This decommissioned ERA site remains active temporarily to support our final migration steps to https://ualberta.scholaris.ca, ERA's new home. All new collections and items, including Spring 2025 theses, are at that site. For assistance, please contact erahelp@ualberta.ca.
Theses and Dissertations
This collection contains theses and dissertations of graduate students of the University of Alberta. The collection contains a very large number of theses electronically available that were granted from 1947 to 2009, 90% of theses granted from 2009-2014, and 100% of theses granted from April 2014 to the present (as long as the theses are not under temporary embargo by agreement with the Faculty of Graduate and Postdoctoral Studies). IMPORTANT NOTE: To conduct a comprehensive search of all UofA theses granted and in University of Alberta Libraries collections, search the library catalogue at www.library.ualberta.ca - you may search by Author, Title, Keyword, or search by Department.
To retrieve all theses and dissertations associated with a specific department from the library catalogue, choose 'Advanced' and keyword search "university of alberta dept of english" OR "university of alberta department of english" (for example). Past graduates who wish to have their thesis or dissertation added to this collection can contact us at erahelp@ualberta.ca.
Items in this Collection
- 2Diagnosis
- 2Functional magnetic resonance imaging
- 2Schizophrenia
- 1Adhd
- 1Analysis
- 1Artificial Intelligence
-
Fall 2012
Functional Magnetic Resonance Imaging (fMRI) measures the dynamic activity of each voxel of a brain. This dissertation addresses the challenge of learning a diagnostic classifier that uses a subject’s fMRI data to distinguish subjects with neuropsychiatric disorders from healthy controls. fMRI...
-
Fall 2020
While it is very difficult to diagnose/prognosis psychiatric disorders reliably, especially in early course, such early diagnosis/prognosis is critical for producing an effective treatment. This necessity has motivated many researchers to apply machine learning approaches to high-dimensional...