on it would be lack of efficiency and hard to interpret.

For an order-q random tensor Z ∈ RI1×···×Iq , in order to achieve a similar decom-

position as PC decomposition for vectors, namely order-1 tensors, Lu et al. [51]

proposed a framework to conduct multilinear PC (MPC) decomposition. Its inten-

tion was to project the order-q tensor into a lower-dimensional space spanned by

the product of a few feature vectors. In general, there are two ways to decompose a

tensor: CANDECOMP/PARAFAC (CP) decomposition and Tucker decomposition

[42].

In Chapter 4, we propose and implement the generalization of PQR procedure

to multidimensional functional linear model (1.3) using tensor decomposition tech-

niques. We also establish and demonstrate the corresponding asymptotic properties

by applying advanced techniques from empirical process theory [72].
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Chapter 2

Partial Functional Linear Quantile

Regression for Neuroimaging Data

Analysis

In this chapter, we propose a prediction procedure for the functional linear quan-

tile regression model by using partial quantile covariance techniques and develop a

simple partial quantile regression (SIMPQR) algorithm to efficiently extract partial

quantile regression (PQR) basis for estimating functional coefficients. We further

extend our partial quantile covariance techniques to functional composite quantile

regression (CQR) defining partial composite quantile covariance. There are three

major contributions. (1) We define partial quantile covariance between two scalar

variables through linear quantile regression. We compute PQR basis by sequentially

maximizing the partial quantile covariance between the response and projections of

functional covariates. (2) In order to efficiently extract PQR basis, we develop a

SIMPQR algorithm analogous to simple partial least squares (SIMPLS). (3) Un-

der the homoscedasticity assumption, we extend our techniques to partial compos-
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ite quantile covariance and use it to find the partial composite quantile regression

(PCQR) basis. The SIMPQR algorithm is then modified to obtain the SIMPCQR

algorithm. Two simulation studies show the superiority of our proposed methods.

Two real data from ADHD-200 sample and ADNI are analyzed using our proposed

methods.

2.1 Introduction

Nowadays, there is great need in the analysis of complex neuroimaging data ob-

tained from various cross-sectional and clustered neuroimaging studies. These

neuroimaging studies are essential to advancing our understanding of the neural

development of neuropsychiatric and neurodegenerative disorders, substance use

disorders, the normal brain and the interactive effects of environmental and genetic

factors on brain structure and function. Such large imaging studies include the

ADNI (Alzheimer’s Disease Neuroimaging Initiative), the longitudinal magnetic

resonance imaging (MRI) study of schizophrenia, autism, and attention deficit hy-

peractivity disorder (ADHD), the NIH human connectome project, among many

others. Neuroimaging studies usually collect structural, neurochemical, and func-

tional images over both time and space [23, 25, 58]. These structural, neurochem-

ical, and functional imaging modalities include computed axial tomography (CT),

diffusion tensor imaging (DTI), functional magnetic resonance imaging (fMRI),

magnetic resonance imaging (MRI), magnetic resonance spectroscopy (MRS), positron

emission tomography (PET), single photon emission tomography (SPECT), elec-

troencephalography (EEG), and magnetoencephalography (MEG), among many

others. For instance, by using anatomical MRI, various measures of the morphol-

ogy of the cortical and subcortical structures (e.g., hippocampus) are extracted to
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understand neuroanatomical differences in brain structure across different popula-

tions [22, 65]. In DTI, various diffusion properties and fiber tracts are extracted

for quantitative assessment of anatomical connectivity across different populations

[5, 84–86]. Functional images, such as resting-state functional MRI (rsfMRI), have

been widely used in behavioral and cognitive neuroscience to understand functional

segregation and integration of different brain regions across different populations

[34, 59].

A common feature of many imaging techniques is that massive functional data

are observed/calculated at the same design points, such as time for functional im-

ages (e.g., PET and fMRI) and arclength for structure imaging (e.g. DTI). As an

illustration, we present two smoothed functional data that we encounter in neu-

roimaging studies. First, we consider the BOLD rsfMRI signal, which is based on

hemodynamic responses secondary to resting-state. We plot the estimated hemody-

namic response functions (HRF) with 172 time courses from 20 randomly selected

children at a selected region of interest (ROI) of Anatomical Automatic Labeling

(AAL) atlas [71] from the New York University (NYU) Child Study Center from

the ADHD-200 Sample Initiative Project. Although the canonical form of the HRF

is often used, when applying rsfMRI in a clinical population with possibly altered

hemodynamic responses (Figure 2.1 (a)), using the subject’s own HRF in rsfMRI

data analysis may be advantageous because HRF variability is greater across sub-

jects than across brain regions within a subject [2, 50]. We are particularly inter-

ested in delineating the structure of the variability of the HRF and their capacity

of predicting ADHD index with a set of covariates of interest, such as diagnostic

group [49]. Secondly, we plot one diffusion property, called fractional anisotropy

(FA), measured at 83 grid points along the midsagittal corpus callosum (CC) skele-

ton (Figure 2.1 (b)) from 30 randomly selected infants from the NIH Alzheimer’s
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Disease Neuroimaging Initiative (ADNI) study. The corpus callosum (CC) is the

largest fiber tract in the human brain and is a topographically organized structure.

It is responsible for much of the communication between the two hemispheres and

connects homologous areas in the two cerebral hemispheres. Scientists are particu-

larly interested in delineating the structure of the variability of these functional FA

data and their prediction ability on mini-mental state examination (MMSE) with

a set of covariates of interest, such as genetic information. MMSE is one of the

most widely used screening tests on Alzheimer’s Disease to provide brief and ob-

jective measures of cognitive functioning [70]. We will systematically investigate

these two prediction problems using functional imaging data over time or space in

Section 2.7 after we develop our methodology.
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Figure 2.1: Representative functional neuroimaging data: (Left) the estimated
hemodynamic response functions (HRF) corresponding to resting-state from 20
children at NYU from the ADHD-200 Sample Initiative Project and (Right) frac-
tional anisotropy (FA) along the midsagittal corpus callosum (CC) skeleton from
30 randomly selected subjects from the NIH Alzheimer’s Disease Neuroimaging
Initiative (ADNI) study.

A functional linear regression model, where the responses such as the neuro-
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logical or clinical outcomes (e.g. ADHD index or MMSE) are modeled by a set of

scalar covariates and functional covariates of interest (e.g. HRF along time courses

or FA along arclength), is a powerful statistical tool for addressing these scientific

questions [26, 27, 84, 85]. In particular, denoting the neurological or clinical out-

come of the i-th subject by yi, i = 1, . . . , n, the functional linear regression model is

of the form

yi = α + xT
i β +

∫ 1

0
zT

i (t)γ(t)dt + εi, (2.1)

where α is the intercept, β = (β1, · · · , βp)T is a p × 1 vector of coefficients, xi =

(xi1, · · · , xip)T is a p×1 vector of scalar covariates of interest, γ(t) = (γ1(t), · · · , γq(t))T

is a q×1 vector of coefficient functions of t, zi(t) = (zi1(t), · · · , ziq(t))T is a q×1 vec-

tor of functional covariates, and εi is a random error. It is usually assumed that εi is

independent and identical copy of normal distribution with zero mean and variance

σ2. For simplicity, we let t ∈ [0, 1]. Model (2.1) is a generalization of the classi-

cal linear regression model corresponding to the case γ(t) is a constant. If it is not

constant, the contributions of zi(t) characterized by γ(t) change in terms of t. The

model has been well studied and applied in many fields including neuroimaging

data analysis [3, 36, 47, 66]. To facilitate the estimation of γ(t), we usually require

that it satisfies certain smoothness conditions and restrict it onto a functional space.

For example, we may require that its second derivative exists and that the square of

γ(t) is integrable, that is, γ(t) ∈ L2[0, 1]. Even in such a case, the estimation is still

an infinite-dimensional problem.

The common practice is to project γ(t) into a functional space with a finite

functional basis. There are three major methods to choose the functional basis:

general basis, functional principal component basis (fPC), and partial least square

basis (PLS). There are various options on the selection of general basis, for exam-
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ple B-spline basis [8, 12], wavelet basis [79] and so on. In order to provide a good

approximation of the functional coefficients, a large number of basis should be cho-

sen. However, this may cause overfitting of the model and to remedy that various

penalty methods have been proposed [16, 80]. The fPC method has been exten-

sively studied [29, 44] where the fPC of zi(t) serve as the basis. Its generalization

to the reproducing kernel Hilbert space (RKHS) was proposed by Cai and Yuan [9]

and Yuan and Cai [78] who also studied its minimax rates. Although fPC basis are

more data-adapted than the general basis as they use the information of functional

covariates and the formed space can explain most of the variation of zi(t), it is not

necessary all the fPC basis will contribute to the variation of the responses. There-

fore, another appealing choice is the PLS basis which use both the information of

functional covariates and the responses. The PLS basis use the linear projects of

zi(t) which best predict the responses [20].

An alternative to model (2.1) is the functional linear quantile regression where

the conditional quantiles of the responses are modeled by a set of scalar covariates

and functional covariates. There are at least three advantages to use conditional

quantiles instead of conditional means. First, quantile regression, in particular me-

dian regression, provides an alternative and complement to mean regression while

being resistant to outliers in responses. It is more efficient than mean regression

when the errors follow a distribution with heavy tails. Second, quantile regression

is capable of dealing with heteroscedasticity, the situation when variances depend

on some covariates. More importantly, quantile regression can give a more com-

plete picture on how the responses are affected by covariates: for example, some

tail behaviors of the responses conditional on covariates. For more background on

quantile regression, see the monograph of Koenker [38]. In our case, we consider
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functional linear quantile regression: for given τ ∈ (0, 1),

Qτ (yi|xi, zi(t)) = ατ + xT
i βτ +

∫ 1

0
zT

i (t)γτ(t)dt, (2.2)

where Qτ (yi|xi, zi(t)) is the τ-th conditional quantile of yi given covariates xi and

zi(t), ατ is the intercept, βτ = (β1τ, · · · , βpτ)T is a p × 1 vector of coefficients and

γτ(t) = (γ1τ(t), · · · , γqτ(t))T is a q × 1 vector of coefficient functions. In the existing

literature, model (2.2) has been well studied and various methods have been pro-

posed. As in functional linear regression, to estimate functional coefficients γτ(t) it

is convenient to restrict it in a functional space with a finite basis. Similarly, gen-

eral basis like B-spline can be used to approximate the coefficient functions [11, 68].

fPC basis have also been thoroughly investigated with and without scalar covariate

xi while only one functional covariate presents [37, 52, 69]. However, there is no

analogue to the PLS basis method in functional linear regression model. There-

fore, none of the existing methods for model (2.2) is able to provide more efficient

prediction by extracting information from the responses.

In this chapter, we propose a prediction procedure for the functional linear

quantile regression model (2.2) by using partial quantile covariance techniques and

develop an algorithm inspired by simple partial linear regression, SIMPLS [17],

to efficiently extract partial quantile regression (PQR) basis for estimating func-

tional coefficients. We further extend our partial quantile covariance techniques to

functional composite quantile regression (CQR) [87] by defining partial composite

quantile covariance. The major contributions of this chapter can be summarized

as follows. We first define partial quantile covariance between two scalar variables

through linear quantile regression. Motivated by extracting PLS basis in functional

linear regression, we found PQR basis by sequentially maximizing the partial quan-
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tile covariance between the response and projections of functional covariates. In or-

der to efficiently extract PQR basis, we develop a simple partial quantile regression

(SIMPQR) algorithm analogue to SIMPLS. Under the homoscedasticity assump-

tion, we extend our techniques to partial composite quantile covariance and use

it to find the partial composite quantile regression (PCQR) basis. The SIMPQR

algorithm is then modified to obtain the SIMPCQR algorithm.

The rest of this chapter is organized as follows. In Section 2.2, we define partial

quantile covariance and describe how to use it to extract PQR basis in functional

linear quantile regression model. In Section 2.3, we develop the SIMPQR algorithm

and discuss its properties. We discuss how to calculate the PCQR basis by using

partial composite quantile covariance and propose the SIMPCQR algorithm in Sec-

tion 2.4. Two sets of simulation studies are presented in Section 2.5 with the known

ground truth to examine the finite sample performance of our proposed methodol-

ogy. In Section 2.6, we use PQR and PCQR to predict ADHD index and MMSE

using data from NYU site from ADHD-200 sample and ADNI, respectively. Some

discussions and future research directions are given in Section 2.7.

2.2 Partial Functional Linear Quantile Regression

In model (2.2), we assume without loss of generality that t ∈ [0, 1] and restrict the

functional coefficients γτ(t) ∈ L2[0, 1]. For simplicity, we assume q = 1, that is,

we only consider one functional covariate. The extension of our methodology to

more functional covariates is straightforward. The estimation γτ(t) is in general

a difficult question as it lies in an infinite-dimensional space. However, if it can

be well approximated in a finite element space, say, H[0, 1], the solution for the

model (2.2) can be found. Let bkτ(t), k = 1, . . . ,K be a basis of H[0, 1] and γτ(t) =
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∑K
k=1 γkτbkτ(t). Model (2.2) can be then rewritten as

Qτ (yi|xi, zi(t)) = ατ + xT
i βτ +

K∑
k=1

zkiγkτ, (2.3)

where zki =
∫ 1

0
zi(t)bkτ(t)dt. Model (2.3) is simply a linear quantile regression

problem, which is essentially a linear programing problem; its solutions can be

obtained by many algorithms—for example, the simplex method [6], the interior

point method [38], the MM algorithm [35] and many others, already implemented

in various statistical softwares like quantreg in R [39].

In the literature, there are many methods devoted to find the crucial basis func-

tions in model (2.3). The general basis B-spline was proposed and studied by Car-

dot and others [11, 68]. In various models, fPC basis has also been studied [37, 52,

69]. However, neither basis does use information of the responses and hence they

are less efficient to do prediction. In this section, as the motivation of our proposal,

we first review the PLS basis in model (2.1) where both information of the func-

tional covariates and the responses are used to choose the basis functions. Then we

propose our methodology to choose basis for model (2.2), namely, partial quantile

regression (PQR) basis.

In functional linear regression model (2.1), the first PLS basis is chosen to be

b(t) = argb(t) min
α,β,b(t)

n∑
i=1

(
yi − α − xT

i β −

∫ 1

0
zi(t)b(t)dt

)2

, (2.4)

which is the analogue to the partial least square regression in multivariate analysis.

The subsequent basis is chosen by iteratively using (2.4) after taking account of and

subtracting the information from previous basis. For more details, see Delaigle and

Hall [20]. The essential idea of criteria (2.4) is to find a direction b(t) so that the
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projection of z(t) on it explains as much as possible the variation of the response

after adjusting some covariates. Therefore, as shown in Delaigle and Hall [20], it is

equivalent to find a basis b(t) such that the partial covariance

COV
(
Y − α − Xβ,

∫ 1

0
Z(t)b(t)dt

)
(2.5)

is maximized, where Y = (y1, . . . , yn)T , X = (x1, . . . , xn)T and Z(t) = (z1(t), . . . , zn(t))T .

Based on this equation, Delaigle and Hall [20] found an equivalent space with the

same dimension as the PLS space and established the corresponding estimation and

precision consistency for PLS methods.

The parameters in model (2.2) are estimated by solving

min
α,β,b(t)

n∑
i=1

ρτ

(
yi − α − xT

i β −

∫ 1

0
zi(t)b(t)dt

)
, (2.6)

where ρτ(u) = u(τ − I(u < 0)) is the quantile loss function [38] with I as the

indicator function. When τ = 0.5, the loss is ρτ(u) = |u|/2 and the results is then the

median, or least absolute deviation (LAD) regression. To adapt to the idea of PLS

basis, that is, to find a direction bτ(t) so that the projection of z(t) on it contributes

as much as possible to predict the quantile of the response after adjusting some

covariates, we first propose the concepts of quantile covariance (QC) and partial

quantile covariance (PQC). For given τ ∈ (0, 1) and a random variable X, the partial

quantile covariance COVqr(Y,Z) between two random variables Y and Z is of the

form

COVqr(Y,Z) = argγτ inf
α,βτ,γτ

E (ρτ (Y − α − βτX − γτZ)) , (2.7)

where we first normalize Z to have mean zero and variance one. If there is no X,

then COVqr(Y,Z) is quantile covariance between Y and Z. The quantile covariance
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measures the contribution of Z to the τ-th quantile of Y . It was first proposed and

studied by Dodge and Whittaker [21] in the context of partial quantile regression.

Li et al. [45] proposed a similar concept of quantile correlation and used it to study

quantile autoregressive model.

To find the partial quantile regression basis (PQR), similar to that of PLS to

maximize the covariance we propose to compute the bτ(t) by maximizing

COVqr

(
Y − ατ − Xβτ,

∫ 1

0
Z(t)bτ(t)dt

)
. (2.8)

The subsequent basis is computed by iteratively maximizing (2.8) after taking ac-

count of and subtracting the information of the previous basis. Let Zk =
∫ 1

0
Z(t)bkτ(t)dt,

where bkτ(t) is the k-th PQR basis. Denote Z(k+1)(t) as Z(t) after subtracting the in-

formation from the first k basis. Then the (k + 1)-th basis b(k+1)τ(t) is obtained by

maximizing the partial quantile covariance

COVqr

Y − ατ − Xβτ −
k∑

j=1

Z jγ jτ,

∫ 1

0
Z(k+1)(t)bτ(t)dt

 . (2.9)

We will discuss detailed algorithms in the next section. Once we find an adequate

number, K of functional basis elements, we have the approximation model (2.3),

where the parameters are obtained by minimizing

n∑
i=1

ρτ

yi − ατ − xT
i βτ −

K∑
k=1

zkiγkτ

 . (2.10)

The number of PQR basis can be chosen using BIC or cross validation (CV) as in

choosing the number of fPC basis adapted by Kato and other authors [37, 52, 69].
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2.3 SIMPQR Algorithm

In this section, we propose a simple partial quantile regression (SIMPQR) algorithm

to iteratively extract the PQR basis from the functional covariates z(t). Similar algo-

rithm has been studied by Dodge and Whittaker [21] in partial quantile regression

with multiple covariates. It is parallel to the SIMPLS for partial least square re-

gression [17]. The motivation is to subsequently maximize (2.8) after accounting

and subtracting the information of the previous basis. To simplify the description

of the SIMPQR algorithm, we will drop the scalar covariates x in model (2.9) in

this section. Let 0 < t1 < · · · < tm < 1 denote the discretized sample points for

the functional covariates and we assume they are equally spaced. Recall that we set

q = 1 and we focus on only one functional covariate z(t). The SIMPQR algorithm

is described as follows.

20



1. Initialization: Normalize zi(t j) for each j so that it has mean zero and
variance one.

2. Repeat:

(a) Compute a functional basis bτ(t j) = COVqr(Y,Z(t j)) for
j = 1, . . . ,m and rescale it to have

∑
b2
τ(t j) = 1.

(b) Project zi(t j) onto the basis (bτ(t1), . . . , bτ(tm))T to obtain
zi =

∑
zi(t j)bτ(t j). Denote Z = (z1, . . . , zn)T as the projections

for each subjects.

(c) Predict zi( j) by using simple linear regression with the projection
zi as the covariate, denoting the result by ẑi( j).

(d) Subtract the information from the projection zi by replacing zi( j)
by their residuals zi( j) − ẑi( j).

3. Stop: Check stopping criterion and retain the projections Z1, . . . ,ZK .

4. Model: Fit the model (2.3) by minimizing equation (2.10).

Algorithm 1: Simple Partial Quantile Regression (SIMPQR)

The SIMPQR algorithm follows the same line of SIMPLS with the covariance

being replaced by quantile covariance. The nature of our proposed quantile covari-

ance implies that it is not necessary to adjust the response Y each time after a new

basis is obtained. The resulting functional basis is orthogonal to each other due to

the prediction in step 2.3. However, it is worth noting that due to the nonadditivity

of conditional quantiles, we need to fit model (2.3) after all the basis elements are

picked out, instead of estimating the coefficients of each basis projections once they

are chosen.
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2.4 Partial Functional Linear Composite Quantile Re-

gression

Despite the success of quantile regression (QR), its relative efficiency to the least

square regression can be arbitrarily small [38, 87]. Composite quantile regression

(CQR) proposed by Zou and Yuan [87] inherits some good properties of QR and is

capable of providing more efficient estimators under certain conditions. Given two

random variables X and Y and quantile level set 0 < τ1 < · · · < τL < 1, the CQR

parameters (ατ1 , . . . , ατL , β) are defined as

inf
ατ1 ,...,ατL ,β

E
L∑

l=1

(
ρτl

(
Y − ατl − βX

))
, (2.11)

where ρτl is the τl-th quantile loss function and E us the expectation with respect

to random variables of X and Y . Under the homoscedasticity assumption, that is,

the model errors do not depend on covariates, all conditional regression quantiles

are parallel and they have the same slope β but different intercepts. The CQR is

equivalent to fit QR at different quantile levels. However, CQR estimators are more

efficient.

For given 0 < τ1 < · · · < τL < 1 and a random variable X similar to (2.7), the

partial composite quantile covariance (PCQC) COVcqr(Y,Z) between two random

variable Y and Z is of the form

COVcqr(Y,Z) = argγ inf
ατ1 ,...,ατL ,β,γ

E
L∑

l=1

(
ρτl

(
Y − ατl − βX − γZ

))
, (2.12)

where we first normalize Z to have mean zero and variance one. If there is no X,

then COVcqr(Y,Z) is composite quantile covariance (CQC) between Y and Z. The
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composite quantile covariance measures the contribution of Z to the quantiles of Y

at levels 0 < τ1 < · · · < τL < 1. There are some connections between composite

quantile covariance and covariance; however, these are beyond the scope of this

chapter and we plan to discuss them elsewhere.

With the definition of PCQC, we can obtain the PCQR basis for functional linear

composite quantile regression by maximizing

COVcqr

(
Y − Xβ,

∫ 1

0
Z(t)b(t)dt

)
, (2.13)

for a given quantile level set 0 < τ1 < · · · < τL < 1. The subsequent basis is

computed by iteratively maximizing (2.13) after accounting and subtracting the in-

formation of the previous basis. Once the PCQR basis is found, the functional linear

composite quantile regression can be easily fitted by a linear program, for example

quantreg in R [39]. The algorithm to compute the PCQR basis follows the same

line of SIMPQR in the last section; we only need to replace COVqr by COVcqr in

step 2.1 and keep the rest unchanged.

2.5 Simulation Studies

In this section, we investigate the finite sample performance of our proposed predic-

tion methods, namely partial quantile regression (PQR) basis and partial composite

quantile regression (PCQR) basis methods. We compare them with the fPC ba-

sis method in functional linear quantile regression (QRfPC) and functional linear

composite quantile regression (CQRfPC) models, where fPC method has served as

a popular benchmark in the existing literature [20]. In addition, we compare them

with PLS basis and fPC basis methods in functional linear regression model. We
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conduct our simulations in two settings where the first one is in favor of the fPC

basis and the second one is a more general case. Both simulations show superior or

comparable performance of our proposed methods.

Simulation I. In this simulation, we adapt the setup in Kato [37] by slightly

changing the weights of parameter γ(t). In particular, the model is of the form

Y =

∫ 1

0
γ(t)Z(t)dt + ε,

γ(t) =

50∑
j=1

γ jφ j(t); γ1 = 0.5, γ j =
20
3

(−1) j+1 j−2, j ≥ 2, φ j(t) = 21/2 cos( jπt),

Z(t) =

50∑
j=1

v jU jφ j(t); v j = (−1) j+1 j−1.1/2,U j ∼ U[−31/2, 31/2].

Each Xi(t) was observed at m = 201 equally spaced grid points on [0, 1]. We choose

the sample size n to be 100, 200, and 500. The error ε follows either Gaussian with

mean zero and variance one or Cauchy distribution. In this design we have

Qτ(Y |X) = F−1
ε (τ) +

∫ 1

0
γ(t)Z(t)dt,

where Fε is the cumulative distribution function of ε. It should be pointed out that

the simulation set up is in favor of fPC basis methods as the functional coefficients

lie on the same fPC space of functional covariates. It is expected that fPC basis

methods may be superior to other methods.

To facilitate the comparison, we set τ = 0.5T for QR methods and τl = l/(1+ L)

with L = 9 for CQR methods. One criteria we use is the mean integrated errors
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(MISE) of the functional coefficients,

MISE =
1
S

S∑
s=1

m∑
j=1

(
γ̂s(t j) − γ(t j)

)2
= Bias2 + Var,

where

Bias2 =
∑

j

 1
S

∑
s

γ̂s(t j) − γ(t j)

2

and

Var =
1
S

∑
s

∑
j

γ̂s(t j) −
1
S

∑
s

γ̂s(t j)

2

.

In the simulation, we set the total number of replication S = 100 due to the

limitation of computational resources. In fact, for a larger S , the result would be

very similar. For the first three cutoff levels, Table 2.1 gives us a summary of the

different configurations of parameters for the six methods. Although the simulation

design is in favour of fPC based methods, for the small number of cutoff levels,

the PLS, PQR and PCQR methods perform better regarding the performance mea-

surements of Bias2 and MISE. Due to the natures of sensitivity against skewness of

errors, Figure 2.2 shows that the performances of PLS and fPC are much worse in

general compared with the other four methods when the errors follow the Cauchy

distribution. On the other hand, when the Gaussian errors are employed, for the

lower cutoff levels, the PLS, PQR and PCQR methods are very similar. And when

the number of cutoff levels becomes larger, the PCQR performs slightly better than

the PLS while PQR performs much better than the PCQR. fPC based methods are

similar to each other crossing all cutoff levels.

The averaged mean squared error (MSE) of the responses is another prediction

performance criteria we consider. Figure 2.3 indicates that the prediction errors

are much lower for PLS, PQR, PCQR methods compared with those for fPC based
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methods, due to the fact that fPC based methods are only data driven while the

other three methods are both data and response adapted. For the Gaussian errors,

although with regard to the functional coefficients estimation PQR is better than

both PLS and PCQR methods, taking into consider of the prediction errors, the

PLS and PCQR methods perform better than PQR. For the Cauchy errors, PQR

performs the best out of the PLS, PQR, PCQR methods which indicates that PQR

is more robust against the skewness of error distribution.

Simulation II. In this simulation, we take the Zi(t)s from a real data study, and

generate the Yis according to the linear model of

Y =

∫ 1

0
γ(t)Z(t)dt + ε,

where the error ε is taken as Gaussian and Cauchy. The centres of errors are

taken as zero while the scales are taken as the empirical standard deviation of the

true responses multiplied by
√

5. The Zis are taken from a benchmark Phoneme

dataset (http://statweb.stanford.edu/˜tibs/ElemStatLearn/). In these

data, Zi(t) represents log-periodogram constructed from recordings of different phone-

-mes. The periodogram are available at 256 equally-spaced frequencies t, which for

simplicity we denote by 0 = t1 < t1 < . . . < tm = 1, where m = 256 [31]. We used

n = 1717 data curves Zi(t) that correspond to the phonemes “aa” as in “dark” and

“ao” as in “water”. This example can also be found in Delaigle and Hall [20].

Computing the first J = 20 empirical fPCbasis functions φ̂1(t), . . . , φ̂J(t), we

consider four different curves γ(t) by taking γ(t) =
∑J

j=1 a jφ̂i(t) for four different

sequence of a js: (i) a j = (−1) j · 1{0 ≤ j ≤ 5}; (ii) a j = (−1) j · 1{6 ≤ j ≤ 10}; (iii)

a j = (−1) j · 1{11 ≤ j ≤ 15}; (iv) a j = (−1) j · 1{16 ≤ j ≤ 20}. Going through case (i)
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to (iv), the models become less favorable for fPC, while we will see the PLS, PQR

and PCQR methods manage to capture the interaction between Z and Y using only

a few terms.

We take τ = 0.5 and compare the six methods by looking at the MISE, Bias2 and

Var. As shown in Figure 2.4, from case (i) to (iv), PLS, PQR and PCQR methods

perform better and better compared with the fPC based methods. In fact, all the

PLS, PQR and PCQR methods manage to obtain a very good fitting using only a

much small number of components no matter how the errors are distributed. This

shows great superiority of our proposed methods when the functional coefficients

do not lie on the fPC space.

Figure 2.5 displays the prediction errors MSE when the errors follow Gaussian

(left panels) and Cauchy (right panels) distributions. The PLS, PQR and PCQR

methods predict better in general compared with fPC based methods. Except for

the PLS of Cauchy errors, the MSEs of PQR and PCQR methods decrease imme-

diately with the increase of cutoff levels, while the fPC based methods performed

differently under each case. From case (i) to (iv), the MSEs of fPC based methods

begin to drop significantly after a larger and larger cutoff level. And for the same

cutoff levels, the differences of the prediction errors between the PLS, PQR and

PCQR methods and the fPC based methods become more and more signifiant from

case (i) to (iv).

One interesting phenomenon here is that although the PCQR method outper-

forms the PQR method when the errors are Gaussian distributed, the PQR method

regains its superiority when the errors are Cauchy distributed. Compared with what

we have observed from simulation I, it may indicate that the PCQR method is only

a slightly less favourable alternative to the PLS method when the errors are sym-

metric. On the other hand, when the errors are distributed in an extremely skewed
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manner, the PCQR method could not out-perform the PQR method. That is exactly

the same situation as the fPC based methods when the CQR method is implemented.

2.6 Real Data Analysis

Real Data Analysis I: ADHD-200 fMRI Data. We apply our proposed method

to a dataset on attention deficit hyperactivity disorder (ADHD) from the ADHD-

200 Sample Initiative Project. ADHD is the most commonly diagnosed behavioral

disorder of childhood, and can continue through adolescence and adulthood. The

symptoms include lack of attention, hyperactivity, and impulsive behavior. The

dataset we use is the filtered preprocessed resting state data from New York Univer-

sity (NYU) Child Study Center using the Anatomical Automatic Labeling (AAL)

[71] atlas. AAL contains 116 Regions of Interests (ROI) fractionated into functional

space using nearest-neighbor interpolation. After cleaning the raw data that failed

in quality control or has missing data, we include 120 individuals in the analysis.

The response of interest is the ADHD index, Conners’ parent rating scale-

revised, long version (CPRS-LV), a continuous behavior score reflecting the sever-

ity of the ADHD disease. In the AAL atalas data, the mean of the grey scale in

each region is calculated for 172 equally spaced time points. We choose six parts

of the brain which contain at least 4 ROIs, namely cerebelum, temporal, vermis,

parietal, occipital, and frontal. The six functional predictors for each candidate part

are computed by taking the average grey scale of the ROIs corresponding to each

part, see Figure 2.1 (Left) for some selected subjects at cerebellum. The scalar

covariates of primary interest include gender (female/male), age, handedness (con-

tinuous between -1 and 1, where -1 denotes totally left-handed and 1 denotes to-

tally right-handed), diagnosis status (categorical with 3 levels: ADHD-combined,
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ADHD-inattentative and Control as baseline), medication status (yes/no), Verbal

IQ, Performance IQ and Full4 IQ. We build model to predict ADHD index adjust-

ing these 9 scalar covariates (coded with dummy variables) using each of the six

functional predictors. We consider the models for each individual functional co-

variates adjusting for the 9 scalar covariates.

Figure 2.6 displays the changes of MSEs for all six methods, with the increase

of the number of cutoff level L for different brain regions. Here the quantile level τ

is chosen to be fixed as 0.5. As shown in the figure, PLS, PQR and PCQR methods

perform much better than the fPC based methods while PCQR shows a significant

superiority. In general, for each method only a few basis functions is capable of

predicting the response well and additional basis functions do not decrease MSE

much. This is more obvious for PLS, PQR and PCQR methods as they consider

information from the response while choose basis functions.

Real Data Analysis II: ADNI DTI Data. We use our model methods to ana-

lyze a real DTI data set with n = 214 subjects collected from NIH Alzheimer’s

Disease Neuroimaging Initiative (ADNI) study. Data used in the preparation of

this chapter were obtained from the Alzheimer’s Disease Neuroimaging Initiative

(ADNI) database (adni.loni.ucla.edu). The ADNI was launched in 2003 by the Na-

tional Institute on Aging (NIA), the National Institute of Biomedical Imaging and

Bioengineering (NIBIB), the Food and Drug Administration (FDA), private phar-

maceutical companies and non-profit organizations, as a $60 million, 5-year public

private partnership. The primary goal of ADNI has been to test whether serial

magnetic resonance imaging (MRI), positron emission tomography (PET), other

biological markers, and clinical and neuropsychological assessment can be com-

bined to measure the progression of mild cognitive impairment (MCI) and early
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Alzheimer’s disease (AD). Determination of sensitive and specific markers of very

early AD progression is intended to aid researchers and clinicians to develop new

treatments and monitor their effectiveness, as well as lessen the time and cost of

clinical trials. The Principal Investigator of this initiative is Michael W. Weiner,

MD, VA Medical Center and University of California, San Francisco. ADNI is the

result of efforts of many coinvestigators from a broad range of academic institutions

and private corporations, and subjects have been recruited from over 50 sites across

the U.S. and Canada. The initial goal of ADNI was to recruit 800 subjects but ADNI

has been followed by ADNI-GO and ADNI-2. To date these three protocols have

recruited over 1500 adults, ages 55 to 90, to participate in the research, consisting

of cognitively normal older individuals, people with early or late MCI, and people

with early AD. The follow up duration of each group is specified in the protocols

for ADNI-1, ADNI-2 and ADNI-GO. Subjects originally recruited for ADNI-1 and

ADNI-GO had the option to be followed in ADNI-2. For up-to-date information,

see www.adni-info.org. The significance level is an ongoing public-private part-

nership to test whether genetic, structural and functional neuroimaging, and clinical

data can be integrated to assess the progression of mild cognitive impairment (MCI)

and early Alzheimer’s disease (AD). The structural brain MRI data and correspond-

ing clinical and genetic data from baseline and follow-up were downloaded from

the ADNI publicly available database (https://ida/loni/usc/edu).

The DTI data were processed by two key steps including a weighted least

squares estimation method [4, 86] to construct the diffusion tensors and a FSL TBSS

pipeline [67] to register DTIs from multiple subjects to create a mean image and a

mean skeleton. Speciffically, maps of fractional anisotropy (FA) were computed

for all subjects from the DTI after eddy current correction and automatic brain ex-

traction using FMRIB software library. FA maps were then fed into the TBSS tool,
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which is also part of the FSL. In the TBSS analysis, the FA data of all the subjects

were aligned into a common space by non-linear registration and the mean FA im-

age were created and thinned to obtain a mean FA skeleton, which represents the

centers of all WM tracts common to the group. Subsequently, each subjects aligned

FA data were projected onto this skeleton. We focus on the midsagittal corpus cal-

losum skeleton and associated FA curves from all subjects, see Figure 2.1 (Right)

for some selected subjects. The corpus callosum (CC) is the largest fiber tract in

the human brain and is a topographically organized structure, see Figure 2.7 (Left).

It is responsible for much of the communication between the two hemispheres and

connects homologous areas in the two cerebral hemispheres. It is important in the

transfer of visual, motoric, somatosensory, and auditory information.

We are interested in predicting mini-mental state examination (MMSE) scores,

one of the most widely used screening tests, which are used to provide brief, objec-

tive measures of cognitive functioning for almost fifty years. The MMSE scores has

been seen as a reliable and valid clinical measure quantitatively assessing the sever-

ity of cognitive impairment. It was believed that the MMSE scores to be affected by

demographic features such as age, education and cultural background, but not gen-

der [70]. After quality control and excluding the missing data, we include 200 sub-

jects from the total 217 subjects. The functional covariate is fractional anisotropy

(FA) values along the corpus callosum (CC) fiber tract with 83 equally spaced grid

points, which can be treated as a function of arc-length. The scale covariates are

the gender variable (coded by a dummy variable indicating for male), the age of

the subject (years), the education level (years), an indicator for Alzheimer’s disease

(AD) status (19.6%) and an indicator for mild cognitive impairment (MCI) status

(55.1%), and genotypes for apolipoprotein E ε-4 (coded by three indicator variables

for four levels).
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The MSEs are shown in figure 2.7. In general, PLS, PQR and PCQR meth-

ods present consistently better than fPC based methods while PCQR outperforms

PQR and PCQR methods. The phenomenon has been observed from the previous

read data analysis, which indicates that for brain imaging data PCQR method has

a improved prediction accuracy compared with PQR and PCQR methods. With

the number of functional basis increases, the MSEs do not decreases much for fPC

based methods while constantly decrease for PLS, PQR and PCQR methods. This

indicates that the fPC basis is not suitable to do prediction though they may account

a large portion of the variations of functional covariates. The PLS, PQR and PCQR

methods is capable of explaining a large percentage variation of the response and

reducing the MSEs by proving appropriate basis functions. Our proposed methods

show great superiority to the fPC based methods and the PLS methods and provide

a powerful tool to do prediction in practice.

2.7 Discussion

In this chapter, we first define the concept partial quantile covariance (PQC) to

measure the contribution of one covariate to the response. We then propose the par-

tial functional linear quantile regression method to use partial quantile regression

(PQR) to extract PQR basis to effectively predict the response. This is motivated

by the success of the partial least square (PLS) basis in functional linear regression

model. The key idea is to use both information from the functional covariates and

the response and therefore both PQR basis and PLS basis can be treated as super-

vised learning while fPC based methods are semi-supervised learning as they only

use information from the functional covariates. The algorithm SIMPQR we devel-

oped is analogue to that of SIMPLS. We extend PQC to partial composite quartile
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covariance (PCQC) and propose the PCQR basis and its SIMPCQR algorithm under

the homoscedasticity condition.

The simulations show that PLS, PQR and PCQR in general perform better than

the fPC based methods. However, PQR method is more robust against skewness of

error distribution while the PLS and PCQR methods act similarly to each other and

perform better than PQR method when the error distribution is symmetric. This

advantage from PQR method can be explained by the general nature of quantile

method which obtains its robustness by sacrificing certain efficiency. By assuming

homoscedasticity, the PCQR method acts similarly to the PLS method when the

error distributions are symmetric but retains its robustness when the error distribu-

tions are extremely skewed.

Our proposed methods, PQR and PCQR methods, significantly outperform other

methods, especially those fPC based methods in both ADHD-200 fMRI data anal-

ysis and ADNI DTI data analysis. In ADHD-200 fMRI data analysis, our methods

are capable of reducing much more MSEs by using only a few basis while fPC

based method are not even by adding more basis. In ADNI DTI data analysis, both

PQR and PCQR methods reduce significant amount MSEs with more and more ba-

sis. On the other hand, fPC based methods perform poor even with more basis.

Overall in the two neuroimaging data analysis, PCQR performs slightly better than

PQR though.

The consistency of the PLS methods was proved by Delaigle and Hall [20]

where they found an equivalent space with explicit expressed basis functions to the

PLS basis space. For PQR and PCQR methods, it is difficult to find such equivalent

space and therefore their consistency may not be easy to show. The difficulty of

the problem lies on the iterative nature of PQR and PCQR methods where basis is

sequentially extracted. One way to overcome that is to find preselected number of
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basis simultaneously [83]. Another direction is to impose certain structure on the

selected basis, for example, sparsity and smoothness in PLS methods [62]. This can

be done for simultaneous basis selection as well [82].

In both simulation studies and real data analysis, only univariate functional co-

variate case is considered. However, the extension of PQR and PCQR methods

to multivariate functional covariates is straightforward. The computation becomes

more complex and intensive due to the iterative basis extraction nature. Such com-

plexity is expected to be significantly reduced by applying simultaneous basis se-

lection or imposing certain structure on the selected basis. Further details are out of

the scope of this chapter and will be pursuit in the future research.
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fPC QRfPC CQRfPC
Error L n Bias2 Var MISE Bias2 Var MISE Bias2 Var MISE

Gaussian

1
100 3.63 0.07* 3.70 3.63 0.09 3.72 3.63 0.07* 3.71
200 3.64 0.03* 3.67 3.63 0.04 3.68 3.63 0.04 3.67
500 3.69 0.02* 3.70 3.68 0.02* 3.71 3.69 0.02* 3.70

2
100 0.78 0.36* 1.14* 0.77 0.39 1.16 0.78 0.36* 1.14*
200 0.86 0.17* 1.03 0.86 0.18 1.04 0.86 0.17* 1.03
500 0.86 0.09* 0.95 0.86 0.10 0.96 0.86 0.09* 0.95

3
100 0.32 0.34* 0.67* 0.33 0.38 0.70 0.32 0.35 0.67*
200 0.28 0.19* 0.47* 0.28 0.22 0.50 0.28 0.20 0.48
500 0.29 0.08* 0.38 0.29 0.09 0.38 0.29 0.08* 0.38

Cauchy

1
100 7.32 >100 >100 3.65 0.12 3.76 3.66 0.09* 3.75
200 4.82 54.42 59.24 3.63 0.10 3.73 3.64 0.08* 3.72
500 43.78 >100 >100 3.71 0.03 3.74 3.72 0.02* 3.74

2
100 7.56 >100 >100 0.77 0.40* 1.17* 0.76 0.42 1.18
200 2.14 >100 >100 0.78 0.21* 0.99 0.77 0.22 1.00
500 >100 >100 >100 0.81 0.10* 0.91 0.81 0.10* 0.91

3
100 6.03 >100 >100 0.28 0.48* 0.76* 0.27 0.53 0.80
200 3.67 >100 >100 0.31 0.24* 0.55* 0.31 0.27 0.58
500 >100 >100 >100 0.31 0.11* 0.41* 0.31 0.12 0.42

PLS PQR PCQR
Error L n Bias2 Var MISE Bias2 Var MISE Bias2 Var MISE

Gaussian

1
100 0.54 0.82 1.36* 0.50* 0.91 1.41 0.52 0.84 1.36*
200 0.63 0.20 0.83 0.57* 0.26 0.83 0.60 0.21 0.81*
500 0.59 0.07 0.66 0.52* 0.10 0.62* 0.56 0.08 0.64

2
100 0.11* 1.07 1.18 0.15 1.18 1.33 0.12 1.07 1.19
200 0.12* 0.29 0.41* 0.16 0.36 0.52 0.13 0.29 0.43
500 0.11* 0.10 0.21* 0.14 0.13 0.27 0.12 0.10 0.23

3
100 0.08 2.58 2.66 0.07 2.28 2.36 0.06* 2.65 2.71
200 0.04* 0.87 0.91 0.04* 1.10 1.13 0.04* 0.96 0.99
500 0.02* 0.26 0.28* 0.02* 0.43 0.45 0.02* 0.30 0.32

Cauchy

1
100 71.08 >100 >100 0.49 1.23 1.72* 0.48* 1.39 1.87
200 41.24 >100 >100 0.48 0.43 0.91* 0.47* 0.47 0.94
500 >100 >100 >100 0.46* 0.16 0.62* 0.48 0.17 0.64

2
100 >100 >100 >100 0.16 1.96 2.12 0.12* 3.01 3.13
200 >100 >100 >100 0.15 0.67 0.82* 0.12* 0.98 1.09
500 >100 >100 >100 0.14 0.23 0.37* 0.11* 0.29 0.41

3
100 >100 >100 >100 0.13* 5.84 5.97 0.20 14.28 14.48
200 >100 >100 >100 0.06* 2.59 2.65 0.11 5.45 5.56
500 >100 >100 >100 0.02* 1.01 1.02 0.04 1.67 1.71

Table 2.1: Simulation I: ∗ flags the minimum values of the six methods in each
measurement category of Bias2, Var and MISE.
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Figure 2.2: Simulation I: the MISEs with Gaussian (left) and Cauchy (right) errors,
sample size n = 100, 200, and 500 from up to down.

36



2 4 6 8

0.
5

1.
0

1.
5

2.
0

2.
5

L

M
S

E
●

●

●

●
● ● ● ● ●

●

●

●

●

●
●

● ● ●

●

●

fPC
QRfPC
CQRfPC
PLS
PQR
PCQR

2 4 6 8

L

M
S

E

3
4

5
6

7
8

0
20

00
40

00
60

00

●
●

●

● ●
● ● ● ●

●

●

●

●
● ● ● ● ●

● ●fPC
QRfPC
CQRfPC

PLS
PQR
PCQR

2 4 6 8

1.
0

1.
5

2.
0

2.
5

L

M
S

E

●

●

●
● ● ● ● ● ●

●

●

●

●
● ● ● ● ●

●

●

fPC
QRfPC
CQRfPC
PLS
PQR
PCQR

2 4 6 8

L

M
S

E

4
5

6
7

8

0
50

0
15

00
25

00

● ●
● ● ● ●

● ● ●

●

●

●

●
●

● ● ● ●

● ●fPC
QRfPC
CQRfPC

PLS
PQR
PCQR

2 4 6 8

1.
0

1.
5

2.
0

2.
5

L

M
S

E

●

●

●
● ● ● ● ● ●

●

●
●

● ● ● ● ● ●

●

●

fPC
QRfPC
CQRfPC
PLS
PQR
PCQR

2 4 6 8

L

M
S

E

4
5

6
7

8

0
20

00
0

50
00

0

●
● ● ● ● ● ● ● ●

●

●

●

●
●

● ● ● ●

● ●fPC
QRfPC
CQRfPC

PLS
PQR
PCQR

Figure 2.3: Simulation I: the averaged MSEs with Gaussian (left) and Cauchy
(right) errors, sample size n = 100, 200, and 500 from up to down.
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Figure 2.4: Simulation II: the MISEs with Gaussian (left) and Cauchy (right) errors,
case I, II, II, and IV from up to down.
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Figure 2.5: Simulation II: the averaged MSEs with Gaussian (left) and Cauchy
(right) errors, case I, II, II, and IV from up to down.
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Figure 2.6: Real Data Analysis I: ADHD-200 fMRI data, From up to down there
are cerebelum, vermis, and occipital on the left panels and temporal, parietal, and
frontal on the right panel.
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Figure 2.7: Real Data Analysis II: (Left) The midsagittal corpus callosum (CC)
skeleton overlaid with fractional anisotropy (FA) from one randomly selected sub-
ject and (Right) the MSE of mini-mental state examination (MMSE) at different
cut-off levels.
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Chapter 3

An Alternative Approach to

Functional Linear Partial Quantile

Regression

In Chapter 2, we proposed the partial quantile regression (PQR) prediction pro-

cedure for functional linear model by using partial quantile covariance techniques

and developed the simple partial quantile regression (SIMPQR) algorithm to effi-

ciently extract PQR basis for estimating functional coefficients. However, although

the PQR approach is considered as an attractive alternative to projections onto the

principal component basis, there are certain limitations to uncovering the corre-

sponding asymptotic properties mainly because of its iterative nature and the non-

differentiability of the quantile loss function which prevent many methods with nice

properties being applied directly. In this chapter, we propose and implement an al-

ternative formulation of partial quantile regression (APQR) for functional linear

model by using block relaxation ideas and finite smoothing techniques. The pro-

posed reformulation leads to insightful results and motivates new theory so that we
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can demonstrate consistency and establish convergence rates by applying advanced

techniques from empirical process theory. Two simulations and two real data from

ADHD-200 sample and ADNI are investigated to show the superiority of our pro-

posed methods.

3.1 Introduction

Partial least squares (PLS) is an iterative procedure for feature extraction of lin-

ear regression. The technique was originally developed in high dimensional and

collinear multivariate settings and is especially popular in chemometrics [1, 24, 32,

57, 74]. As a supervised dimension reduction technique, PLS projects the original

data onto a lower dimensional subspace formed by the linear projects of covariates

which best predict the responses. More recently, PLS has been applied in the func-

tional data context by Preda and Saporta [60] using functional linear model, with

its consistency and convergence rates established and demonstrated by Delaigle and

Hall [20].

Consider a functional linear model with scalar response:

y = α + xTβ +

∫
I
zT (t)γ(t)dt + ε, (3.1)

where x and z(t) are scalar and functional covariates. The contributions of z(t)

towards the variation of y is characterized by the functional coefficient γ(t) and

change by t. To facilitate the estimation of γ(t), we usually require that it satisfies

certain smoothness conditions and restrict it onto a functional space. For example,

we may require that its second derivative exists [36] and γ(t) is square integrable

[37]. Even in such a situation, the estimation is still an infinite-dimensional prob-
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lem.

The common practice is to project γ(t) into a space spanned by a finite number

of functional basis. There are three major choices of such basis: general basis, func-

tional principal component basis (fPC) and partial least square basis (PLS). There

are many options of choosing general basis; for instance, B-spline basis [12] and

wavelet basis [79]. In order to provide a good approximation of functional coef-

ficients, a large number of basis are often used. However, this may cause model

overfitting, and hence to remedy that, various penalization methods have been pro-

posed [16, 80]. The fPC method has also been extensively studied [29, 44], where

the fPCs of z(t) serve as the basis. Although fPC basis are more data-adapted than

the general basis as they use the information of functional covariates and the formed

space can explain most of the variation of z(t), it is not necessary all the fPC basis

can contribute to the variation of the responses. Therefore, the PLS basis, which

use the information from both covariates and responses, becomes an appealing sup-

plement. In particular, using as basis the linear projects of z(t) which best predict

the responses, PLS method can often capture more relevant information with fewer

terms [20].

In recent years, quantile regression, which was introduced by the seminal work

of Koenker and Bassett [41], has been well developed and recognized in functional

linear regression [37, 76]. In this chapter, we focus on the functional linear quantile

regression model:

Qτ(y|x, z(t)) = ατ + xTβτ +

∫
I
zT (t)γτ(t)dt, (3.2)

where Qτ(y|x, z(t)) is the τ-th conditional quantile of response y given scalar co-

variates x and functional covariate z(t) for a fixed quantile level τ ∈ (0, 1). As an
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alternative to least squares regression, the quantile regression method is more ef-

ficient and robust when the responses are non-normal, errors are heavy tailed or

outliers are present. It is also capable of dealing with the heteroscedasticity issues

and providing a more complete picture of the response [38].

To estimate functional coefficients γτ(t), it is convenient to restrict them onto

a finite dimensional functional space. Similarly to mean regression, general basis

like B-spline can be used to approximate the quantile coefficient functions [11,

68], while fPC basis have also been throughly investigated [37, 52, 69]. Analogue

to the PLS in functional linear regression model, partial quantile regression (PQR)

basis, utilizing information from both response and covariates, become an attractive

alternative. In particular, the PQR basis can be obtained by using simple PQR

(SIMPQR) procedure proposed by Yu et al. [76], where the basis are extracted by

sequentially maximizing the partial quantile covariance between the response and

projections of functional covariate.

Although the functional PQR approach appears to be an enticing choice alter-

native to the principal component method, there are certain limitations to uncov-

ering the asymptotic properties mainly because of its iterative nature and the non-

differentiability of the quantile loss functions. The difficulty due to the iterative

formulation used to exist for functional PLS too. To deal with it, an alternative but

equivalent PLS formulation (APLS) was proposed by Delaigle and Hall [20]. Based

on the fact that there exists an equivalence between fPC space and functional APLS

space, it is then possible to verify the consistency and convergence rates. Unfortu-

nately, such equivalence does not exist between PQR and fPC spaces because of the

non-additivity of conditional quantiles. In addition, the non-differentiability of the

quantile loss function ρτ(·) can prevent many methods and properties being directly

applied in quantile regression context [75, 81].
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To address these problems, we firstly propose a smoothing approximation for

the quantile loss function by applying the finite smoothing techniques [13, 54].

The approximation function should uniformly converge towards the quantile loss

function so that the minimizer of the former converges to the minimizer of the latter

in a compact set. Replacing ρτ by such smoothing approximation, the quantile

objective function becomes differentiable. Then for a given fixed K, namely the

number of PQR basis, the original PQR formulation can be modified according to

the block relaxation ideas [19] which updates and obtains the basis as a “block”

instead of one by one sequentially. The value of K can be chosen using BIC or

cross validation (CV) as in choosing the number of fPC basis adapted by Kato and

other authors [37, 52, 69]. Such modification provides an alternative to the original

formulation for PQR (APQR) basis which leads to insightful results and motivates

new theory so that we can demonstrate consistency and establish convergence rates

by applying advanced techniques from empirical processes theory [72].

The rest of this chapter is organized as follows. In Section 3.2, we define the

partial quantile covariance and describe how it can be used to extract PQR basis in

functional linear quantile regression model. In Section 3.3, we propose and imple-

ment the alternative partial quantile regression (APQR) method and demonstrate its

convergence properties. The asymptotic properties including the consistency and

convergence rates of the proposed method are established in Section 3.4. In Section

3.5 and 3.6, we use two simulations and two real data from ADHD-200 sample and

ADNI to illustrate the superiority of our proposed method. Some discussions and

future research directions are made in Section 3.7.

46



3.2 Alternative Partial Functional Linear Quantile Re-

gression

In model (3.2), we assume without loss generality that t ∈ I = [0, 1] and restrict the

functional coefficient γτ(t) ∈ L2[0, 1]. For simplicity, only one functional covariate

is considered here. The extension to multiple functional covariates is straightfor-

ward. In general, the estimation of γτ(t) is a difficult problem as it lies in an infinite

dimensional space. However, if it can be projected into a finite dimensional space,

say H[0, 1], it can be easily approximated. In particular, let φτk(t), k = 1, . . . ,K, be

a basis of H[0, 1] and γτ(t) =
∑K

k=1 γτkφk(t). Model (3.2) can be rewritten as

Qτ (y|x, z(t)) = ατ + xTβτ +

K∑
k=1

zikγτk, (3.3)

where zik =
∫ 1

0
z(t)φk(t)dt for i = 1, . . . , n. Model (3.3) is simply a multiple linear

regression, which is essentially a linear programming problem and can be solved by

many algorithms - for example, the simplex method [6], the interior point method

[38], the MM algorithm [35] among many others, already implemented in various

statistical softwares like quantreg in R [40].

In functional linear model (3.1), for a given number of basis, say K, the partial

least square (PLS) basis φ(t) = (φ1(t), . . . , φK(t)) are chosen to be

arg minφ(t) min
α,β,φ(t)

E

yi − α − xT
i β −

K∑
k=1

∫ 1

0
zi(t)φk(t)dt

2

, (3.4)

which is the analogue to the partial least square regression in multivariate analy-

sis. Here E is the empirical expectation. The essential idea of criteria (3.4) is to
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find a group of directions φ(t) so that the projections of zi(t)s on them explain as

much as possible the variation of the response after adjusting other covariates. It is

equivalent to find the basis φ(t) such that partial covariance

COV

y − α − Xβ,
K∑

k=1

∫ 1

0
Z(t)φk(t)dt

 (3.5)

is maximized where y = (y1, . . . , yn)T , X = (x1, . . . , xn)T and Z(t) = (z1(t), . . . , zn(t))T .

Based on this idea, Delaigle and Hall [20] found a equivalent PLS space, in which

the consistency and rates of convergence have been established.

Similarly, the parameters in model (3.2) can be estimated by solving

min
α,β,φ(t)

Eρτ

yi − α − xT
i β −

K∑
k=1

∫ 1

0
zi(t)φk(t)dt

 , (3.6)

where ρτ(u) = u(τ − I(u < 0)) is the quantile loss function [41] with I as the

indicator function. Similarly to the formulation of PLS basis, for given τ ∈ (0, 1),

a group of directions φτ(t) can be found so that the projections of zi(t)s onto them

contribute as much as possible to predict the conditional quantile of the response.

The concepts of quantile covariance (QC) and partial quantile covariance (PQC)

were firstly proposed by Yu et al. [76]. For given τ ∈ (0, 1) and a random variable

X, the partial quantile covariance (PQC) between two random variables Y and Z is

defined as

COVqr(Y,Z|X) = argγ inf
α,β,γ

E (ρτ (Y − α − βX − γZ)) , (3.7)

where Z is normalized to have mean zero and variance one. If there is no X,

COVqr(Y,Z) is just quantile covariance (QC) between Y and Z. The quantile covari-

ance measures the contribution of Z to the τ-th quantile of Y . It was first proposed
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and studied by Dodge and Whittaker [21] in the context of partial quantile regres-

sion. Recently, Li et al. [45] proposed a similar concept of quantile correlation and

used it to study quantile autoregressive model, while Ma et al. [53] used the partial

quantile correlation to study the ultra-high dimensional variable screening problem.

To find the partial quantile regression basis (PQR), we propose to compute φτ(t)

by maximizing

COVqr

y − ατ − Xβτ,
K∑

k=1

∫ 1

0
Z(t)φτk(t)dt

 . (3.8)

By projecting functional covariates onto them, the functional linear model (3.2)

is approximated by model (3.3), where the parameters can be easily obtained by

minimizing

Eρτ

yi − ατ − xT
i βτ −

K∑
k=1

zikγτk

 . (3.9)

The value of K, namely the number of PQR basis, can be chosen using BIC or cross

validation (CV) as in choosing the number of fPC basis adopted by Kato and other

authors [37, 52, 69].

3.3 Alternative Partial Quantile Regression

Although the original functional PQR approach [76] is regarded as an appealing al-

ternative to the fPC method, there are certain limitations to uncovering the asymp-

totic properties mainly because of its iterative nature and the non-differentiability

of the quantile loss functions. The difficulty due to the iterative formulation used

to exist for functional PLS too. To deal with it, an alternative but equivalent PLS

formulation (APLS) was proposed by Delaigle and Hall [20]. Based on the fact that

there exists an equivalence between fPC and APLS spaces, it is then possible to
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verify the consistency and convergence rates. Unfortunately, such equivalence does

not exist between PQR and fPC spaces due to the non-additivity of conditional

quantiles. In addition, the non-differentiability of the quantile loss function ρτ(·)

at the origin can prevent many methods and results from being directly applied in

quantile regression context [75, 81].

To address these problems, in this section, we firstly propose a smoothing ap-

proximation for the quantile loss function by applying the finite smoothing tech-

niques [13, 54]. The fact that such approximation can uniformly converge towards

the quantile loss function guarantees that the minimizer of the former converges to

the minimizer of the latter on a compact set. Replacing ρτ by its smoothing approx-

imation, the quantile objective function becomes differentiable. Then for a given

fixed K, the number of PQR basis, the original PQR formulation can be modified

according to the block relaxation ideas [19] which updates and obtains the basis as

a “block” instead of one by one sequentially, while the value of K can be chosen us-

ing BIC or cross validation (CV) as in choosing the number of fPC basis adapted by

Kato and other authors [37, 52, 69]. Such modification provides an alternative to the

original formulation for PQR (APQR) basis which leads to our proposed alternative

SIMPQR (ASIMPQR) Algorithm.

Finite Smoothing of Quantile Loss Functions As mentioned above, to uncover

the asymptotic properties for functional PQR, one difficulty lies in the non-differentia-

-bility of the quantile loss function ρτ(·) at the origin, which can prevent many

methods and results from being directly applied in quantile regression context [75,

81]. To address such problem, we propose for ρτ(u) a smoothing approximation

ρτν(u) while ρτν(u) converges pointwise to ρτ(u), as ν → ν0, where ν is a vector

of smoothing parameters and ν0 is typically chosen as 0. [13, 54]. In addition, if
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such convergence is uniform, the minimizer of ρτν(u) converges to the minimizer

of ρτ(u), for a compact set in (0, 1) [33]. Replacing ρτ by ρτν, the quantile objective

function then becomes differentiable which further facilitates defining score, infor-

mation and identifiability in term of functional linear quantile regression, so that

the estimator consistency and convergence rates can be established.

The finite smoothing technique of quantile loss function is a special case from

the general problem of non-smooth convex optimization and is both statistically

and computationally important in quantile regressions [13, 56, 75, 81]. For a given

precision ε, by choosing an appropriate smoothing function, one may obtain an op-

timal efficiency estimate in terms of number of iterations until convergence as O( 1
ε
),

which is a significant improvement compared with some popular numerical scheme

for non-smooth convex minimization such as subgradient methods whose number

of iterations until convergence is O( 1
ε2 ) [56]. There are various options regarding

the choices of smoothing functions. Some particular examples include generalized

Huber function [13] and iterative least squares smoothing function [54], both of

which converge uniformly towards ρτ(u). We can take generalized Huber function

[13] as an example:

Hν,τ(u) =


u(τ − 1) − 1

2 (τ − 1)2ν, u ≤ (τ − 1)ν;

u2

2ν , (τ − 1)ν < u ≤ τν;

uτ − 1
2τ

2ν, u > τν.

By choosing a non-negative number ν, and let it go to 0, Hν,τ(u) converges uniformly

towards ρτ(u). Therefore, the minimizer of Hν,τ converges to the minimizer of ρτ

too [33]. The smoothing method is considered to be an important alternative to the

methods of simplex and interior point in quantile regression [14].
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Empirical Choice of The Number of Basis As discussed previously, it is im-

portant to choose K, an adequate number of PQR basis. Given fixed K, the origi-

nal PQR formulation can be modified according to the block relaxation ideas [19]

which can lead to insightful results and motivate new theory by applying the ad-

vanced theory of empirical processes [72].

There are various criteria of selecting K. For example, one may select the value

of K to minimize the cross validation (CV) prediction errors or BIC as in choosing

the number of fPC basis adapted by Kato and other authors (see [37, 52, 69]. In

particular, we have

CVτ(K) =
1
n

n∑
i=1

ρτ

yi − α̂
(−i)
τ − xT

i β̂
(−i)
τ −

K∑
k=1

ẑkiγ̂
(−i)
τk

 ,
BICτ(K) = log

1
n

n∑
i=1

ρτ

yi − α̂τ − xT
i β̂τ −

K∑
k=1

ẑkiγ̂τk

 +
(K + 1) log n

n
,

where γ̂(−i)
τk , k = 1, . . . ,K, α̂(−i) and β̂

(−i)
τ are computed after removing the i-th obser-

vation.

Alternative SIMPQR Algorithm For a given fixed K, the original PQR scheme

of SIMPQR [76] can be modified according to the ideas of block relaxation [19],

which updates and obtains the basis as a “block” instead of one by one sequen-

tially. Such modification provides an alternative to the original formulation for PQR

(APQR) basis which can facilitate establishing and demonstrating the asymptotic

properties.

Consider the functional linear quantile regression model (3.2). Let (Y, X,Z) be a

triplet of scalar random variable Y , scalar random vector X and a random function

Z = ((Z(t))t∈[0,1]. For given τ ∈ (0, 1), let K be the dimension of the functional space,
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into which γτ(t) is projected, and {φτk(t)}Kk=1 be the functional PQR basis. For each

i = 1, . . . , n, Yi is observed as yi, while Zi(t) is observed only at d discrete points

T = {0 = t1 < t2 < . . . < td = 1}, that is, we only observe zi(t j), j = 1, . . . , d. We can

define Z = (z1, . . . , zn)T ∈ Rn×d with zi = (zi(t1), . . . , zi(td))T ∈ Rd for i = 1, . . . , n.

If K = 1, the PQR basis can be computed as a function φτ(t) that maximizes the

partial quantile covariance (3.8), or more specifically, a vector cτ = (φ(t))T
t∈T ∈ Rd,

if we restrict the domain of t to be T , that maximizes

l(α,β, c) = −

n∑
i=1

ρτ
(
yi − α − xT

i β − zT
i c

)
, (3.10)

For a general K, the PQR basis can be obtained as Cτ ∈ Rd×K by maximizing

l(α,β,C) = −

n∑
i=1

ρτ
(
yi − α − xT

i β − zT
i C1K

)
, (3.11)

where Cτ = (cτ1, . . . , cτK) ∈ Rd×K with cτk = (φτk(t))T
t∈T ∈ Rd for k = 1, . . . ,K,

i.e. each column of Cτ represents the vector of the functional basis restricted to the

discrete domain T .

For a nuisance parameter sequence {νN}
∞
N=1 where νN → ν0, we can choose

a uniformly smooth approximating functions ρτνN such that ρτνN (u) ⇒ ρτ(u) as

N → ∞. For a given fixed K, by replacing ρτ by ρτνN in (3.11), we have

lN(α,β,C) = −
∑n

i=1 ρτνN

(
yi − α − xT

i β − zT
i C1K

)
. (3.12)

where lN(·)⇒ l(·), as N → ∞.

A crucial observation here is that both l(·) and lN(·) are concave blockwisely

about (α,β) and C. For a preset K, we hereby propose an alternative SIMPQR

algorithm (ASIMPQR) based on the idea of block relaxation [19]:
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1. Initialization: Normalize Zi(t j) for each j so that it has mean zero and
variance one.

2. Repeat:

(a) Repeat (for N):

i. Initialization: Let C(0)
τ be a random matrix, and

(α(0)
τ ,β

(0)
τ ) = argα,βmax lN(α,β,C(0)),

ii. Repeat (for p):
A. C(p+1)

τ = argC max lN(α(p)
τ ,β

(p)
τ ,C),

B. (α(p+1)
τ ,β(p+1)

τ ) = argα,βmax lN(α,β,C(p+1)
τ ).

iii. Stop (for p): when
lN(α(p+1)

τ ,β(p+1)
τ ,C(p+1)

τ ) − lN(α(p)
τ ,β

(p)
τ ,C

(p)
τ ) < ε.

iv. Save: ατ = α
(p+1)
τ , βτ = β(p+1)

τ and Cτ = C(p+1)
τ .

(b) Stop (for N): when lN+1(ατ,βτ,Cτ) − lN(ατ,βτ,Cτ) < ε.

(c) Output: ατ, βτ and Cτ.

3. Project: Zi(·) onto the basis φτk(·) to obtain projected data matrix
Z̃(K) = ZCτ ∈ Rn×K

4. Model: retain the projections Z̃(K) = (z̃1, . . . , z̃K) and form the final
predictor Q̂(τ|Z̃K)Y|Z.

Algorithm 2: Alternative SIMPQR (For a preset K)
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Compared with SIMPQR, the advantages of the proposed ASIMPQR procedure

are obvious. Firstly, the Cτ of ASIMPQR retains by column the PQR basis vectors

which are updated altogether unlike the sequential updating scheme of SIMPQR.

Secondly, the block relaxation procedure can guarantee the solutions’ stability and

convergence whenever the objective function, lN(·), is convex by block and bounded

from above which is easy to verify. Last but not least, the convexity and uniform

convergence of the objective functions guarantees that the maximizer of lN(·) con-

verges to the maximizer of l(·) which assures the Cτ obtained from optimizing lN is

close to the true Cτ. Convergence properties of ASIMPQR are summarized in the

following Proposition:

Proposition 3.3.1. If we have lN(υ) ⇒ l(υ) with υ = (α,β,C) as N → ∞, where

lN(υ) and l(υ) are defined as in (3.12) and (3.11). For a given fixed N, if (i) lN(υ)

is continuous, and coercive, that is, the set {υ : lN(υ) ≥ lN(υ(0))} is compact and

bounded above, (ii) the objective function in each block update of algorithm is

strictly concave, and (iii) the set of stationary points of lN(υ) are isolated, for a

given fixed K, we have the following results:

1. (Global convergence) The sequence υ(p) = (α(p),β(p),C(p)) generated by the

algorithm above converges to a stationary point of lN(υ).

2. (Local convergence) Let υ(∞) = (α(∞),β(∞),C(∞)) be a strict local maximum

of lN(υ). The iterates generated by the algorithm above are locally attracted

to υ(∞) for υ(0) sufficiently close to υ(∞).

3. (Approximation convergence) The convergence points obtained from lN(υ)

will converge in probability to the convergence point of l(υ) as N → ∞.

The assumptions above are not hard to verify if it is allowed to impose some
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regular conditions on the distribution functions [38]. If assumptions (i) – (iii) stand,

the local convergence and global convergence can be obtained by following the

similar discussions as Li et al. [46] and Zhou et al. [83]. In order to obtain the ap-

proximation convergence, we can use Lemma 2 of Hjort and Pollard [33], provided

that lN(υ) has a unique maximizer.

Firstly, let us check the assumption (i). For a given fixed N, due to the dif-

ferentiability of ρτνN (·), then lN(α,β,C), or lN(υ), is obviously continuous. And

as ||υ|| → ∞, i.e. ||(α,β)|| → ∞ or ||C|| → ∞, the function lN should go −∞,

hence is coercive. To check the assumption (ii), we observe that the function of

yi − α − xT
i β − zT

i C1K is an affine function about C. Since −ρτ and its approxi-

mation −ρτνN are strictly concave, lN(υ) and l(υ) are both strictly concave about C.

Since they are also strictly concave about α, we have the strictly concavity of lN(υ)

and l(υ) about υ. The assumption (iii) is an assumption assuring that the locally

optimized point is also an isolated one. One important rule to detect the isolated

stationary point is that, if the Hessian matrix of the stationary point is nonsingular,

the stationary point should be an isolated one [28]. Alternatively, we can impose

Condition A1 of Koenker [38]: the distribution functions {Fi} are absolutely contin-

uous, with continuous density fi(ξ) uniformly bounded away from 0 and ∞ at the

point ξi(τ), where Fi is the conditional distribution of yi given zi and ξi(τ) = F−1
i (τ).

Lemma 2 of Hjort and Pollard [33] states that if we have that lN(υ) is a sequence of

convex functions defined on an open convex set S , in RKd+1 , which convergences

to l(ν), for each υ. Then supυ∈K |lN(υ) − l(υ)| goes to zero for each compact subset

K of S . As long as the maxima is an unique interior point of set S , we have that the

maxima of lN will go to the maxima of l.
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3.4 Asymptotic Properties

We study the statistical properties of the estimator υ̂. For simplicity, we may omit

α and β at certain step, though the conclusions generalize easily to the case with

them. To simplify the notations, we suppress the subindex τ. In this chapter, we

adopt the asymptotic setup with a fixed number of K and a diverging sample size n,

because this is an important first step toward a comprehensive understanding of the

theoretical properties of the proposed model.

For a given fixed K, we first establish score, information and identifiability in

term of the proposed alternative formulation of PQR (APQR) for functional linear

quantile regression. Then the consistency and asymptotic normality can be derived

by applying the advanced theory of empirical processes [72] and following the sim-

ilar discussions as in Li et al. [46] and Zhou et al. [83].

Score and Information We first derive the score and information for partial quan-

tile regression model. As discussed in Yu and Moyeed [77] and Sánchez et al.

[64], the minimization of the quantile loss is equivalent to the maximization of a

likelihood function formed by independent and identically distributed asymmet-

ric Laplace densities [77]. In fact, l(·) defined as (3.11) is proportional to the log-

likelihood. Therefore, we want to derive the score and information for l(·). Since l(·)

is not differentiable, we are giving the score and information for its approximation

lN(·) defined as (3.12). As N → ∞, the differences of the scores and information

matrices between lN and l are almost negligible.

The following standard calculus notations are used. For a scalar function f , ∇ f

is the (column) gradient vector, d f =
[
∇ f

]T is the differential. As a direct result

from Lemma 2 of Zhou et al. [83], one can easily check the followings.
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Lemma 3.4.1. Let ηi(C) = zT
i C1K , then the gradient ∇ηi(C) ∈ RKd is as

∇ηi(C) = −1K ⊗ vec (zi) .

Proposition 3.4.2. Consider the partial quantile regression model (3.12):

1. The score function (or score vector) of lN is

∇lN(C) = −

n∑
i=1

ρ′τνN
(ηi(C)) · ∇ηi(C).

2. The Fisher information matrix of lN is

IN(C) =

n∑
i=1

n∑
j=1

ρ′τνN
(ηi(C)) ρ′τνN

(
η j(C)

)
∇ηi(C)dη j(C).

Identifiability Before studying asymptotic properties, we need to deal with the

identifiability issue. The parametrization in the partial linear quantile regression

model is non-identifiable mainly due to the complication of the indeterminacy of C

due to permutation: CΠ for any K×K permutation matrixΠ. To fix the permutation

indeterminacy, we assume that first row entries of C are distinct and arranged in

descending order c11 > · · · > cK1. The resulting parameter space {C : c11 > · · · >

cK1} is open and convex. Next we give a sufficient and necessary condition for local

identifiability.

Proposition 3.4.3 (Identifiability). Given a sequence of iid data points {(yi, zi)}ni=1

from the quantile regression model 3.2. Let C0 ∈ S ⊂ Rd×K be a parameter point

and assume there exists an open neighbourhood of C0 in which the information

matrix has a constant rank. Then C0 is identifiable up to permutation if and only if

58



IN(C0) =

n∑
i=1

n∑
j=1

ρ′τνN
(ηi(C0)) ρ′τνN

(
η j(C0)

)
∇ηi(C0)dη j(C0)

is nonsingular.

This result can be obtained by using Theorem 1 of Rothenberg [63]:

Lemma 3.4.4 (Rothenberg [63], Theorem 1). Let θ0 be a regular point of the infor-

mation matrix I(θ). Then θ0 is locally identifiable if and only if I(θ0) is nonsingular.

The regularity assumptions for Lemma 3.4.4 are satisfied by the partial quantile

regression model: (1) the parameter space S is open, (2) the density p(y, z|C) is

proper for all C ∈ S , (3) the support of the density p(y, z|C) is same for all C ∈ S ,

(4) the log density lN(C|y, z) = lnp(y, z|C) is continuous differentiable, and (5) the

information matrix

IN(C) =

n∑
i=1

n∑
j=1

ρ′τνN
(ηi(C)) ρ′τνN

(
η j(C)

)
∇ηi(C)dηi(C)

is continuous in C by Proposition 3.4.2. Then by Lemma 3.4.4 of Rothenberg [63],

C is locally identifiable if and only if IN(C) is nonsingular.

Asymptotics The asymptotics follow from those discussions for MLE or M-estimation.

A key observation is that, by adopting the standard tensor notations from Zhou et al.

[83], the original model (3.2) can be rewritten as

Y = α + βT X + 〈C1K ,Z〉, (3.13)

where the collections of polynomials (of degree 1) {〈C1K ,Z〉,C ∈ S } forms a

Vapnik-Cervonenkis (VC) class [73]. Then standard uniform convergence theory

for M-estimation [72] applies.
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Theorem 3.4.5 (Consistency). Assume C0 ∈ S ⊂ RK×m is (globally) identifiable

up to permutation and the array covariates Zi are iid from a bounded distribution.

The M-estimator is consistent, that is, Ĉn converges to C0 (modulo permutation) in

probability for quantile regression model (3.13) with a compact parameter space

S 0 ⊂ S .

The consistency can be checked using the theory of empirical processes. By

showing that {lN(C),C ∈ S } is a Donsker class [72] under some regularity con-

ditions when the parameter is restricted to a compact set, the Glivenko-Cantelli

theorem establish the uniform convergence. Uniqueness is guaranteed by the infor-

mation equality whenever C0 is identifiable.

Theorem 3.4.6 (Asymptotic normality). For an interior point C0 ∈ S with nonsin-

gular information matrix IN (Cn) and Ĉn is consistent,

√
n
[
vec

(
Ĉn

)
− vec (C0)

]
converges in distribution to a normal with mean zero and covariance I−1

N (C0).

3.5 Simulation Studies

In this section, we investigate the finite sample performance of our proposed pre-

diction method, namely alternative partial quantile regression (APQR) method.

We compare it with the methods of partial quantile regression (PQR), partial least

squares (PLS) and fPC basis (QRfPC) in functional linear quantile regression model.

We conduct our simulations in two settings where the first one is in favour of the

fPC basis and the second one is a more general case. Both simulations show supe-

rior or comparable performance of our proposed method.
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Simulation I. In this simulation, we adapt the setup in Kato [37] by slightly

changing the weights of parameter γ(t). In particular, the model is of the form

Y =

∫ 1

0
γ(t)Z(t)dt + ε,

γ(t) =

50∑
j=1

γ jφ j(t); γ = 0.5, γ =
20
3

(−1) j+1 j−2, j ≥ 2, φ j(t) = 21/2 cos( jπt),

Z(t) =

50∑
j=1

v jU jφ j(t), v j = (−1) j+1 j−1.1/2,U j ∼ U[−31/2, 31/2].

Each Zi(t) was observed at d = 120 equally spaced grid points on [0, 1]. The error

ε follows either Gaussian with mean zero and variance one or Cauchy distribution.

In each case, we set the number of repetitions to be 500. In each repetition we set

the total sample size n to be 300 and randomly split the data into training (80% of

the sample) and testing (20% of the sample) sets. The mean absolute error (MAE)

of the response is the performance criteria we consider. The optimal cutoff levels

K are selected to minimize the 10-fold cross validation prediction errors in each

sample, where the value of K appears to be relatively insensitive among different

samples. Here APQR1, APQR2, APQR3 and APQR4 represent APQR methods

with different initial settings as PQR, PLS, QRfPC and random basis respectively.

Although the simulation design is in favour of fPC based methods, for the small

number of cutoff levels, the PQR, PLS and APQR methods perform better while

for the optimal number of cutff levels, the PQR, PLS and APQR methods perform

comparable with QRfPC method. Due to the natures of sensitivity against skew-

ness of errors, Figure 3.1 show that PLS requires more basis (K = 5) to achieve

a comparable performance when the errors follow the Cauchy distribution. On the

other hand, when the Gaussian errors are employed, PQR, PLS and APQR methods

require fewer basis (K = 2) compared with the QRfPC method (K = 5) to achieve
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comparable performance. In this simulation, the performance of APQR appears to

be insensitive against the different choices of initial settings.
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Figure 3.1: Simulation I: the boxplots of mean absolute errors (MAE) with Gaus-
sian (Left) and Cauchy (Right) errors. In each case, there are 500 repetitions with
training sample size of 240 and testing sample size of 60. APQR1, APQR2, APQR3
and APQR4 represent APQR methods with different initial settings as PQR, PLS,
QRfPC and random basis respectively.

Simulation II. In this simulation, we take the Zi(t)s from a real data study, a

benchmark Phoneme dataset, which can be downloaded from http://statweb.

stanford.edu/tibs/ElemStatLearn/, and generate the Y according to the lin-

ear model of

Y =

∫ 1

0
Z(t)γ(t)dt + ε,

where the error ε is taken as Gaussian. The centres of errors are taken as zero

while the scales are taken as the empirical standard deviation of the true responses

multiplied by
√

5. In our setting, each Zi(t) was observed at d = 256 equally spaced

grid points on [0, 1] and the total number of observations is 1717. This example

together with the detailed background can also be found in Delaigle and Hall [20].
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Computing the first J = 20 empirical fPC basis functions φ̂1(t), . . . , φ̂J(t), we

consider four different curves γ(t) by taking γ(t) =
∑J

j=1 a jφ̂ j(t) for four different

sequence of a js: (i) a j = (−1) j · 1 {0 ≤ j ≤ 5}; (ii) a j = (−1) j · 1 {6 ≤ j ≤ 10}; (iii)

a j = (−1) j ·1 {11 ≤ j ≤ 15}; (iv) a j = (−1) j ·1 {16 ≤ j ≤ 20}. Going through case (i)

to (iv), the models become less favorable for fPC, while we will see the PLS, PQR

and APQR methods manage to capture the interaction between Z and Y using only

a few terms.
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(d) Case iv.

Figure 3.2: Simulation II: the boxplots of mean absolute errors (MAE) with Gaus-
sian errors. The centres of errors are taken as zero while the scales are taken as the
empirical standard deviation of the true responses multiplied by

√
5. there are 100

repetitions with training sample size of 1517 and testing sample size of 200.

After responses being generated, we randomly split the data set into training

(sample size 1517) and testing (sample size 200) data set and repeat it 100 times.

The optimal cutoff levels K are selected using the same criteria as in simulation
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I. Figure 3.2 displays the boxplot of the mean absolute prediction errors when the

errors follow Gaussian distribution. The PLS, PQR and APQR methods predict

better in general compared with QRfPC method except for case (i). While the

optimal K are selected consistently around 3 for the PLS, PQR and APQR methods

while the QRfPC method require more and more basis from case (i) to (iv). In

addition, It is worth noticing that performance of APQR is not always insensitive

against the initial values. In fact, the random initial setting of APQR does not

perform well in this simulation.

3.6 Real Data Analysis

Real Data I: ADHD-200 fMRI Data. We apply our proposed method to a dataset

on attention deficit hyperactivity disorder (ADHD) from the ADHD-200 Sample

Initiative Project. The response of interest is ADHD index. The scalar covariates

of primary interest include gender, age, handedness, diagnosis status, medication

status, Verbal IQ, Performance IQ and Full4 IQ. The functional covariates are the

average gray scales of 172 equally spaced time points for cerebelum, temporal,

vermis, parietal occipital and frontal out of 116 Regions of Interests (ROI). We ran-

domly split the data set (n=120) into training (80% of the sample size) and testing

(20% of the sample size) data set and repeat it 100 times. The optimal cutoff lev-

els K are selected using CV criteria as in simulations. As shown in figure 3.3, our

proposed method, APQR, together with the PLS method achieve comparable per-

formance by using only 1 basis while the QRfPC method require more than 5 basis

to outperform our method.
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(f) Frontal.

Figure 3.3: Real Data Analysis I: ADHD-200 fMRI data. Comparison of the box-
plots of mean absolute errors (MAE) using three different methods of APQR, PLS
and QRfPC for each brain part of cerebelum, temporal, vermis, parietal, occipital
and frontal. 66



Real Data II: ADNI DTI Data. We use our model methods to analyze a real DTI

data set with 214 subjects collected from NIH Alzheimer’s Disease Neuroimaging

Initiative (ADNI) study. Data used in the preparation of this chapter were obtained

from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.

loni.ucla.edu). We are interested in predicting mini-mental state examination

(MMSE) scores, one of the most widely used screening tests, which are used to

provide brief, objective measures of cognitive functioning for almost fifty years.

we include 200 subjects from the total 214 subjects. The functional covariate is

fractional anisotropy (FA) values along the corpus callosum (CC) fiber tract with

83 equally spaced grid points, which can be treated as a function of arc-length.

The scale covariates are gender, age, education levels, an indicator for Alzheimer’s

disease (AD) status and an indicator for mild cognitive impairment (MCI) status ,

and genotypes for apolipoprotein E ε-4.
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Figure 3.4: Real Data Analysis II: (Left) The midsagittal corpus callosum (CC)
skeleton overlaid with fractional anisotropy (FA) from one randomly selected sub-
ject and (Right) the boxplot of mean absolute errors of mini-mental state examina-
tion (MMSE) with optimal cutoff levels.
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We randomly split the data set (n=200) into training (80% of the sample size)

and testing (20% of the sample size) data set and repeat it 100 times. The boxplot of

MAEs for the optimal cutoff levels K, selected by the same criteria before, is shown

in figure 3.4. In general APQR and PLS methods preform consistently better than

QRfPC method while APQR outperforms PLS method. Similar to the phenomenon

observed from the previous real data analysis, APQR and PLS are able to use fewer

number of basis (K = 2) and achieve smaller prediction errors compared with the

QRfPC method (K = 6). This indicates that the fPC basis may not always be

suitable to do prediction especially when the number of basis is restricted to be

small. In summary, APQR is capable of making better prediction by using fewer

basis functions hence provide a powerful tool to do prediction in practice.

3.7 Discussions

In this chapter, we first define the concept of partial quantile covariance (PQC)

which measures the contribution of one covariate towards the response, and de-

scribe the partial quantile regression (PQR) method to extract PQR basis in func-

tional linear quantile regression model, which is motivated by the success of the

partial least square (PLS) basis in functional linear regression model. We then

discuss the problems of deriving the asymptotic properties for the original PQR

methods and address them by proposing and implementing an alternative formula-

tion to original PQR method (APQR) using finite smoothing techniques and block

relaxation ideas for a preset K. In addition, we suggest an empirical guideline of

selecting K by using cross validation (CV) and BIC. The proposed APQR can facil-

itate us to derive score, information and identifiability in term of functional linear

quantile regression, so that the estimator consistency and convergence rates of
√

n
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can be established and demonstrated by using the advanced theory of empirical

processes.

The simulations show that APQR, PQR and PLS in general perform comparable

to each other and better than the QRfPC methods. It is also worth noticing that,

the performance of APQR is sometimes sensitive against the initial values. Our

proposed APQR method can make comparable prediction errors with QRfPC basis

method by using an extremely small number of basis in both ADHD-200 fMRI

data analysis (K = 1) and ADNI DTI data analysis (K = 2). In ADNI DTI data

analysis, APQR outperforms QRfPC method even though the latter method use

more basis (K = 6). This indicates that the fPC basis may not always be suitable to

do prediction especially when the number of basis is restricted to be small. In total,

APQR is capable of making better prediction by using fewer basis functions hence

provide a powerful tool to do prediction in practice.

The most important contribution of this chapter is that by proposing an alterna-

tive but equivalent formulation for PQR method (APQR), for a given fixed K, we

manage to establish and demonstrate the asymptotic properties such as consistency

and asymptotic normality, which used to be a very difficult problem in the original

PQR setting.

In both simulation studies and real data analysis, only univariate functional co-

variate case is considered. However, the extension of PQR to multivariate functional

covariates is straightforward. In addition, using the similar idea of this chapter,

one may establish the alternative formulation of composite partial quantile regres-

sion (PCQR) which has been shown to be more robust and efficient than the PQR

method. Further details are out of the scope of this chapter and will be pursuit in

the future research.
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3.8 Appendix

Proof of Theorem 3.4.5

Proof. For simplicity, we omit α and β, though the conclusions generalize easily to

the case with them. we want to show that the consistency of the estimated factor

matrix Ĉn. The following well-known theorem is our major tool for establishing

consistency.

Lemma 3.8.1 (van der Vaart [72], Theorem 5.7). Let Mn be random functions and

let M be a fixed function of θ such that for every ε > 0

sup
θ∈ν

|Mn(θ) − M(θ)| → 0 in probability,

sup
θ:d(θ,θ0)≥ε

M(θ) < M(θ0).

Then any sequence of estimators θ̂n with Mn(θ̂) ≥ Mn(θ0) − oP(1) converges in

probability to θ0.

To apply Lemma 3.8.1 in our setting, we take the nonrandom function M to

be C 7→ PC0 [lN(Y,Z|C)] and the sequence of random functions to be Mn : C 7→
1
n

∑n
i=1 lN(yi, zi|C) = PnM, where Pn denotes the empirical measure under C0. Then

Mn converges to M a.s. by strong law of large number. The second condition

requires that C0 is a well-separated maximum of M. This is guaranteed by the

(global) identifiability of C0 and information inequality. The first uniform conver-

gence condition is most convenient and is verified by the Glivenko-Cantelli theory

[72].

The density is pC(y|z) = const · exp
[
−ρτνN (y − η(C, z))

]
where η(C, z) = 〈C, z〉.
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Take mC = ln
[
(pC + pC0)/2

]
. First we show that C0 is a well-separated maximum

of the function M(C) := PC0mC. The global identifiability of C0 and information

inequality guarantee that C0 is the unique maximum of M. To show that it is a well-

separated maximum, we need to verify that M(Ck)→ M(C0) implies Ck → C0.

Suppose M(Ck) → M(C0), then 〈Ck,Z〉 → 〈C0,Z〉 in probability. If Ck are

bounded, then E
[
〈Ck − C0,Z〉2

]
→ 0 and Ck → C0 by nonsigularity of E

[
(vecZ)(vecZ)T

]
.

On the other hand, Ck can not run to infinity. If they do, then 〈Ck,Z〉/ ‖Ck‖ → 0 in

probability which in turn implies that Ck/ ‖Ck‖ → 0.

For the uniform convergence, we see that the class of functions {〈C,Z〉,C ∈ S }

forms a VC class. This is true because it is collection of number of polynomials

of degree 1 and then apply the VC vector space argument (van der Vaart and Well-

ner [73], 2.6.15). This implies that {η(〈C,Z〉),C ∈ S } is a VC class since η is a

monotone function (van der Vaart and Wellner [73], 2.6.18).

Now mC is Lipschitz in η since

∂mC

∂η
=

const · exp
[
−ρτνN (y − η)

]
· ρ′τνN

(y − η)
const · exp

[
−ρτνN (y − η)

]
+ const · exp

[
−ρτνN (y − η0)

]
=

ρ′τνN
(y − η)

1 + exp
[
ρτνN (y − η) − ρτνN (y − η0)

] ≤ sup
∣∣∣ρ′τνN

(·)
∣∣∣ = const

The last equality holds since ρτνN (u) → ρτ(u) as N → ∞, which also implies that

ρ′τνN
(u) → ρ′τ(u) as N → ∞ except for u = 0. And we know that ρ′τνN

(0) = 0. Simi-

larly we can show that mC is Lipschitz in η0. A Lipschitz composition of a Donsker

class is still a a Donsker class (van der Vaart [72], 19.20). Therefore {C 7→ mC} is a

bounded Donsker class with the trivial envelope function 1. A Donsker class is cer-

tainly a Glivenko-Cantelli class. Finally the Glivenko-Cantelli theorem establishes

the uniform convergence condition required by Lemma 3.8.1.

When the parameter is restricted to a compact set, η(〈C,Z〉) is confined in
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a bounded interval and the lN is Lipschitz on the finite interval. It follows that

{lN(C) = lN ◦ η ◦ 〈C,Z〉,C ∈ S } is a Donsker class as composition with a mono-

tone or Lipschitz function preserves the Donsker class. Therefore the Glivenko-

Cantelli theorem establish the uniform convergence. Compactness of parameter

space implies that C0 is a well separated maximum if it is the unique maximizer of

M(C) = PC0mC (van der Vaart [72], Exercise 5.27). Uniqueness is guaranteed by

the information equality whenever C0 is identifiable. This verifies the consistency

for quantile regression.

�

Lemma 3.8.2. Tensor quantile linear regression model (3.13) is quadratic mean

differentiable (q.m.d.).

Proof. By a well-known result (van der Vaart [72], Lemma 7.6), it suffices to verify

that the density is continuously differentiable in parameter for µ-almost all x and

that the Fisher information matrix exists and it continuous. The derivative of density

is

∇lN(C) = −

n∑
i=1

ρ′τνN
(ηi(C)) · ∇ηi(C),

which is well-defined and continuous by Proposition 2. The same proposition

shows that the information matrix exists and is continuous. Therefore the tensor

quantile linear regression model is q.m.d. �

Proof of Theorem 3.4.6

Proof. The following result relates asymptotic normality to the density that satisfy

q.m.d.
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Lemma 3.8.3. At an inner point θ0 of ν ⊂ Rk. Furthermore, suppose that there

exists a measurable function l̇ with Pθ0 l̇
2 < ∞ such that, for every θ1 and θ2 in a

neighbourhood of θ0,

∣∣∣lnpθ1(x) − lnpθ2(x)
∣∣∣ ≤ l̇(x) ‖θ1 − θ2‖ .

If the Fisher information matrix Iθ0 is nonsingular and θ̂n is consistent, then

√
n(θ̂n − θ0) = I−1

θ0

n∑
i=1

l̇θ0(Xi) + oPθ0
(1).

In particular, the sequence
√

n(θ̂n − θ0) is asymptotically normal with mean zero

and covariance matrix I−1
θ0

.

Lemma 3.8.2 shows that tensor quantile regression linear model is q.m.d. By

proposition 3.4.2 and chain rule, the score function

l̇N(C) = −

n∑
i=1

ρ′τνN
(ηi(C)) · ∇ηi(C)

is uniformly bounded in y an x and continuous in C for every y and x with C

ranging over a compact set of S 0. For sufficiently small neighbourhood U of S 0,

supU

∥∥∥l̇N(C)
∥∥∥ is square-integrable. Thus the local Lipschitz condition is satisfied

and Lemma 3.8.3 applies.

�
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Chapter 4

Partial Quantile Regression for

Multidimensional Functional Linear

Model

Partial quantile regression (PQR) is a robust procedure for functional linear regres-

sion model by using partial quantile covariance techniques to extract supervised

basis for estimating functional coefficients. Although it has been previously illus-

trated that PQR can deal with functional covariates with single variable very well, it

is still not clear that how it can be extended and implemented for multidimensional

functional covariates. In this chapter, we propose and implement the generalization

of PQR procedure to multidimensional functional linear model using tensor decom-

position techniques and block relaxation ideas. We also establish and demonstrate

the corresponding asymptotic properties by applying advanced techniques from em-

pirical process theory.
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4.1 Introduction

Functional data analysis (FDA) is about the analysis of information on curves, im-

ages, functions or more general objects where the primary object of observation

can be viewed as a function [61]. It has become a major branch of nonparametric

statistics while is still fast evolving as more data of larger scale and more complex

structure emerge. As a popular tool, functional linear regression model is often

considered useful by statisticians to deal with such data [16, 29, 44, 80]. A typical

functional linear model with scalar response is

y = α + xTβ +

∫ 1

0
zT (t)γ(t)dt + ε, (4.1)

where x and z(t) are scalar and functional covariates, and the contributions of z(t)

towards the variation of y is characterized by the functional coefficients γ(t) and

change by t. Note that this is the same model as (3.1) in Chapter 3. It has been

many extensions about this model; for instance, Lian [48] considered this model in

the setting with multiple functional covariates z(t), while Kong et al. [43] discussed

the situation of ultrahigh-dimensional scalar covariates x.

In recent years, the extension of model (4.1) to quantile regression [41] has

been well developed and recognized for functional linear model. In particular, let

us consider a functional linear quantile regression model, which is also the same as

(3.2) in Chapter 3:

Qτ(y|x, z(t)) = ατ + xTβτ +

∫ 1

0
z(t)Tγτ(t)dt, (4.2)

where Qτ(y|x, z(t)) is the τ-th conditional quantile of response y given a functional
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covariate z(t) for a fixed quantile level τ ∈ (0, 1). As an alternative to least squares

regression, the quantile regression method is more efficient and robust when the

responses are non-normal, errors are heavy tailed or outliers are present. It is also

capable of dealing with the heteroscedasticity issues and providing a more complete

picture of the response [38].

To facilitate the estimation of γ(t) and γτ(t), we usually require that them satisfy

certain smoothness conditions and restrict them onto a functional space. For exam-

ple, we may require that their second derivatives exist [36] and they are square inte-

grable [37]. Even in such a situation, the estimation is still an infinite-dimensional

problem. The common practice is to project them into a space spanned by a fi-

nite number of functional basis then use these basis to approximate them. For least

square regression, three major choices of such basis include: general basis such as

B-spline basis and wavelet basis [12, 79], functional principal component basis [8,

10, 43, 55], and partial least square basis [20]. Analogously in quantile regression,

general basis like B-spline basis [11, 68], functional principle component basis [37,

52, 69] and partial quantile basis [76] have also been thoroughly investigated.

The functional covariate z can also be taken as a multivariable function, i.e.

its input is made up of multiple numbers. In particular, without loss of generality,

let t ∈ [0, 1]q where q ≥ 2 and z(t) ∈ R. For a scalar response, a q-dimensional

functional linear regression (qD-FLR) model is of the form:

y = α + xTβ +

∫ 1

0
· · ·

∫ 1

0
z(t1, . . . , tq)γ(t1, . . . , tq)dtq · · · dt1 + ε, (4.3)

where α is the intercept, β is a p-dimensional vector of coefficients, γ(t1, . . . , tq) is a

q-dimensional functional coefficient, and ε is an error term usually with zero mean

and finite variance.
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Under the context of quantile regression, analogous to model (4.3), and for a

given quantile level τ ∈ (0, 1), the q-dimensional functional linear quantile regres-

sion (qD-FLQR) model is defined as:

Qy|x,z(τ|x, z) = ατ + xTβτ +

∫ 1

0
· · ·

∫ 1

0
z(t1, . . . , tq)γτ(t1, . . . , tq)dtq · · · dt1, (4.4)

where Qy|x,z(τ|x, z) is τ-th conditional quantile of y given scalar covariates x and

multidimensional functional z.

Having z(t) properly discretized, we can use Z ∈ RI1×···×Iq , a q-dimensional

array, to represent z(t), where the j-th element of t is observed at 0 = t1 < · · · <

tI j = 1. Such data of q-dimensional array, also known as order-q tensor, is quite

common in medical imaging. A notable example is magnetic resonance imaging

(MRI) data where the anatomical MRI images can be observed as a matrix (order-

2 tensor) of size 256 by 256. To predict certain clinical outcomes using tensor,

a naive attempt to re-arrange Z into a vector then perform regression. However

such practice is evidently unsatisfactory. First, the re-arranged (vectorized) vector

of image covariates is of size 2562 = 65, 536, implicitly requiring large number of

regression parameters. Both computational cost and theoretical properties can be

severely compromised due to such ultra-high dimensional setting. Furthermore, the

vectorized Z loses information about the original data structure, so the regression

model based on it would be lack of efficiency and hard to interpret.

For an order-q random tensor Z ∈ RI1×···×Iq , in order to achieve a similar de-

composition as PC decomposition for vectors, i.e. order-1 tensors, Lu et al. [51]

proposed a framework to conduct multilinear PC (MPC) decomposition. Its inten-

tion was to project an order-q tensor into a lower-dimensional space spanned by the

product of a few feature vectors. In general, there are two ways to decompose a
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tensor: CANDECOMP/PARAFAC (CP) decomposition [83] and Tucker decompo-

sition [46]. We can use Figure 4.1 adapted from Cichocki et al. [15] to illustrate the

ideas. Figure 4.1 (top) shows the way of conducting CP decomposition for an order-

Figure 4.1: Analogy between CP (above) and Tucker (bottom) decompositions.

2 tensor Z ∈ RI×J, which is in fact a rank R representation of Z by
∑R

r=1 dr · ar ◦ br.

Here the multidimensional outer product, g1 ◦ · · · ◦ gq, of q vectors g j ∈ RI j , where

j = 1, . . . , q, is an I1×· · ·× Iq array with entries (b1◦· · ·◦bq)i1,··· ,iq =
∏q

j=1 b j,i j .As an

alternative to CP, Tucker decomposition for an order-3 tensor Z ∈ RI×J×K is shown

as Figure 4.1 (bottom). It is to approximate a tensor Z by
∑R1

i=1

∑R2
j=1

∑R3
k=1 di jk ·

ai ◦ b j ◦ ck where ai ∈ RI , b j ∈ RJ and ck ∈ RK . We can also abbreviate it

by ~D; A,B,C�, where ~D; G1, . . . ,Gq� =
∑R1

r1=1 · · ·
∑gq

rq=1 dr1...rq · gr1 ◦ · · · ◦ grq for

D = {dr1...rq}
R1,...,Rq

r1=1,...,rq=1 ∈ RI1×···×Iq , and G j = (g1, . . . , gR j) ∈ RI j×R j for j = 1, . . . , q.

Here A, B and C are matrices of arranging by column vectors ais, b js and cks re-

spectively, and D is the loading tensor (core tensor). The column numbers of A, B

and C are R1, R2 and R3 respectively which are ranks in each dimension and typi-

cally much smaller than I, J and K. A CP decomposition is in fact a special case

of Tucker decomposition where the core tensor is diagonal. In particular, for q = 2,

Z ≈
∑R

r=1 dr · ar ◦br = ~D; A,B�, where D = {di j}
R,R
i=1, j=1 ∈ RR×R with di j = 0 if i , j.
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In this chapter, we mainly focus on the more general case of Tucker decomposition,

while the discussion for CP decomposition case would be similar.

Since Z is just a representaion of z(t), the functional MPC decomposition of z(t)

is just a natural generalization of the MPC decomposition of Z. In particular, denote

by z(t) and γ(t) ∈ R, the multidimensional function covariates and coefficients, with

t ∈ [0, 1]q. Suppose γ(t) admits a Karhunen-Loève(KL) representation by:

∑
n1

· · ·
∑

nq

λn1,...,nqφ
(1)
n1

(t1) · · · · · φ(q)
nq

(tq), (4.5)

where φ(d)
nd (td)’s, for d = 1, . . . , q, are the eigenfunctions in d-th dimension, and

λn1,...,nq are the eigenvalues.

Let φ(d)
nd (td)’s, for d = 1, . . . , q, be the eigenfunctions in d-th dimension. Then

we have

∫ 1

0
· · ·

∫ 1

0
z(t1, . . . , tq)γ(t1, . . . , tq)dtq · · · dt1

=

∫ 1

0
· · ·

∫ 1

0

∑
n1

· · ·
∑

nq

λn1,...,nqφ
(1)
n1

(t1) · · · · · φ(q)
nq

(tq)z(t1, . . . , tq)dtq · · · dt1

=
∑

n1

· · ·
∑

nq

λn1,...,nqζn1,...,nq ,

where ζn1,...,nq =
∫ 1

0
· · ·

∫ 1

0
φ(1)

n1 (t1) · · · · · φ(q)
nq (tq)z(t1, . . . , tq)dtq · · · dt1. Hence model

(4.3) becomes an order-q tensor linear regression (qD-TLR) model:

y = α + xTβ +
∑

n1

· · ·
∑

nq

λn1,...,nqζn1,...,nq + ε. (4.6)

For a preset R1, . . . ,Rq, namely the ranks for each dimension, denote {ζn1,...,nq}
R1,...,Rq

n1=1,...,nq=1

and {λn1,...,nq}
R1,...,Rq

n1=1,...,nq=1 by ζ and Λ respectively, we can abbreviate model (4.6) by

79



rewriting it as

y = α + 〈x,β〉 + 〈ζ,Λ〉 + ε, (4.7)

where the inner product 〈·, ·〉 between two tensors is induced from the inner prod-

uct of two vectors, x and y, where x and y ∈ Rn, with 〈x, y〉 = xT y =
n∑

i=1
xiyi.

Then, for two arrays X and Y ∈ RI1×···×Iq , the inner product is defined as 〈X,Y〉 =

〈vec(X), vec(Y)〉, where the operator of vec stacks the entries of a tensor into a col-

umn vector in the same manner as defined in Zhou et al. [83], which has also been

used across all the tensor literature.

Since in practice, z(t1, . . . , tq) is observed at the grid points
{
(tn1 , . . . , tnq)

}N1,...,Nq

n1=1,...,nq=1
,

we let tensor Z =
{
zn1,...,nq

}
∈ RN1×···×Nq with zn1,...,nq = z(t1, . . . , tq). Without loss

of generality, we assume, for d = 1, . . . , q, the Nd grid points in each dimension

of td are equally spaced. To approximate the functional coefficients γ(t) when

q = 2, Caffo et al. [7] proposed to take an order-2 singular value decomposition

of tensor Z to get the singular functions (eigenfunctions) in each dimension then

project γ(t) into the space spanned by the products of them as shown in (4.5).

For more general case of q ≥ 3, it can be dealt with by using higher order sin-

gular value decomposition (HOSVD) [18]. In particular, for a preset R1, . . . ,Rq,

namely the ranks of each dimension, the HOSVD is in fact a decomposition of

Z such that Z ≈
∑R1

n1=1 · · ·
∑Rq

nq=1 zn1,...,nqγn1
◦ · · · ◦ γnq

= ~z;Γ1, . . . ,Γq�, where

z = {zn1,...,nq} ∈ RR1×···×Rq , and Γd = {γ1, . . .γRd
} ∈ RNd×Rd for d = 1, . . . , q, with

γnd
= (φ(d)

nd (t1), . . . , φ(d)
nd (tNd ))T ∈ RNd for nd = 1, . . . ,Rd.

However, although the singular value decomposition [7] is intuitive and straight-

forward, the extracted basis are unsupervised in a sense that such dimension reduc-

tion does not require information from the response, hence is potentially problem-
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atic. To remedy that, Li et al. [46] proposed and implemented a supervised version

of Tucker tensor decomposition which can prevent the potential loss of information.

Similarly, we can reduce the q-dimensional functional linear quantile regres-

sion (qD-FLQR) model (4.4) into an order-q tensor linear quantile regression (qD-

TLQR) model :

Qy|x,z(τ|x, z) = ατ + 〈x,βτ〉 + 〈ζτ,Λτ〉, (4.8)

where ζτ,n1,...,nq =
∫ 1

0
· · ·

∫ 1

0
φ(1)
τn1(t1) · · · · ·φ(q)

τnq(tq)z(t1, . . . , tq)dtq · · · dt1 and λτ,n1,...,nq are

the elements of the core tensor Λτ as in (4.5). Here we denote {ζτ,n1,...,nq}
R1,...,Rq

n1=1,...,nq=1

and {λτ,n1,...,nq}
R1,...,Rq

n1=1,...,nq=1 by ζτ and Λτ respectively.

In this chapter, we propose a partial quantile regression framework for qD-

FLQR model such that the order-q functional basis can be extracted to maximize

the partial quantile covariance [76]. We also implement the proposed method by

using finite smoothing techniques [13, 54] and block relaxation algorithm [19]. In

addition, we establish and demonstrate the asymptotic properties including consis-

tency and establish the convergence rates by applying some advanced techniques

from empirical processes theory (for more background of empirical processes, see

van der Vaart [72]).

4.2 q-Dimensional Functional Linear Quantile Regres-

sion

For a given quantile level τ ∈ (0, 1), a q-dimensional functional linear quantile

regression (qD-FLQR) model is defined as (4.4). Given φ(d)
τ,nd (td)’s, for d = 1, . . . , q,

the eigenfunctions in d-th dimension, the model can be reduced to a an order-q

tensor linear quantile regression qD-TLQR model (4.8).
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In one dimensional functional linear quantile regression model (4.2), given a

group of functional basis φτk(t), k = 1, . . . ,K and let γτ(t) =
∑K

k=1 γτkφk(t). Model

(4.2) can be rewritten as

Qτ (y|x, z(t)) = ατ + xTβτ +

K∑
k=1

zkγτk, (4.9)

where zk =
∫ 1

0
z(t)φk(t)dt. This is simply a multiple linear regression, which is es-

sentially a linear programming problem and can be solved by many algorithms - for

example, the simplex method [6], the interior point method [38], the MM algorithm

[35] among many others, already implemented in various statistical softwares like

quantreg in R [40].

Such group of directions φτk(t) can be found so that the projections of z(t)s

onto them contribute as much as possible to predict the conditional quantile of the

response. The concepts of quantile covariance (QC) and partial quantile covariance

(PQC) were proposed by Yu et al. [76]. For given τ ∈ (0, 1) and a random variable

X, the partial quantile covariance (PQC) between two random variables Y and Z is

defined as

COVqr(Y,Z|X) = argγ E inf
α,β,γ

(ρτ (Y − α − βX − γZ)) , (4.10)

where Z is normalized to have mean zero and variance one. If there is no X,

COVqr(Y,Z) is just quantile covariance (QC) between Y and Z. The quantile covari-

ance measures the contribution of Z to the τ-th quantile of Y . It was first proposed

and studied by Dodge and Whittaker [21] in the context of partial quantile regres-

sion. Recently, Li et al. [45] proposed a similar concept of quantile correlation and

used it to study quantile autoregressive model, while Ma et al. [53] used the partial
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quantile correlation to study the ultra-high dimensional variable screening problem.

To find the partial quantile regression basis (PQR), the φkτ(t) can be computed

by maximizing

COVqr

y − ατ − xβτ,
K∑

k=1

∫ 1

0
z(t)φτk(t)dt

 . (4.11)

Similarly for a qD-FLQR model (4.4), we can find φ(d)
τ,nd (td)’s, for d = 1, . . . , q,

by maximizing

COVqr

y − ατ − xβτ,
R1∑

n1=1

· · ·

Rq∑
nq=1

∫ 1

0
· · ·

∫ 1

0
z(t1, . . . , tq)

q∏
d=1

φ(d)
τ,nd

(td)dtd

 . (4.12)

The values of Rds, namely the number of PQR basis in each dimension, can be

chosen using BIC or cross validation (CV) as in choosing the number of fPC basis

adopted by Kato and other authors [37, 52, 69].

4.3 Implementation

Finite Smoothing of Quantile Loss Functions Similarly to the situation of one

dimensional function PQR in Chapter 3, to uncover the asymptotic properties for

multi-dimensional functional PQR, one difficulty is due to the non-differentiability

of the quantile loss function ρτ(·) at the origin. To address this problem, we propose

for ρτ(u) a smoothing approximation ρτν(u) such that ρτν(u) converges pointwise to

ρτ(u), as ν → ν0, and ν is a vector of smoothing parameters with the typical choice

of ν0 as 0 [13, 54]. In addition, if such convergence is uniform, the minimizer of

ρτν(u) converges to the minimizer of ρτ(u), for a compact set in (0, 1) [33]. Re-

placing ρτ by ρτν, the quantile objective function then becomes differentiable which
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further facilitates defining score, information and identifiability in term of func-

tional linear quantile regression, so that the estimator consistency and convergence

rates can be established.

The finite smoothing of quantile loss function is a special case from the gen-

eral problem of non-smooth convex optimization and is a both statistically and

computationally important technique in quantile regressions [13, 56, 75, 81]. For

a given precision ε, by choosing an appropriate smoothing function, one may ob-

tain an optimal efficiency estimate O(1
ε
) in term of number of iterations until con-

vergence, which significantly improves that of some popular numerical scheme for

non-smooth convex minimization such as O( 1
ε2 ) of the subgradient methods [56].

There are various options of the smoothing functions. For example, one may take

the generalized Huber function [13] or iterative least squares smoothing function

[54] both of which converge uniformly towards ρτ(u). Here we take generalized

Huber function [13] as an example:

Hν,τ(u) =


u(τ − 1) − 1

2 (τ − 1)2ν, u ≤ (τ − 1)ν;

u2

2ν , (τ − 1)ν < u ≤ τν;

uτ − 1
2τ

2ν, u > τν.

By choosing a non-negative number ν, and let it go to 0, Hν,τ(u) converges uniformly

towards ρτ(u). In the meantime, the minimizer for Hν,τ converge to the minimizer

of ρτ too [33].

Algorithm To solve the qD-FLQR model (4.4), For a preset R1, . . . ,Rq, namely

the ranks of each dimension of t1, . . . , tq, we intend to find a
(∏q

j=1 R j

)
-dimensional

space spanned by the products of φ(d)
τ,nd (td)’s by maximizing partial quantile covari-

ance (4.12). In practice, without loss of generality, we assume that both z(t1, . . . , tq)
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and γ(t1, . . . , tq) are observed at grid points
{
(tn1 , . . . , tnq)

}N1,...,Nq

n1=1,...,nq=1
, where for d =

1, . . . , q, the Nd grid points in each dimension of td are equally spaced. Let ten-

sor Z =
{
zn1,...,nq

}
∈ RN1×···×Nq with zn1,...,nq = z(t1, . . . , tq)

/ (∏q
d Nd

)
, and tensor

Γτ =
{
γγ,n1,...,nq

}
∈ RN1×···×Nq with γτ,n1,...,nq = γτ(t1, . . . , tq). The integral in qD-FLQR

model (4.4) can be replaced by 〈Z,Γτ〉. Suppose that tensor Γτ admits Tucker de-

composition Γτ =
∑R1

n1=1 · · ·
∑Rq

nq=1 λτ,n1,...,nqγτ,n1
◦ · · · ◦ γτ,nq

= ~Λτ;Γτ,1, . . . ,Γτ,q�,

where Λτ = {λτ,n1,...,nq} ∈ RR1×···×Rq , and Γτ,d = {γτ,1, . . .γτ,Rd
} ∈ RNd×Rd for d =

1, . . . , q, with γτ,nd
= (φ(d)

τ,nd (t1), . . . , φ(d)
τ,nd (tNd ))T ∈ RNd for nd = 1, . . . ,Rd.

Hence, model (4.4) is reduced into an order-q tensor linear quantile regression

(qD-TLQR) model:

Qy|x,z(τ|x, z) = ατ + 〈x,βτ〉 + 〈Z,Γτ〉. (4.13)

Using the duality lemma of Li et al. [46], we have 〈Z,Γτ〉 = 〈Z̃τ,Λτ〉, where Z̃τ =

~Z;ΓT
τ,1, . . . ,Γ

T
τ,q� ∈ RR1×···×Rq , and (4.13) is equivalent to

Qy|x,z(τ|x, z) = ατ + 〈x,βτ〉 + 〈Z̃τ,Λτ〉. (4.14)

Therefore, given τ ∈ (0, 1), we can find the appropriate Γτ,1, . . . ,Γτ,q represent-

ing the PQR basis by maximizing COVqr

(
y − 〈x,βτ〉, 〈Z̃τ,Λτ〉

)
. In other words,

Γτ,1, . . . ,Γτ,q should be chosen to maximize

l(ατ,βτ,Γτ1, . . . ,Γτq,Λτ) = −Eρτ
[
y − ατ − 〈x,βτ〉 − 〈Z̃τ,Λτ〉

]
. (4.15)

A crucial observation here is that, although l(·) may not be jointly convex by the pa-

rameters of α,β,Γτ1, . . . ,Γτq and Λτ, it is indeed blockwise convex by each block of

parameters. It implies that the block relaxation algorithm [19] would be applicable
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in such situation.

As mentioned in previous section, to establish and demonstrate the asymptotic

properties, we need to replace ρτ by a smooth approximation. In particular, for a

nuisance parameter sequence {νN}
∞
N=1 where νN → ν0, we can choose a uniformly

smooth approximating functions ρτνN such that ρτνN (u)⇒ ρτ(u) as N → ∞. Replac-

ing ρτ by ρτνN in (4.15), we have

lN(ατ,βτ,Γτ1, . . . ,Γτq,Λτ) = −EρτνN

[
y − ατ − 〈x,βτ〉 − 〈Z̃τ,Λτ〉

]
. (4.16)

where lN(·)⇒ l(·), as N → ∞.

For preset R1, . . . ,Rq, we hereby propose the block relaxation algorithm for

tensor partial quantile regression:
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1. Repeat (for N):

(a) Initialization: Let Γ(0)
τd ∈ Rpd×Rd be a random matrix for

d = 1, . . . , q, Λ(0)
τ ∈ RR1×···×Rq be a random tensor, and

(α(0)
τ ,β

(0)
τ ) = arg max

α,β
lN(α,β,Γ(0)

τ1 , . . . ,Γ
(0)
τq ,Λ

(0)
τ ), and

(b) Repeat (for p):

i. for d = 1, . . . , q do
Γ

(p+1)
τd =

arg max
Γτd

lN(α(p)
τ ,β

(p)
τ ,Γ

(p)
τ1 , . . . ,Γ

(p)
τ,d−1,Γτd,Γ

(p)
τ,d+1, . . . ,Γ

(p)
τq ,Λ

(p)
τ ),

ii. Λ(p+1)
τ = arg max

Λτ

lN(α,β,Γ(p+1)
τ1 , . . . ,Γ(p+1)

τq ,Λτ).

iii. (α(p+1)
τ ,β(p+1)

τ ) = arg max
α,β

lN(α,β,Γ(p+1)
τ1 , . . . ,Γ(p+1)

τq ,Λ(p+1)
τ ).

(c) Stop (for p): when
lN(α(p+1),β(p+1),Γ

(p+1)
τ1 , . . . ,Γ(p+1)

τq ,Λ(p+1)
τ ) −

lN(α(p),β(p),Γ
(p)
τ1 , . . . ,Γ

(p)
τq ,Λ

(p)
τ ) < ε.

(d) Save: ατ = α
(p+1)
τ , βτ = β(p+1)

τ , Λτ = Λ(p+1)
τ , and Γτd = Γ

(p+1)
τd for

d = 1, . . . , q.

2. Stop (for N): When
lN+1(ατ,βτ,Γτ1, . . . ,Γτq,Λτ) − lN(ατ,βτ,Γτ1, . . . ,Γτq,Λτ) < ε.

3. Output: ατ,βτ,Γτ1, . . . ,Γτq, and Λτ.

Algorithm 3: Block relaxation algorithm for Tucker PQR (for preset
R1, . . . ,Rq)
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The advantages of this procedure is obvious. Firstly, Γτds, for d = 1, . . . , q,

retain the basis vectors by column which are updated altogether. Secondly, the

block relaxation procedure can guarantee the solutions’ stability and convergence

whenever the objective function, lN(·), is convex and bounded from above which is

easy to verify. Last but not least, due to the convexity and uniform convergence of

the objective functions, the maximizer of lN(·) converges to the maximizer of l(·).

Convergence properties of ASIMPQR are summarized in the following Proposition:

Proposition 4.3.1. If we have lN(υ) ⇒ l(υ) with υ = (ατ,βτ,Γτ1, . . . ,Γτq,Λτ) as

N → ∞, where l(υ) and lN(υ) are defined as in (4.15) and (4.16). For a given fixed

N, if (i) lN(υ) is continuous, and coercive, that is, the set {υ : lN(υ) ≥ lN(υ(0))}

is compact and bounded above, (ii) the objective function in each block update

of algorithm is strictly concave, and (iii) the set of stationary points of lN(υ) are

isolated, we have the following results:

1. (Global convergence) For a give m, the sequence υ(p) = (α(p),β(p),Γ
(p)
τ1 , . . . ,Γ

(p)
τq ,

Λ(p)
τ ) generated by the algorithm above converges to a stationary point of

lN(υ).

2. (Local convergence) For a give m, let υ(∞) = (α(∞),β(∞),Γ(∞)
τ1 , . . . ,Γ

(∞)
τq ,Λ

(∞)
τ )

be a strict local maximum of lN(υ). The iterates generated by the algorithm

above are locally attracted to υ(∞) for υ(0) sufficiently close to υ(∞).

3. (Approximation convergence) For a given fixed m, the convergence points

obtained from lN(υ) will converge in probability to the convergence point of

l(υ) as N → ∞.

The assumptions above are not hard to verify if it is allowed to impose some

regular conditions on the distribution functions [38]. If assumptions (i) - (iii) stand,
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the local convergence and global convergence can be obtained by following the

similar discussions in [46] and [83]. In order to obtain the approximation conver-

gence, we can use Lemma 2 of Hjort and Pollard [33], provided that lN(υ) has a

unique arg max
υ

. In fact, since the verification is the same as shown in Chapter 3,

we skip the details here.

4.4 Asymptotic Properties

We study the statistical properties of the estimator υ̂. In this chapter, we adopt

the asymptotic setup with fixed ranks, R1, . . . ,Rq, and a diverging sample size n,

because this is an important first step toward a comprehensive understanding of the

theoretical properties of the proposed model.

For given fixed R1, . . . ,Rq, we first establish score, information and identifi-

ability in term of the proposed q-dimensional PQR (qD-PQR) for q-dimensional

functional linear quantile regression. Then the consistency and asymptotic normal-

ity can be derived by applying the advanced theory of empirical processes [72] and

following the similar discussions as in Chapter 3 [46, 83].

Score and Information We first derive the score and information for partial quan-

tile regression model. As discussed in Yu and Moyeed [77] and Sánchez et al.

[64], the minimization of the quantile loss are equivalent to the maximization of a

likelihood function formed by independent and identically distributed asymmetric

Laplace densities. In fact, l(·) defined as (4.15) is proportional to the log-likelihood.

Therefore, we want to derive the score and information for l(·). Since l(·) is not

differentiable, we are giving the score and information for its approximation lN(·)

defined as (4.16). As N → ∞, the differences of the scores and information matrices
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between lN and l are almost negligible.

The following standard calculus notations are used. For a scalar function f , ∇ f

is the (column) gradient vector, d f =
[
∇ f

]T is the differential. For a multivariate

function g : Rp → Rq, Dg ∈ Rp×q denotes the Jacobian matrix holding partial

derivatives ∂g j

∂xi
. As a direct result from Lemma 2 of Zhou et al. [83], one can easily

check the followings.

Lemma 4.4.1. Let η = ατ + 〈x,βτ〉 + 〈Z,Γτ〉 = ατ + 〈x,βτ〉 + 〈Z̃τ,Λτ〉, then the

gradient ∇η(Γτ1, . . . ,Γτq) ∈ R
∏

d Rd+
∑

d NdRd is as

∇ηi(Λτ,Γτ1, . . . ,Γτq) = −
[
Γτq ⊗ · · · ⊗ Γτ1 J1 · · · Jq

]
vec (Z) ,

where Jd ∈ R
∏

d Nd×NdRd is the Jacobian

Jd = DΓ(Γτd) = Πd

{[(
Γτ,q ⊗ · · · ⊗ Γτ,d+1 ⊗ Γτ,d−1 ⊗ · · · ⊗ Γτ,1

)
ΛT

(d)

]
⊗ INd

}
,

and Πd is the
(∏D

d=1 Nd

)
by

(∏D
d=1 Nd

)
permutation matrix that reorders vec Γτ(d) to

obtain vec Γτ, i.e., vec Γτ = ΠdvecΓτ(d).

Here the mode-d matricization, Γ(d), maps a tensor Γ into a Nd×
∏

d′,d Nd′ matrix

such that the ( j1, . . . , jq) element of the array Γ maps to the ( jd, k) element of the

matrix Γ(d), where j = 1 +
∑

d′,d( jd′ − 1)
∏

d′′<d′,d′′,d Nd′′ .

Proposition 4.4.2. Consider the partial quantile regression model (4.15):

1. The score function (or score vector) of lN is

∇lN(Λτ,Γτ1, . . . ,Γτq) = −Eρ′τνN

(
ηi(Λτ,Γτ1, . . . ,Γτq)

)
· ∇η(Λτ,Γτ1, . . . ,Γτq).

with ∇η(Λτ,Γτ1, . . . ,Γτq) given in Lemma 4.4.1.
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2. The Fisher information matrix of lN is

IN(Λτ,Γτ1, . . . ,Γτq) = E
[
∇lN(Λτ,Γτ1, . . . ,Γτq)dlN(Λτ,Γτ1, . . . ,Γτq)

]
.

Identifiability Before studying asymptotic properties, we need to deal with the

identifiability issue. The parametrization in the partial linear quantile regression

model is non-identifiable mainly due to the complication of the nonsingular tranfor-

mation indeterminacy. That is the tensor decomposition of Γτ of ~Λτ;Γτ,1, . . . ,Γτ,q� ∈

RR1×···×Rq is not unique. It is similar to the situation when q = 1 such that the vector

of Γτ can be decomposed into infinity number of possible ways. To fix the such

indeterminacy, we simply assume that first Rd rows of Γτd to be ones

Γ =
{
~Λτ;Γτ,1, . . . ,Γτ,q� : γ(r)

jd
= 1, jd = 1, . . . ,Rd, d = 1, . . . , q

}
.

Next we give a sufficient and necessary condition for local identifiability.

Proposition 4.4.3 (Identifiability). Given a sequence of iid data points {(yi, zi)}ni=1

from the quantile regression model. Let Γτ0 ∈ Γτ be a parameter point and assume

there exists an open neighbourhood of Γτ0 in which the information matrix has a

constant rank. Then Γτ0 is locally identifiable if and only if

IN(Γτ0) = E [∇lN(Γτ0)dlN(Γτ0)]

is nonsingular.

This result can be obtained by using Theorem 1 of Rothenberg [63].

Asymptotics The asymptotics follow from those discussions for MLE or M-estimation.

A key observation is that the nonlinear part of tensor model (4.13) is indeed a poly-
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nomial of degree q, where the collections of polynomials {〈Γτ,Z〉,Γτ ∈ Γ} forms

a Vapnik-Cervonenkis (VC) class. Then standard uniform convergence theory for

M-estimation [72] applies.

Theorem 4.4.4 (Consistency). Assume Γτ0 ∈ Γ is (globally) identifiable up to per-

mutation and the array covariates Zi are iid from a bounded distribution. The

M-estimator is consistent, that is, Γ̂n converges to Γτ0 (modulo permutation) in

probability for quantile regression model (4.13) with a compact parameter space

Γ0 ⊂ Γ.

The consistency can be checked using the theory of empirical processes. By

showing that {lN(Γτ),Γτ ∈ Γ} is a Donsker class when the parameter is restricted to

a compact set, the Glivenko-Cantelli theorem establish the uniform convergence.

Uniqueness is guaranteed by the information equality whenever Γτ0 is identifiable.

Theorem 4.4.5 (Asymptotic normality). For an interior point Γτ0 ∈ Γ with nonsin-

gular information matrix IN (Γτn) and Γ̂τn is consistent,

√
n
[
vec

(
Γ̂τn

)
− vec (Γτ0)

]
converges in distribution to a normal with mean zero and covariance I−1

N (Γτ0).

4.5 Simulation Studies

In this section, we demonstrate that the proposed q-dimensional partial quantile re-

gression (qD-PQR) model, although with substantial reduction in dimension, can

manage to identify a range of two dimensional signal shapes with different ranks.

As a supervised learning procedure, qD-PQR is more efficient in prediction com-

pared with the unsupervised MPC decomposition [7]. We use a similar setting as Li
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et al. [46]. As shown in Figure 4.2 and 4.4, the true 2D signals Γ ∈ R64×64 are listed

in the first column, along with the estimates by the proposed method in the second

to fourth columns with ranks (1, 1), (2, 2) and (3, 3), respectively. As a comparison,

Figure 4.3 and 4.5 are listed by using the method proposed by Li et al. [46]. The

regular covariate x and image covariates Z ∈ R64×64 are randomly generated with

all elements being independent standard normal. Let µ = α + 〈x,β〉 + 〈Z,Γ〉, then

the response Y is generated from

1) Normal distribution with mean µ and standard deviation sd(µ)/
√

10;

2) Cauchy distribution with location µ and scale sd(µ)/
√

10.

The vector of coefficient β = 14 and the coefficient tensor Γ is binary with the sig-

nal region equal to one and the rest zero. As shown in Figure 4.2 and 4.3, when

the response is generated from normal distribution, our proposed qD-PQR method

performs comparable with the Tucker tensor regression model [46]. When the re-

sponse is generated from Cauchy distribution, as shown in Figure 4.4 and 4.5, the

robustness of qD-PQR can result a reasonable recovery of the true signal while the

Tucker tensor regression [46] is not designed to handle such situation. As shown

in Figure 4.6, even though the true signal is blurred by the heavily skewed Cauchy

distribution, by increasing the ranks from (3, 3) to (4, 4), the result can be further

improved. The proper ranks can be chosen using either BIC or CV with satisfactory

performances as implied by Li et al. [46], whose details are skipped in this chapter.

As mentioned at the beginning, one of the advantages our proposed method

is that the basis extracted are supervised by the response, while the unsupervised

basis extraction method [7] mainly focus on the decomposition of image covari-

ates Z which can be totally random. Table lists the mean absolute errors (MAEs)

between µ abd µ̂ for different signals where the 2000 observations are randomly

divided into training and testing data set with proportions of 80% and 20%. Our

93



0.0 0.4 0.8

0.
0

0.
4

0.
8

True signal

0.0 0.4 0.8

0.
0

0.
4

0.
8

qTR(1)

0.0 0.4 0.8

0.
0

0.
4

0.
8

qTR(2)

0.0 0.4 0.8

0.
0

0.
4

0.
8

qTR(3)

0.0 0.4 0.8

0.
0

0.
4

0.
8

True signal

0.0 0.4 0.8

0.
0

0.
4

0.
8

qTR(1)

0.0 0.4 0.8

0.
0

0.
4

0.
8

qTR(2)

0.0 0.4 0.8

0.
0

0.
4

0.
8

qTR(3)

0.0 0.4 0.8

0.
0

0.
4

0.
8

True signal

0.0 0.4 0.8

0.
0

0.
4

0.
8

qTR(1)

0.0 0.4 0.8
0.

0
0.

4
0.

8

qTR(2)

0.0 0.4 0.8

0.
0

0.
4

0.
8

qTR(3)

0.0 0.4 0.8

0.
0

0.
4

0.
8

True signal

0.0 0.4 0.8

0.
0

0.
4

0.
8

qTR(1)

0.0 0.4 0.8

0.
0

0.
4

0.
8

qTR(2)

0.0 0.4 0.8

0.
0

0.
4

0.
8

qTR(3)

0.0 0.4 0.8

0.
0

0.
4

0.
8

True signal

0.0 0.4 0.8

0.
0

0.
4

0.
8

qTR(1)

0.0 0.4 0.8

0.
0

0.
4

0.
8

qTR(2)

0.0 0.4 0.8

0.
0

0.
4

0.
8

qTR(3)

0.0 0.4 0.8

0.
0

0.
4

0.
8

True signal

0.0 0.4 0.8

0.
0

0.
4

0.
8

qTR(1)

0.0 0.4 0.8

0.
0

0.
4

0.
8

qTR(2)

0.0 0.4 0.8

0.
0

0.
4

0.
8

qTR(3)

Figure 4.2: Simulation: True and recovered image signals by 2-dimensional partial
quantile regression (2D-PQR). The matrix variate has size 64 by 64 with entries
generated as independent standard normals. The errors follow normal distributions
with mean zero and standard deviation sd (µ) /

√
10. The regression coefficient for

each entry is either 0 (white) or 1 (black). The sample size is 2000. qTR(r) means
the estimate is from 2D-PQR with an r-by-r core tensor.
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Figure 4.3: Simulation: True and recovered image signals by Tucker tensor regres-
sion. The matrix variate has size 64 by 64 with entries generated as independent
standard normals. The errors follow normal distributions with mean zero and stan-
dard deviation sd (µ) /

√
10. The regression coefficient for each entry is either 0

(white) or 1 (black). The sample size is 2000. TR(r) means the estimate is from
Tucker regression with an r-by-r core tensor.
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Figure 4.4: Simulation: True and recovered image signals by 2-dimensional partial
quantile regression (2D-PQR). The matrix variate has size 64 by 64 with entries
generated as independent standard normals. The errors follow Cauchy distributions
with location zero and scale sd (µ) /

√
10. The regression coefficient for each entry

is either 0 (white) or 1 (black). The sample size is 2000. qTR(r) means the estimate
is from 2D-PQR with an r-by-r core tensor.
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Figure 4.5: Simulation: True and recovered image signals by Tucker tensor regres-
sion. The matrix variate has size 64 by 64 with entries generated as independent
standard normals. The errors follow Cauchy distributions with location zero and
scale sd (µ) /

√
10. The regression coefficient for each entry is either 0 (white) or 1

(black). The sample size is 2000. TR(r) means the estimate is from Tucker regres-
sion with an r-by-r core tensor.
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Figure 4.6: Simulation: Comparison of recovered image signals of Tucker tensor
regressions with 2-dimensional partial quantile regression (2D-PQR) where the true
signal is displayed as the last row of Figure 4.3. The matrix variate has size 64 by 64
with entries generated as independent standard normals. The errors follow Cauchy
distributions with location zero and scale sd (µ) /

√
10. The regression coefficient

for each entry is either 0 (white) or 1 (black). The sample size is 2000.
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proposed method outperforms the order-2 singular value decomposition (O2SVD)

[7] for various signals and errors. One explanation is that unlike the true signal

γ, the image (functional) covariates Z are randomly generated in this setting, and

hence the unsupervised decomposition of the functional covariates brings no useful

information for the prediction of µ. In fact, the low rank representation of covariates

can even lose some information. On the contrary, our proposed learning method is

supervised by y and decompose the signals, instead of covariates, which indeed can

be approximated by a low rank representation.

Gaussian
PQR O2SVD

TR(1) TR(2) TR(3) TR(4) TR(5) TR(1) TR(2) TR(3) TR(4) TR(5)
Square 1.59 2.49 2.97 3.53 3.93 12.97 12.93 12.85 13.11 13.18

T 4.77 1.65 2.25 2.69 2.99 9.72 9.69 9.68 9.79 9.88
Cross 6.61 1.99 2.95 3.42 4.06 12.52 12.58 12.76 12.76 12.68

Triangle 5.50 5.20 5.12 5.66 5.68 11.37 11.29 11.42 11.24 11.42
Circle 4.87 4.29 4.19 5.11 5.68 13.62 13.66 13.74 13.79 13.71
Star 7.75 6.66 5.84 6.85 7.14 15.68 15.76 15.78 16.21 16.15

Cauchy
PQR O2SVD

TR(1) TR(2) TR(3) TR(4) TR(5) TR(1) TR(2) TR(3) TR(4) TR(5)
Square 2.12 4.00 4.98 7.26 9.79 13.57 13.67 13.50 13.33 13.89

T 6.82 2.99 4.45 5.24 7.03 9.88 9.90 9.94 9.92 10.17
Cross 7.60 3.18 5.88 6.78 10.65 12.01 12.03 12.07 12.30 12.28

Triangle 6.05 6.89 7.92 9.21 10.54 11.41 11.33 11.32 11.38 11.41
Circle 5.30 6.32 7.08 9.26 10.60 13.10 13.15 13.30 13.25 13.40
Star 7.47 8.17 10.33 11.89 14.46 15.53 15.59 15.52 15.43 15.32

Table 4.1: Simulation: The testing mean absolute errors of 2-dimensional partial
quantile regression (2D-PQR) and order-2 singular value decomposition (O2SVD)
for different signals and different errors where the 2000 observations are randomly
divided into training and testing data set with proportions of 80% and 20%.
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4.6 Discussion

In this chapter, we propose and implement the q-dimensional partial quantile re-

gression (qD-PQR) procedure for multidimensional functional linear model using

tensor decomposition techniques and block relaxation ideas. We also establish and

demonstrate the corresponding asymptotic properties which can be verified by ap-

plying advanced techniques from empirical process theory. The proofs of them can

be followed in the similar ways as shown in Chapter 3 and Li et al. [46]. As shown in

the first part of the numerical studies, when the errors are normally distributed, our

proposed method can recover the true signal equally well as the method proposed

by Li et al. [46], while the latter can not handle the non-normal errors.

As illustrated in the second part the numerical studies, as a supervised basis

extraction method, the proposed qD-PQR procedure is more efficient in prediction

than and hence can be considered as an alternative to the unsupervised learning

methods such as q-dimensional MPC [7].
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Chapter 5

Conclusion and Discussion

In this thesis, we concentrate on the partial quantile regression methods for various

functional linear models.

In chapter 2, we propose a new prediction procedure for the functional linear

quantile regression model by using partial quantile covariance techniques and de-

velop the simple partial quantile regression (SIMPQR) algorithm inspired by sim-

ple partial least regression, SIMPLS [17]. The proposed method is motivated by

the success of the partial least square (PLS) method in mean regression problem

of functional linear model. We also extend our method to functional composite

quantile regression (CQR) [87] which works well under the homoscedasticity as-

sumption.

Although the SIMPQR proposed in chapter 2 works well in practice, there is no

theoretical guarantees such as the convergence and asymptotics mainly due to the

complications caused by the iterative nature of basis extraction and non-smoothness

of quantile loss function. To remedy that, in chapter 3, we propose a smoothing

approximation for the quantile loss function by applying the finite smoothing tech-

niques [13, 54]. Since the approximation function is convex and uniformly con-
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verges towards the quantile loss function, the minimizer of the former converges

to the minimizer of the latter in a compact set. Replacing the quantile loss func-

tion by its smoothing approximation, for a given fixed number of PQR basis, the

original PQR formulation can be modified to have the algorithm of alternative SIM-

PQR (ASIMPQR) according to the block relaxation ideas [19] which updates and

obtains the basis as a “block” instead of one by one sequentially. Such modifi-

cation provides an alternative to the original formulation for PQR (APQR) basis

which leads to insightful results as what has been shown during the rest of chap-

ter 3, demonstrating consistency and establishing convergence rates by applying

advanced techniques from empirical processes theory [72].

Inspired by the successes of the ASIMPQR technique proposed in in chapter 4

in both practice and theory, we further propose and implement the generalization of

PQR procedure (qD-PQR) to multidimensional functional linear model in chapter 4,

where the functional covariate can be taken as a multivariable function. Analogous

to the ASIMPQR method, we also establish and demonstrate the corresponding

asymptotic properties [72].

There are several topics that merit further research. In our thesis, we mainly

focus on the methodology and theoretical properties of partial quantile regression

without penalty. By imposing appropriate penalty terms, it is likely that the cor-

responding prediction and coefficient estimation could be further improved; for in-

stance, we may use smooth penalty to induce better recovery of true functional

coefficients or sparse penalty to overcome the potential issue of overfitting. The

theoretical properties of composite partial quantile regression (CPQR) for multidi-

mensional functional linear model is also worth further studying. Moreover, it is

also of interest to investigate the performance of our proposed methods for multidi-

mensional functional linear model with multiple functional covariates.
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