
“It is certain that there may be extraordinary mental activity with
an extremely small absolute mass of nervous matter: thus the

wonderfully diversified instincts, mental powers, and affections of
ants are notorious, yet their cerebral ganglia are not so large as
the quarter of a small pin’s head. Under this point of view, the

brain of an ant is one of the most marvelous atoms of matter in
the world, perhaps more so than the brain of a man.”

- Charles Darwin

“No bird soars too high, if he soars with his own wings.”
-William Blake

“We have existence and it’s all we share”

“You’re a slave to money, then you die”

“There’s no time, no space, no law. We’re out here on our own”

“History will have a place for us, it may take three albums, but
we’ll be there”

-Richard Ashcroft

“Some people want it to happen, some wish it would happen,
others make it happen.”

“I can accept failure, everyone fails at something. But I can’t
accept not trying.

-Michael Jordan
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Abstract

Functional Magnetic Resonance Imaging (fMRI) measures the dy-

namic activity of each voxel of a brain. This dissertation addresses

the challenge of learning a diagnostic classifier that uses a subject’s

fMRI data to distinguish subjects with neuropsychiatric disorders

from healthy controls. fMRI intrinsically possess spatial and tem-

poral dimensions, given by a waveform over hundreds of time points

at each of 105 spatial locations. Given training data of only dozens

to hundreds of subjects, standard learning algorithms will over-fit

– i.e., do well on the training data, but poorly on novel instances.

We address this by reducing the dimensionality, using several vari-

ants of Principal Component Analysis (PCA). We evaluate the per-

formance of the PCA Variants on two datasets: Attention-Deficit

Hyperactivity Disorder (ADHD) [a large public dataset of 668 sub-

jects, used for the ADHD200 competition] and First Episode Psy-

chosis [involving 34 subjects]. Our empirical studies show that

using non-linear PCA to reduce fMRI dimensionality over both

the spatial and temporal dimensions is statistically better, with

respect to the classification task, than using a linear mapping to

reduce over only the spatial or only the temporal dimension.
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Chapter 1

Introduction

Over time, Moore’s law has modeled the increasing availability of computa-
tional resources, motivating multiple industries/disciplines to use these re-
sources to improve their products and services. Algorithms in Machine Learn-
ing, which is a discipline that focuses on using past data to optimize some
performance criterion [2], have improved multiple industries’ products and
services, and the increased availability of computational resources has fur-
ther broadened their application to cutting-edge medical research that involves
high dimensional data such as microarrays [35], Single Nucleotide Polymorphs
(SNP) [6], and functional Magnetic Resonance Imaging (fMRI) [9].

In this dissertation, we use Machine Learning algorithms to analyze func-
tional Magnetic Resonance Images, which are images that provide an indirect
measure of brain activity. Unlike Magnetic Resonance Imaging (MRI), which
is used primarily to measure structural images of the organs, fMRI measures
hemodynamic changes in the brain caused by changes in neural activity [21].

The most common form of fMRI measures the blood oxygenation level
dependent (BOLD) signal, which is an indirect measure of neuronal activity
based on changes in blood oxygenation, blood volume, and blood flow rate.
Full details of how changes in neuronal activity cause changes in the BOLD
signal are not completely understood [23]. Evaluating the changes in BOLD
contrast could assist in providing a neurological basis for diagnosing neuropsy-
chiatric disorders. Evaluating these changes across the entire brain using tech-
niques from Machine Learning may be one way to extract this neurological
basis.

Psychiatrists diagnose neuropsychiatric disorders, defined by the Diagnos-
tic and Statistical Manual of Mental Disorders (DSM) [1], using clinical as-
sessments that include: evaluating the background demographics, collecting
first and third party observations, and a structured psychiatric interview with
the subject [27]. However, clinical assessments are highly dependent on the
training of the interviewer [34], and it is feasible that this dependence can
be reduced if clinicians have information about the subject’s neurobiology to
supplement their diagnosis. Furthermore, the diagnosis of specific neuropsy-
chiatric disorders is imperfect. For example, bipolar disorder has a low diag-
nostic reliability, and is consequently more likely to be missed than correctly
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Figure 1.1: Our learning system in two stages, where the first develops the classifier
responsible for diagnosing new subjects, which is then used in the second step.

diagnosed [32].
In the United States, there are other challenges associated with psychiatric

diagnoses. This is exemplified by the variability in mental-health-related ex-
pertise among clinicians diagnosing neuropsychiatric disorders such as Attention-
Deficit Hyperactivity Disorder (ADHD). Diagnoses for ADHD can be obtained
from general practitioners, nurses, paediatricians, psychiatrists, or neuroscien-
tists [31]. Combining the variability in mental-health-related expertise with
the subjective nature of psychiatric diagnosis, there is a higher chance for a
misdiagnosis.

It is desirable to decrease the subjectivity involved in diagnosing neuropsy-
chiatric disorders, which may be possible by statistically analyzing fMRI to
glean the respective subject’s neurobiology. fMRI combined with machine
learning / statistical analysis may provide new, objective, biologically-based
measures that might assist with psychiatric diagnosis and prognosis. If we
can apply Machine Learning algorithms to fMRI in order to diagnose sub-
jects with high accuracy, future work can investigate the possibility of new
diagnostic criteria that is based on fMRI.

For Machine Learning researchers, fMRI data is intriguing because it has
both temporal and spatial dimensions, characterized by L ×W × H spatial
voxels1, each with waveforms of length T . fMRI datasets typically contain
dozens to hundreds of subjects, where each subject’s fMRI data contains L×
W × H × T ≈ 106 features per subject, which may cause standard learning
algorithms to over-fit – i.e., performing well on the training data, but poorly
on novel instances. In Machine Learning, dimensionality reduction methods
attempt to alleviate problems associated with high-dimensional data, either
by selecting a subset of features in high dimensional space, or transforming
this subset of features into a lower-dimensional space.

Reducing fMRI dimensionality is one part of a larger system that is re-
sponsible for learning a diagnostic classifier. Our learning system consists of
two components, each of which involves many steps. At training time, the first

1Voxels are the three dimensional analog to pixels in two dimensions
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component uses a number of subject scans to produce a diagnostic classifier,
then at performance time, the second component uses the classifier to produce
a diagnosis for a novel subject – i.e., a subject who was not used to develop the
classifier. Please note this objective – of producing a classifier – is different
from the more standard associative task, of determining, say, which specific
regions of the brain are most correlated with some diagnosis [10].

As shown in Figure 1.1, both components involved first running the “fMRI
Image Pipeline”, followed by reducing the fMRI dimensionality in the “Fea-
ture Creation/Selection” stage. This dissertation focuses on the second “Fea-
ture Creation /Selection” stage, to show that using non-linear mappings to
reduce fMRI dimensionality over both the spatial and temporal domain will
improve the classifier’s discrimination between subjects with neuropsychiatric
disorders2 and healthy controls, in comparison to using a linear mapping that
reduces over only the spatial or only the temporal domain.

Figure 2.1 summarizes the “Feature Creation/Selection” step for the datasets.
After several fixed steps (discussed in Section 2), we then consider three di-
mensionality reduction processes that apply some variant of Principal Compo-
nent Analysis (PCA); these variants apply PCA over the temporal dimension
(PCA-t) or over both the temporal and spatial dimensions (PCA-st and the
kernelized variant kPCA-st).

As a “first step” towards our goal of developing a procedure to learn an
effective diagnostic classifier, we opted for a biologically naive approach to
fMRI dimensionality reduction; that is, we do not use any prior biological in-
formation, about the brain nor the fMRI signal, etc. This ensures that the
diagnostic classifier’s performance reflects how well the respective dimension-
ality reduction method discriminates patients from controls, in the absence of
biological information. Once we understand which biologically naive methods
work, future work (after this dissertation) will focus on extending these ideas
by incorporating biological information.

kPCA-st ’s result on both datasets is important because it is a proof-of-
concept for fMRI-based diagnosis, which will motivate future work into finding
new diagnostic criteria based on fMRI. Furthermore, kPCA-st ’s result shows
that fMRI dimensionality reduction processes should be able to discriminate
patients from controls, regardless of whether these datasets contain different
neuropsychiatric disorders. We use two datasets that contain healthy controls
and patients with ADHD [12] and First Episode Psychosis (FEP) [25], respec-
tively, to show that kernel principal component analysis, which uses non-linear
mappings to reduce over both the spatial and temporal dimensions, performs
statistically better than the frequently-used canonical PCA, which uses a lin-
ear mapping to reduce over only the temporal dimension. We believe that
evaluating the point-wise differences of every voxel waveform – i.e., measuring
the similarity between each point of each voxel waveform– over all subjects,
should reveal differences between patients and controls for any dataset.

2We refer to subjects with neuropsychiatric disorder as patients.
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The dimensionality reduction processes take as input the waveforms of each
voxel, over all subjects. The PCA-t (see Figure 2.4) approach runs PCA on
the matrix that includes, as rows, the original waveforms of all voxels of all
subjects, which compresses each waveform into a smaller number of features,
assuming that the waveform of each voxel of each subject is an independent
draw; PCA-t has various applications in fMRI analysis [3]. We then learn a
classifier that uses the set of all such compressed-waveforms for each subject.
Unfortunately on both the ADHD and FEP datasets, PCA-t failed to per-
form statistically better3 than the baseline when using only the imaging data.
PCA-st (see Figure 2.5) tries to address the poor performance by treating the
concatenation of the waveforms of all voxels for each subject, as independent
observations. However, PCA-st performed similarly to PCA-t, suggesting that
both were limited, perhaps because they both use linear compressions. We
therefore applied kernel principal component analysis (kPCA-st) to introduce
non-linear compression of the data. In general, on both the ADHD and FEP
datasets, we show that kPCA-st ’s compression improves discrimination of pa-
tients from controls at a statistically better level than PCA-t.

Section 2 outlines the processing of subjects’ raw fMRI data and overviews
the methods used in our study. Sections 3 and 4 describe the results on
the ADHD2004 the and FEP datasets respectively, and Section 5 discusses
potential future dimensionality reduction processes for fMRI.

3Throughout, we say one approach is “statistically better” than another if the paired
t-test produces a confidence p ≤ 0.05.

4We refer to ADHD dataset as the ADHD200 dataset.
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Chapter 2

Foundations

This section presents the overall process of the diagnostic system, based on
Figure 1.1. We first present the “fMRI Image Pipeline” in Subsection 2.1
before distinguishing the fMRI in the ADHD200 and FEP datasets in Subsec-
tion 2.2. We then introduce and discuss the use of the General Linear Model
(GLM) on the FEP dataset. The remaining subsections summarize the “Fea-
ture Creation/Selection” step, as shown in Figure 2.1; Subsection 2.4 discusses
Averaging; then Subsection 2.5 discusses Signal Normalization; Subsection 2.6
uses Fast Fourier Transforms (FFT) to process waveforms for the ADHD200
subjects; Subsections 2.7 and 2.8 present long discussions on the PCA variants
and Kernel Methods, including the kernelized PCA variant, kPCA-st, respec-
tively. We considered various learning algorithms but chose (linear) SVM, as
this is a standard learning algorithm.

2.1 fMRI Image pipeline

Both the ADHD200 and FEP dataset’s raw fMRI images were preprocessed
using SPM8 [15] and personally-developed MATLAB code (as specified below).
For each subject, the preprocessing pipeline involved:

1. 6 parameter rigid body motion correction (SPM8)
2. Co-registering functional scans to subject’s respective anatomical scan

(SPM8)
3. Spatially warping (non-linear, performed estimation and interpolation)

anatomical volume to MNI T1 [11] template space at 1 × 1 × 1 mm
resolution (SPM8)

4. Interpolating fMRI volumes into T1 template space at 3 × 3 × 3 mm
spatial resolution using the same warping parameters computed in the
previous step.

5. Applying 8mm full width at half maximum (FWHM) Gaussian spatial
filter to fMRI volumes (SPM8).

6. Truncating all resting-state fMRI scanning data to 135 second duration
(as this is the shortest time used in all hospitals), then linearly interpo-
lating this data to a sampling rate of 2Hz. This step is exclusive to the
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Figure 2.1: Flow of the “Feature Creation/Selection” stage of our diagnostic system for the
ADHD200 (top) and FEP datasets (bottom), where the red and blue lines denote whether
ADHD200 subjects’ waveforms were processed with FFT or were not processed at all. For
both datasets, the PCA variant step involves developing the respective variant’s data matrix
and processing it by one of PCA-t (shown in Figure 2.4), PCA-st or kPCA-st (Figure 2.5).
The dimensionality is given beneath each step for the respective datasets, where the number
of rows and columns represent the spatial and temporal dimensions, respectively.

ADHD200 dataset.

Afterwards, the subjects’ data were aligned to MNI T1 template space.
Both the ADHD200 and FEP subjects had the same spatial dimensions (57×
67 × 50 voxels), but differed in both their sampling rates (2s and 3s volume
times temporally for the ADHD200 and FEP subjects, respectively) and their
temporal dimensions (370 and 318 time points for the ADHD200 and FEP
subjects’ voxel waveforms, respectively).

2.2 Block design fMRI and resting-state fMRI

Aside from the neurological differences between ADHD and FEP, the distin-
guishing property between the FEP and ADHD200 datasets is that the FEP
dataset consists of block design fMRI [20], whereas the ADHD200 dataset con-
sists of resting-state fMRI; see Figure 2.2. Resting-state fMRI does not involve
any overt task or sensory stimulation, as the subject is asked to quietly rest
during the scan. In block design fMRI, each event is associated with a task
block ; for the duration of each task block, subjects perform a task that in-
volves functions associated with brain regions that are believed to be affected
by FEP.
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Figure 2.2: Illustrating a hypothetical difference between a voxel’s waveform for block
design fMRI (top) and resting-state fMRI (bottom), assuming that this voxel is involved in
all of the block design fMRI’s task blocks. Ri denotes the ith rest period, and Si denotes
the ith task block.

The large difference between the experimental designs of the ADHD200
and FEP data manifests as differences in the voxel waveforms generated by the
two designs: the FEP dataset’s voxel waveforms are composed of activations
during and between1 events. Since the events evoke activation in certain brain
regions associated with FEP, some of these regions will exhibit differences in
activation between FEP patients and controls.

2.3 General Linear Model (GLM)

Earlier, we mentioned that voxel waveforms consist of many time points, where
each time point represents the BOLD-signal intensity. The General Linear
Model (GLM) explains the voxel’s BOLD-signal activation level at time t in
terms of the explanatory variables that are related to the conditions under
which volume t was collected [14]. The jth voxel in volume t is expressed as

xt,j = gt,1β1,j + . . .+ gt,NβN,j + εt,j (2.1)

where [gt,1, . . . , gt,N ] is an N -dimensional row vector containing the N explana-
tory variables believed to affect the BOLD-signal activation levels of all voxels
in the volume collected at time t, [β1,j, . . . , βN,j]

T are the N parameters relating
voxel j ’s BOLD-signal activation level at time t to the N explanatory variables,
and εt,j ∼ N (0, σ2

j ) is the independently and identically distributed (i.i.d) er-
ror for voxel j at time t from the standard normal distribution. Equation 2.2

1The time between events is referred to as a rest period.
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shows that the GLM models every voxel at every time point separately.
Let X be a T × V matrix representing a subject’s fMRI scan that consists

of T volumes, where each volume contains V voxels. Define G as the T ×N
design matrix, where each column represents one condition over T time points,
and β = [β1| . . . |βV ] as the N×V parameter matrix, where column j contains
the N parameters βj for voxel j. The matrix form for Equation 2.2 is given by

X = Gβ + ε (2.2)

where ε is the T × V error matrix containing the i.i.d noise from the standard
normal distribution.

The GLM calculates the Ordinary Least Squares (OLS) estimator of β,
denoted by β̂, which is an unbiased estimator uniquely determined by

β̂ = (GᵀG)−1GᵀX (2.3)

With this framework established, the remaining question is how to con-
struct the design matrix G such that it is representative of the experimental
design. Such a matrix G contains column vectors that model interesting ef-
fects, such as the activation pattern for each event in a block design fMRI
study, and uninteresting effects, such as motion, scanner noise, and other ef-
fects that might impact the quality of an fMRI scan.

The 318 × 34 design matrix used in for the FEP dataset models 2 inter-
esting and 32 uninteresting effects, where each interesting effect is a column
containing indicator variables that model the voxels’ BOLD-signal activation
pattern over all 318 time points for the respective event type2. We use these
events’ indicator variables to:

I. Produce the 2 rows of predictor variables in β̂ that relate the voxels’
BOLD-signal intensity to the respective event’s activation pattern.

II. Select the resting-period time points from each FEP subject. This was
done by selecting the time points where both events’ indicator variables
were zero, which gave a total of 28 resting state time points for each
subject.

In the first case, we give the 2 ∗ 57 ∗ 67 ∗ 50 parameters, which relate the
voxels’ BOLD-signal intensity to the events’ activation pattern, as input to
the learner to determine if this relationship is diagnostic. It follows that these
parameters reduce the temporal dimensionality of the FEP subjects’ fMRI
data.

In the second case, we acknowledge that, for block design fMRI, the BOLD-
signal is returning to the baseline activation from the previous block-related
activation level during the rest periods, which means that the FEP subjects’
rest periods are different from the ADHD subjects’ resting-state fMRI. How-
ever, the indicator variables for each event type are zero only for the last 2

2There are two types of events in the FEP subjects’ fMRI.

8



time points of every rest period, which suggests that these time points are
after the BOLD-signal returns to its baseline activation level. We therefore
believe that using these time points for FEP subjects’ fMRI homogenizes our
comparisons across datasets as much as possible.

2.4 Averaging

We describe each subject using V = L ×W × H spatial voxels, each with a
waveform of length T, meaning each subject scan has dimensionality L×W ×
H ×T ; here, this corresponds to 57× 67× 50× 370 and 57× 67× 50× 28 real
values for the ADHD200 and FEP datasets, respectively.

Figure 2.3: Temporal view of subject’s original (left) and averaged (right) volume
at t=1. In 2-D, this produced a factor of 3x3 compression.

Hence, each subject image in the ADHD200 dataset requires roughly 282MB
of memory to hold this single-precision, four dimensional matrix. Applying
PCA (Subsection 2.7) to the ADHD200 dataset, which consists of 668 sub-
jects, would require 188.78GB in memory, which strains most computers, both
directly and indirectly (by thrashing).

Given the high dimensionality of the data, we first reduced the ADHD200
subjects’ spatial dimensionality by representing each k × k × k subvolume by
its average, for each time t = 1, . . . , T , which reduces the data size by a factor
of k3. Figure 2.3 illustrates the subject fMRI before and after averaging.

All subjects’ fMRI data in the ADHD200 dataset were averaged by taking
the mean over 3× 3× 3 subvolumes, resulting in b57/3c × b67/3c × b50/3c =
19 × 22 × 16 = 6688 voxel waveforms per subject. We considered averaging
the FEP subjects’ data over 3× 3× 3 subvolumes, but observed a decrease in
performance (results not shown), and we therefore did not average the FEP
subjects’ fMRI.

2.5 BOLD-signal Normalization and Masking

After preprocessing the ADHD200 and FEP datasets, and only averaging the
ADHD200 subjects, we use signal normalization to normalize differences be-
tween waveform magnitudes that can arise from either scanner differences or
image registration.

We considered three different signal normalization methods. Two of these
methods [8] normalized voxel waveforms according to their mean, µxi

, and/or

9



standard deviation, σxi
, for waveform xi associated with a single voxel. Here,

for each i = 1, . . . , V :

Percent Signal Change:

xi =
xi − µxi

µxi

× 100

Z-Score Normalization 1:

xi =
xi − µxi

σxi

The classification accuracies when using these methods were no better than
the baseline for both the ADHD200, which considers seven dimensionality
reduction processes (PCA Variants only, FFT only, FFT then PCA Variants),
and FEP datasets, which considers three dimensionality reduction processes
(PCA Variants only). This suggested that normalizing waveforms according
to their local properties – i.e., the voxel waveform’s mean and/or standard
deviation – was not useful for discriminating patients from controls.

We tried a third method: normalizing voxel waveform values by using the
global mean, µx, and global standard deviation, σx, over the waveforms from
the entire fMRI scan for that subject:

Z-Score Normalization 2 (ZN2) Each subject’s image intensities were set
to the z-scores computed using mean and standard deviation over the
entire image:

x =
x− µx

σx

After performing ZN2 signal normalization, we identified voxels inside the
brain for the ADHD200 and FEP datasets using 19× 22× 16 and 57× 67× 50
volumes, respectively, and applied a mask that removed voxels outside of the
brain. This left 3584 and 52975 voxel waveforms for every subject in the
ADHD200 and FEP datasets, respectively.

2.6 Fourier Transforms3

Here, we view each voxel waveform as an observation, with T time points
for each waveform. An FFT transforms these voxel waveforms from the time
domain to the frequency space, and produces T Fourier Components, which
allow us to consider the magnitude of the complex-valued Fourier coefficients
(i.e. “amount” of signal) corresponding to each specific range of frequencies.

In many situations, the amount of signal that lies in a few specific frequency
bands may distinguish one class of signals from another. We considered using
only a pre-determined subset of the frequencies (called “bandpass filtering”),
however we found that the resulting accuracies (for the biologically motivated
bands we considered) were well-below the baseline (results not shown).

3FFT is only used on the ADHD200 dataset.
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After performing FFT on each ADHD200 subject’s 3584 waveforms, we
selected only the first 185 components because the remaining components are
reflections of the first half about the Nyquist frequency. We extracted the
magnitude and discarded the phase for each frequency component, thus each
subject was described using 3584×185 = 663,040 features. As shown in Figure
2, we can use these values as input to the next step – either a PCA variant,
or the learner itself.

We did not apply FFT to the FEP dataset after extracting the 28 resting-
state time points because the collection of these time points cannot be viewed
as a time series or waveform, as they are not contiguous.

2.7 Principal Component Analysis

Principal Component Analysis (PCA) is a dimensionality reduction technique
that computes the linear combination of features – e.g. the intensities of a
specific voxel at a single time, over the set of data points – that have high
variance [26]. Instead of representing a data point using the original features,
we can “project” those original features onto a smaller number of principal
components, and know that this re-encoding “captures” a large proportion
of variance in the data. We first introduce linear similarity measures, which
are used in Subsection 2.7.2 to illustrate the relevant theoretical properties of
PCA.

2.7.1 Linear Similarity Measures

We want the learners to produce classifiers that can generalize to unseen data
points. Assuming that there are c classes in the data, when a new data point
xN+1 is provided, the classifier will assign xN+1 a label belonging to one of
these c classes. The class assigned by the learner for data point xN+1 should
contain data points similar to xN+1, based on some notion of similarity. Before
defining such a similarity measure, Schölkopf and Smola [30] formalize the
problem setting as follows:

Let X be the nonempty set containing the empirical data, and {1, . . . , c} be
the set containing the class labels. Here the ith data point with the associated
label is (xi, yi) ∈ X × {1, . . . , c} for i = 1, . . . , N . We assume that X = Rp –
i.e., data points are p-dimensional. In general, we use

k : X × X → R (2.4)

for some similarity function k that outputs a real value that characterizes the
similarity between a pair of data points. Here, we can use the dot (inner)
product, also called the linear kernel, as a similarity function

klinear(xi, xj) = 〈xi, xj〉 =

p∑
`=1

xi,`xj,` (2.5)
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where xi = [xi,1, . . . , xi,p] and xj = [xj,1, . . . , xj,p] are data points in Rp.
Interpreted geometrically, the inner product between two data points xi and

xj is the cosine of the angle, assuming that both data points are normalized
to length 1, where the length, or norm, of a data point x is defined as ||x||2 =√
〈x, x〉. Note that this dot product is largest when xi = xj (i.e., are extremely

similar) and is zero when xi is orthogonal to xj.

2.7.2 Theory of PCA

Let X be the N × p matrix, where each row corresponds to a subject and each
column is a feature, where the mean over each feature is zero. We can define
a matrix of similarities

K = XXT

K(i, j) = klinear(xi, xj) = 〈xi, xj〉 =

p∑
`=1

xi,`xj,`
(2.6)

where xi and xj are rows of X. Then

Ke = λe (2.7)

holds for each eigenvalue/eigenvector pair (λ, e), where eigenvector e ∈ RN

has the corresponding eigenvalue λ ∈ R. Since K is symmetric, it will always
have non-negative eigenvalues λ ≥ 0. Assume that the eigenvalues of K are
sorted in descending order – i.e. λi ≥ λi+1. The eigenvectors of a matrix
are orthogonal to every other eigenvector of this matrix. Note there are at
most N non-zero eigenvalues with the corresponding eigenvector matrix EN =
[e1, . . . , eN ] ∈ RN×N .

Notice that if there many more data points than features – i.e., N � p
– then K can be very large. The dual of PCA (or the dual trick) provides
an easy way to compute the eigenvalue/eigenvector pairs of such a high-
dimensional similarity matrix, by using the eigenvalue/eigenvector pairs of the
lower-dimensional covariance matrix S = XTX ∈ Rp×p [19]:

Se = λe (2.8)

X(XTX)e = Xλe

K(Xe) = λ(Xe) (2.9)

which proves that the eigenvalue/eigenvector pairs (λ, e), computed using
Equation 2.8, of the relatively-small p× p matrix S, correspond to the eigen-
value/eigenvector pairs (λ,Xe) of the much larger N×N similarity matrix K.
That is, each (λ, e) eigenvalue/eigenvector pair of S corresponds to the eigen-
value/eigenvector pair of K: (λ, Xe). As N � p, it follows from Equation 2.7
that there are at most p eigenvalue/eigenvector pairs with corresponding eigen-
vector matrix Ep = [e1, . . . , ep] ∈ RN×p.
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Note that Ep can also be viewed the matrix that uses the low-dimensional
eigenvector matrix ES = [e1, . . . , ep] ∈ Rp×p of S to redefine the coordinate
system of X, which produces the principal component score matrix

ZS = XES ∈ RN×p (2.10)

where rows of ZS are the data points in the new coordinate system, and
columns are the scores of the N data points, where the ith column contains
the N scores from the ith eigenvector of S.

Although Equation 2.10 shows that the score matrix is numerically equiv-
alent to Ep, its interpretation depends on the application: When we use the
dual trick, we view Ep as the eigenvector matrix containing p N -dimensional
eigenvectors that allow us to project the dataset onto these eigenvectors, which
produces the principal component matrix

Z = ET
p X ∈ Rp×p (2.11)

where we omit this step when interpreting Ep as the score matrix.
The ith principal component is viewed as the data matrix projected onto

(that is, multiplied by) the eigenvector ei. If there are a total of N principal
components, the proportion of variance captured in the dataset by the first
(largest) m < N principal components is given by:

proportion of variance(λ1, ..., λm) =

∑m
i=1 λi∑N
j=1 λj

(2.12)

For the ADHD200 dataset, we select the m for each dimensionality reduction
process as the number of components needed to capture over 99% of the vari-
ance. For the FEP dataset, m is defined as the number of components that
capture 98% of the variance. We provide our reason for the selection of m on
the FEP dataset in Section 4.2.

2.7.3 PCA-t

Here we describe PCA-t, which is a standard approach to reducing fMRI di-
mensionality; its purpose is to capture the variance over waveforms by select-
ing the top m components – i.e., the ones that are responsible for the largest
proportion of the variance over voxel waveforms. It is believed that PCA-t ’s
principal components may represent regular activation patterns across vox-
els [18].

Andersen et al. use primates’ fMRI data to show that PCA-t ’s largest
principal components captured the systematic structure – i.e. voxel activation
patterns – while relegating effects of random noise to the smaller T - m prin-
cipal components. However, Andersen et al. also state that determining the
usefulness of PCA-t ’s projections is largely subjective [3], presumably because
their article introduces the different ways of applying PCA to fMRI. Note
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Figure 2.4: The PCA-t process: The subject’s voxel waveforms are rows in the
data matrix Xt used by PCA-t. After PCA, we then extract the first m principal
components scores for all of the subject’s voxel waveforms, and use these as the
reduced-dimension imaging features. For some studies (Figure 2.1), the “waveform”
used to form the PCA-t matrix is FFT of those waveforms.

that our supervised learning framework provides an objective way to evaluate
various dimensionality reduction techniques, based on the performance “down-
stream”, of the resulting classifier. We use this supervised learning framework
to evaluate whether PCA-t the systematic structure, captured by PCA-t ’s
largest principal components, allows us to learn a classifier that discriminates
ADHD patients from controls.

As shown in Figure 2.4 PCA-t takes, as input, a data matrix, Xt, that
treats the waveforms of each voxel of each subject as a data point, to produce
a matrix Zt whose principal components capture over 99% of the variance in
Xt (Equation 2.12). Representing every subject’s waveforms as data points
involved reshaping their averaged, BOLD-signal normalized, and masked 4-D
fMRI into 2-D (done by vectorizing the spatial dimensions), which produces a
V ×T matrix for each subject, followed by vertically concatenating all subjects’
V × T matrices, resulting in an NV × T data matrix, Xt.

Using Equation 2.10, Xt is projected onto the low-dimensional eigenvector
matrix E ∈ RT×m to produce the NV ×m principal component scores matrix
Zt, where the m NV -dimensional principal components (columns) contain the
N subjects’ principal component scores. Note: If we use the dual trick to
recover the T NV -dimensional eigenvectors of Kt, then Equation 2.11 would
produce a T ×T principal component matrix, where each principal component
is a dot product between the volumes of all subjects at one of the T time
points, and one of the T NV -dimensional eigenvectors of Kt. Our empirical
studies (not shown) demonstrate that this principal component matrix does
not assist in our goal of developing an effective diagnostic classifier.
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Figure 2.5: This figure shows how the fMRI spectra are assembled into the data ma-
trix Xst used by PCA-st / kPCA-st. For some studies (Figure 2.1), the “waveform”
used to form the PCA-st matrix is the Fourier Transform of those waveforms.

2.7.4 PCA-st

Each voxel waveform’s BOLD signal is confounded by noise from various
sources [4], which can impact the pattern of voxel waveforms. We believe
that the point-wise comparison of V waveforms over all subjects, represented
as a covariance matrix between V T points, can provide eigenvalue/eigenvector
pairs, and consequently principal components, that are more informative about
differences between patients and controls than the principal components pro-
duced using the eigenvalue/eigenvector pairs of St, as the former, basically,
relates the waveforms at a spatial location only to the other waveforms at
this location, across all subjects, while the latter relates the volumes at each
time point (over all subjects) to each other. This motivates our formulation of
PCA-st ’s data matrix, where each subject’s averaged, BOLD-signal normal-
ized and masked fMRI were represented as rows, by horizontally concatenating
all of the respective subject’s voxel waveforms into a row vector, resulting in
an N × V T data matrix, Xst.

As shown in Figure 2.5, PCA-st takes as input a data matrix Xst that
contains each subject’s (vectorized) fMRI as a data point, to produce a matrix
Zst, whose principal components capture over 99% of the variance over the
waveforms (Equation 2.12).

PCA-st uses the dual trick to recover the high-dimensional eigenvectors
of the covariance matrix Sst from the low-dimensional eigenvectors of Kst

(Equation 2.9). We then use Equation 2.11 to project Xst onto the V T × N
eigenvector matrix; this produces an N × N principal component matrix Zst

that contains N principal components for every subject, where each principal
component is the dot product between the respective subject’s VT -dimensional
vectorized imaging data, and one of the N VT -dimensional eigenvectors of Sst.
We only use the top m principal components as features for each subject.
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2.8 Kernel Methods

Non-linear Similarity Measures

Again, we follow Schölkopf and Smola [30] to show that a non-linear similarity
measure can still exist in an inner product space, and that the different values
produced by using a nonlinear similarity measure (in comparison to the values
produced by the linear similarity measure) may improve the discrimination of
patients from controls.

In order to use the inner product as a measure of similarity, the data points
are mapped into vectors in an inner product space, H:

Φ : X → H (2.13)

Φ’s embedding into H allows the introduction of different similarity measures
that can be expressed as inner products:

kΦ(xi, xj) := 〈xi, xj〉Φ = 〈Φ(xi),Φ(xj)〉 (2.14)

Mapping subject images to an inner product space through Φ(·) allows us
to investigate whether the enriched geometric relationship, afforded by the
mapping Φ(·), can improve the discriminatory power of a classifier.

For the Radial Basis Function (RBF) kernel, defined below, the range of
the Φ(x) mapping is infinite dimensional; this is also a non-linear transform,
which is difficult, if not impossible, to explicitly represent [17]. The Kernel
Trick efficiently computes the kernel function, by avoiding explicitly mapping
the data point x to the higher-dimensional Φ(x ), and so can compute each
kernel value, k(xi, xj), in a way that depends on the dimensionality of the
(original) data points. The RBF kernel value of two data points xi and xj, in
our original space, is

K̃RBF (i, j) = kRBF (xi, xj) = exp

(
−〈(xi − xj), (xi − xj)〉

2σ2

)
(2.15)

where xi and xj represent two subjects’ voxel waveforms viewed as a vector,
and σ is a user-determined parameter. Note that the matrix containing the
kernel values between all pairs of the data points is denoted as K̃ where, for
the remainder of this article, the subscript (eg, the RBF of KRBF ) denotes
the mapping.

When performing kPCA-st (Section 2.8.1), we use the RBF Kernel because
the kernel matrix, K̃RBF , is strictly positive definite, which guarantees the
recovery of N strictly positive eigenvalues. Therefore we will always have
N principal components to capture the variance in the data; having fewer
than N principal components could hurt the result, as there would be fewer
eigenvectors to capture the variance in the data.
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2.8.1 kernel Principal Component Analysis (kPCA-st)4

kPCA-st consists of four basic steps:

1. Compute kernel matrix K̃RBF ∈ RN×N over the training data using
Equation 2.15.

2. Center K̃RBF using KRBF = K̃RBF−1NK̃RBF−K̃RBF1N +1NK̃RBF1N ,
where 1N is an N ×N dimensional matrix of ones.

3. Compute the eigenvector matrix ERBF of KRBF .
4. Project KRBF onto the eigenvector matrix using Equation 2.11, where

Xst and E are replaced with KRBF and ERBF , respectively.

Figure 2.5 illustrates the process for kPCA-st, assuming PCA is replaced with
kPCA. Similar to PCA-st, kPCA-st produces N reduced imaging features for
each subject.

We emphasize that every element in kPCA-st’s kernel matrix represents
the point-wise similarity between two subjects’ entire fMRI image (after apply-
ing mapping Φ) because it measures similarity of all T points for every voxel
location.

Using kPCA-st as a dimensionality reduction process for fMRI is appealing
because (1) the result is different from using the standard linear methods, and
therefore might be good, and if so (2) the kernel matrix, KRBF , grows with the
square of the data points, instead of the dimensionality of the range of Φ. All
of kPCA-st ’s reported results use the RBF kernel with the kernel parameter
σ = 150.

2.8.2 kPCA in only spatial or only temporal domains

Applying kPCA-st to fMRI data non-linearly reduces dimensionality over both
spatial and temporal dimensions. Some might consider applying kPCA in only
the spatial or temporal dimensions. In the following paragraphs, we show that
kPCA in only the spatial or temporal dimensions defeats the purpose of using
kPCA over canonical PCA.

Performing kPCA over the temporal dimension, using PCA-t ’s data matrix
Xt, produces an NV ×NV kernel matrix, which faces the same computational
issues as Kt because of its large size. If we average over larger subvolumes
to reduce the computational strain of calculating the kernel matrix, the loss
of spatial information can cripple performance: We considered averaging over
8 × 8 × 8 subvolumes (result not shown), but observed poor performance in
comparison to averaging over 3× 3× 3 subvolumes, which supports our claim.
When averaging over 8×8×8 subvolumes, we believe that the large size of the
kernel matrix and the poor result of kPCA-st are sufficient to dismiss applying
kPCA in the temporal dimension.

If kPCA-st is applied to the spatial matrix – i.e. subject volumes at a
single time point – then the data matrix X given as input to kPCA-st has di-

4A full theoretical description is provided in Appendix C.
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mensionality N×V . Given that there are T resting-state volumes per subject,
it is difficult to justify selection of a specific time point’s volume because all
volumes were collected under the same conditions.
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Chapter 3

ADHD200 Dataset

This section deals with the ADHD200 data; see Section 4 for the FEP dataset.
Attention Deficit Hyperactivity Disorder (ADHD) is a disability that be-

falls an estimated 2-9% [24] of school-age children in the United States, of-
ten leading to substantial lifelong impairment for these children. Assuming a
prevalence rate of 5%, the indirect cost associated with ADHD in the United
States exceeds over 36 billion dollars annually [24]. While ADHD is listed as a
disorder in the DSM, its underlying neurobiology is not thoroughly understood.

3.1 Methodology

We only used 668 of the 776 subject scans, as we removed the 108 scans
that either failed image registration (in our fMRI pipeline), or their respec-
tive hospital’s fMRI quality check (given as a binary value for every subject).
This 668-subject dataset, summarized in Table 3.1, contained the age, gen-
der, handedness, IQ scores, and the scanning site, as well as the resting-state
fMRI scans for 429 healthy controls, 141 ADHD-combined (ADHD-1), and 98
ADHD-inattentive subtypes (ADHD-3), primarily over adolescents and some
children and young adults1. We evaluated the dimensionality reduction pro-
cesses over two settings, depending on whether the label ranged over two classes
(ADHD [both subtypes] vs control) or three classes (ADHD-1 vs ADHD-3 vs
control).

For each setting, we grouped the dimensionality reduction processes into
three categories, depending on how each process transformed the averaged,
BOLD-signal normalized, and masked original waveforms (called “waveform”
below; see Figure 2.1). The number in parentheses in each category is the
number of inputs associated with this class of dimensionality reduction pro-
cesses.

For the first category, we gave each subject’s waveforms as:

I. PCA Variant only input to PCA-t, PCA-st and kPCA-st. (3)

1For readers with a clinical background, Appendix A.1 provides additional information
about the ADHD dataset.
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For the two remaining categories, we first compute the FFT for each subject’s
waveforms, then use the magnitudes from each subject’s FFTed waveforms as:

II. FFT Only the reduced-dimensionality imaging features. (1)
III. FFT then PCA Variant input to the PCA variants. We delineate

these processes from those in the first category by referring to these
variants as FFT+PCA-t, FFT+PCA-st, and FFT+kPCA-st. (3)

which gives a total of seven dimensionality reduction processes on the ADHD200
dataset.

We used three feature sets for our evaluation:

Phenotypic Data consisted of subject age, gender, scanning site and three
IQ scores: Verbal, Performance, and the Full4 IQ. For each type of IQ,
we replaced any missing value with the average, over all subjects who
had a non-missing value for that type of IQ.

Imaging Data contained only the reduced-dimensionality imaging features,
produced by one of the 7 dimensionality reduction processes.

Imaging and Phenotypic Data appended the phenotypic data to the imag-
ing data returned by one of the 7 respective dimensionality reduction
processes.2

which gives a total of 15 feature sets for each setting: The “Imaging Data”
and “Imaging and Phenotypic Data” feature sets for each of the seven dimen-
sionality reduction processes, and the phenotypic feature set.

We give each of the resulting feature sets as input to a linear kernel Support
Vector Machine (SVM)3, which produces a classifier. We then evaluate the
feature sets in terms of the accuracy of the resulting classifier; this accuracy is
based on 10-fold Cross Validation [16], where we use the same folds throughout.

We compared every method’s performance to the baseline simply to de-
termine whether its results were statistically better than simply guessing the
majority class. We also compare kPCA-st ’s results to PCA-t ’s; each time
kPCA-st produces a statistically better accuracy than PCA-t supports our
hypothesis that kPCA-st is superior to canonical PCA for dimensionality re-
duction. To further test the results – i.e. to make sure they were not a
consequence of overfitting – we used a holdout set to evaluate the performance
of each method. At the close of the competition, the most accurate classifier
was based on only the phenotype data [13]. Therefore, we also compare our
results to that system.

We discuss the performance of all dimensionality reduction processes on
the original dataset, followed by the holdout set (Sections 3.2 and 3.3). For
each of the original and holdout datasets, we initially discuss the performance
of the PCA variants without using FFT (Sections 3.2.1 and 3.3.1); we then

2This feature set allows us to determine whether the combination of the imaging and
phenotypic feature will have a synergistic effect.

3This is a standard learning algorithm. We considered other learners, but found none
worked better.
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Hospital
# of Control ADHD

Subjects Group CombinedInattentive

Kennedy Kriegler
78 58 15 5

Institute (KKI)

NeuroIMAGE 38 16 12 0

Peking University 194 116 29 49

Oregon Health Science
64 36 17 11

University (OHSU)

New York
188 91 64 33

University (NYU)

University
66 66 0 0

of Pittsburgh

Washington University 40 40 0 0

Hospital
# of Control ADHD

Subjects Group CombinedInattentive

Kennedy Kriegler
11 8 3 0

Institute (KKI)

NeuroIMAGE 25 14 11 0

Peking University 51 27 10 14

Oregon Health Science
34 28 5 1

University (OHSU)

New York
41 12 22 7

University (NYU)

University
9 5 0 4

of Pittsburgh

Washington University 0 0 0 0

Table 3.1: Distribution of ADHD patients and control subjects contained in the original
(left) and holdout (right) datasets.

discuss the performance when using the magnitudes of the FFTed waveforms’
frequency components to learn a classifier (Sections 3.2.2 and 3.3.2), and con-
clude each dataset’s results subsection by discussing the performance using
these magnitudes as input to the PCA variants (Sections 3.2.2 and 3.3.2).

For each of these cases, we first discuss the results in the two-class setting
before the three-class setting, where in each setting we first consider using only
the (reduced) imaging features without the phenotypic data and then consider
the combination of these (reduced) imaging features with the phenotypic data.
Section 3.4 discusses some of the issues we encountered when working with the
ADHD200 data.

3.2 Original Dataset Results

3.2.1 PCA Variants Only

For PCA-t, we only use the m=2 largest components. For PCA-st4 and kPCA-
st we use the m=667 and m=668 largest principal components.

When using only the reduced imaging features from PCA-t or PCA-st
in the two-class setting, the accuracies were not statistically better than the
baseline. In contrast, using only the reduced imaging features from kPCA-st
produced an accuracy of 70.3% that is statistically better than the baseline,
PCA-t and PCA-st (p=2.41e-3, p=1.44e-2, p=2.22e-2), but was not statisti-
cally better than using only the phenotypic data.

When combining the imaging and phenotypic features in the two class
setting, each of PCA-t, PCA-st and kPCA-st produced classification accura-
cies that is statistically better than the baseline (p=1.28e-2, p=1.59e-2 and
p=3.18e-4). Even though PCA-t and PCA-st ’s classification accuracies were
statistically better than the baseline when using both imaging and phenotypic
data in the two-class setting, neither surpassed the phenotypic classification
accuracy. This result suggested that, in the two-class setting, using only the

4The smallest eigenvalue was zero for PCA-st.
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# of
Baseline

Phenotypic
FFTed Waveforms PCA Variant

Imaging Imaging &
classes Only Only Phenotypic data

2 64.22 72.9

- PCA-t 65.69 (7.16) 70.51 (6.91)
- PCA-st 65.57 (5.51) 69.89 (6.46)
- kPCA-st 70.35*(5.21) 73.20 (4.79)
+ – 68.41 (5.50) 70.95 (7.66)
+ PCA-t 69.60 (5.36) 70.06 (4.83)
+ PCA-st 69.30 (5.82) 70.06 (5.08)
+ kPCA-st 68.70 (5.53) 76.04* (4.92)

3 64.22 66.77

- PCA-t 58.82 (6.26) 62.86 (6.55)
- PCA-st 59.82 (6.16) 63.30 (6.55)
- kPCA-st 64.06* (3.74) 66.0*(7.56)
+ – 63.92* (5.88) 64.06 (4.37)
+ PCA-t 59.56 (5.87) 61.23 (5.19)
+ PCA-st 60.76 (5.17) 61.07 (4.97)
+ kPCA-st 64.36*(5.19) 68.55*(6.61)

Table 3.2: Two and three-class classification accuracies on the original, 668 subject,
dataset, where the reduced features were obtained by performing FFT and/or PCA-t, PCA-
st and kPCA-st on the imaging data. Standard deviations are provided in parenthesis; an
accuracy is in bold if it is statistically better than baseline, and is asterisked (*) if it is
statistically better than PCA-t in the same setting.

phenotypic data was better than combining it with the reduced imaging fea-
tures from PCA-st and PCA-t. In contrast, kPCA-st produced an accuracy
that was superior, but not statistically better (p=0.88), than the phenotypic
data. In general for the two-class setting, kPCA-st ’s results suggest that the
reduced imaging features improved the discriminatory power of the classifier
better than PCA-t and PCA-st.

In the three-class setting, PCA-t, PCA-st and kPCA-st failed to produce
classification accuracies that were statistically better than the baseline, using
either the combination of imaging or phenotypic data or only the imaging
data. While all of the processes performed below the baseline when using only
the imaging data in the three-class setting, kPCA-st performed statistically
better than PCA-t and PCA-st (p =1.8e-2 and p=1.8e-2). When combining
the imaging and phenotypic data in the three-class setting, kPCA-st produced
accuracies that were not statistically better than baseline (p=3.8e-1), PCA-t
(p=6.3e-2), or PCA-st (p=1e-1).

Combining the phenotypic data with kPCA-st ’s reduced imaging features
in the three class setting seems to have a synergistic effect because using the
phenotypic or reduced-imaging features separately fail to outperform the base-
line, but their combination approaches a result that was statistically better
result than the baseline. This suggested that using only phenotypic data was
insufficient to distinguish between ADHD subtypes.

3.2.2 FFT Only

In both the two and the three class settings, the FFTed waveforms were used
to explicitly reduce the temporal dimensionality of the imaging data.

In the two-class setting when using the 663, 040 imaging features or com-
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Figure 3.1: Visualization of the results on the original dataset (Table 3.2), where the error
bar is ± the standard deviation. The purple lines denote the phenotypic data classification
accuracy in the two-class (left) and three-class (right) setting, and the black line denotes
the baseline in both the two and three-class settings, where the error bars are the added
and subtracted standard deviations.

bining them with the phenotypic data, FFT produced accuracies that were
statistically better than the baseline (p = 5.53e-4, p=2.14e-3). However, in
the three-class setting FFT failed to produce accuracies equal to, or above,
the baseline. This suggested that dimensionality reduction afforded by ex-
tracting the magnitude of the frequency components produced features that
discriminated patients from controls in the two-class setting.

We show that FFT is more effective as a preprocessing step in the next sub-
section, and substantiate our claims with the results of FFT+PCA-t, FFT+PCA-
st and FFT+kPCA-st.

3.2.3 FFT then PCA Variant

Instead of applying PCA-t, PCA-st and kPCA-st to the waveforms directly,
as done in the previous and current sections, we first applied FFT as a prepro-
cessing step to determine whether using magnitudes of the FFTed waveforms
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could improve the results. The magnitude represents the amplitude, or height,
of each frequency component, which may be more informative than the raw
BOLD intensities. This transformed the imaging data’s temporal dimension-
ality from 370 time points to 185 frequency components. If we let T equal
the number of frequency components’ magnitudes, then the process outlined
in Figures 2.4 and 2.5 still applies.

For FFT+PCA-t, we only use the m=2 largest components; for both PCA-
st and kPCA-st, we use all m=668 principal components.

In the two-class setting using only the imaging data, FFT+PCA-st, FFT+PCA-
st and FFT+kPCA-st produced classification accuracies that are statistically
better (p=1.13e-3, p = 7.10e-3 and p = 0.049) than the baseline. Combining
FFT+PCA-t and FFT+PCA-st ’s reduced imaging features with the pheno-
typic data resulted in a classification accuracy that was statistically better
accuracy than the baseline (p =1.05e-3 and p=1.44e-3). However, this per-
formance is nearly identical to using only FFT+PCA-t and FFT+PCA-st ’s
reduced imaging features. This suggests that combining the phenotypic data
with the reduced-imaging features produced by FFT+PCA-t and FFT+PCA-
st do not improve the discriminatory power of the classifier.

In the two class setting, combining the phenotypic data with the reduced
imaging features of FFT+kPCA-st resulted in a classification accuracy that
was statistically better than the baseline, PCA-t, PCA-st, and the phenotypic
data (p=1.06e-7, p=4.76e-3, p=5.59e-3 and p=4.71e-2). FFT+kPCA-st ’s re-
sults suggest that using the imaging features with the phenotypic data sub-
stantially improved the discriminatory power of our classifier.

In the three class setting, FFT+PCA-t and FFT+PCA-st performed sim-
ilar to the case where FFT is not used as a preprocessing step – i.e., they
failed to produce classification accuracies that were statistically better than the
baseline. Each of FFT+PCA-t, FFT+PCA-st and FFT+kPCA-st fails to out-
perform the baseline when using imaging data only. Even here, FFT+kPCA-st
produced a classification accuracy that was statistically better than FFT+PCA-
t (p=3.2e-2), but not FFT+PCA-st. Combining the phenotypic data with
FFT+kPCA-st ’s reduced imaging features produced a classification accuracy
that was statistically better than the baseline (p=4.7e-3), but was not statis-
tically better than using only the phenotypic data.

When using phenotypic and imaging data in the two-class setting, FFT+kPCA-
st ’s statistically better performance than the phenotypic data suggests that
FFT preprocessing improves the level of agreement between the reduced imag-
ing features and phenotypic data. FFT+kPCA-st is the only method that
produced a statistically better result than the phenotypic data in either the
two or three-class settings, which also suggests that FFT+kPCA-st ’s reduced
imaging features, when combined with the phenotypic data, improve discrim-
inatory power of the classifier.

The results suggest that taking the magnitudes of all voxel waveforms’
frequency components returned by FFT could be a useful preprocessing step
for voxel waveforms.

24



Figure 3.2: Visualization of the results on the holdout dataset (Table 3.3). The purple
lines denote the phenotypic data classification accuracy in the two-class (left) and three-class
(right) setting, the black line denotes the baseline in both the two and three-class settings
where the error bars are the added and subtracted standard deviations.

3.3 Holdout Set Results

The ADHD200 Competition used a test set to evaluate the submissions; the
organizers released this data after the competition had concluded. We used
171 of the 197 subjects in the test set, as 26 subjects were collected from
a hospital that did not authorize the release of these 26 subjects’ diagnoses.
For both the two-class and three-class settings, the baseline accuracy on this
dataset is 54.97%.

3.3.1 PCA Variants Only

In the two class setting, using only the reduced imaging features, PCA-t, PCA-
st and kPCA-st produced classifiers with accuracies of 53.22%, 56.14% and
60.23%; note only PCA-t ’s accuracy is below the baseline accuracy of 54.97%.
Using phenotypic data only resulted in a classification accuracy of 71.35%.
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# of
Baseline

Phenotypic
FFTed Waveforms PCA Variant

Imaging Imaging &
classes Only Only Phenotypic data

2 54.97 71.35

- PCA-t 53.22 59.1
- PCA-st 56.14 56.73
- kPCA-st 60.23 61.99
+ – 56.73 56.73
+ PCA-t 54.97 57.31
+ PCA-st 57.31 57.31
+ kPCA-st 61.4 66.67

3 54.97 67.25

- PCA-t 47.95 49.71
- PCA-st 49.12 50.88
- kPCA-st 55.56 61.99
+ – 50.88 53.22
+ PCA-t 49.71 50.88
+ PCA-st 50.88 50.88
+ kPCA-st 58.48 59.65

Table 3.3: Two and three-class classification accuracies on the hold out set, where the
reduced features were obtained by performing FFT and/or PCA-t, PCA-st and kPCA-st on
the averaged imaging data.

These results are consistent with the cross-validation results from the original
dataset: the phenotypic data outperforms any method that used only the
reduced imaging data, and kPCA-st outperforms both PCA-t and PCA-st.
When combining the phenotypic data to the imaging data in the two-class
setting, PCA-t, PCA-st and kPCA-st perform better than the baseline, but
not the phenotypic data.

In the three-class setting, both PCA-t and PCA-st fail to produce classi-
fication accuracies that are above the baseline. In contrast, the classification
accuracy for kPCA-st using only the reduced imaging features is 55.56%, which
is slightly better than the baseline in the three-class setting. When these re-
duced imaging features are combined with the phenotypic data, a classification
accuracy of 61.99% is produced.

3.3.2 FFT Only

Interestingly, FFT’s performance on the hold out dataset is not consistent with
the results on the original dataset; see the result in the two-class setting using
the phenotypic and imaging data. FFT fails to produce accuracies that are
well-above baseline in either the two or three-class settings. Similar to what
was done on the original dataset, we used FFT as a preprocessing step so that
the voxel waveform frequency component magnitudes could be given as input
to PCA-t, PCA-st and kPCA-st. As we show in the next subsection, this
preprocessing step improves the result of each method.

3.3.3 FFT then PCA Variant

In the two-class setting using only the imaging data, FFT+PCA-t performs
equal to the baseline whereas FFT+PCA-st and FFT+kPCA-st outperform
the baseline by different margins, with FFT+kPCA-st ’s margin being larger
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than FFT+PCA-st ’s. When combined with the phenotypic data, FFT+PCA-
t, FFT+PCA-st and FFT+kPCA-st all outperform the baseline, with FFT+kPCA-
st ’s performance being superior to FFT+PCA-t and FFT+PCA-st. Even with
FFT as a preprocessing step, combining the phenotypic data with FFT+kPCA-
st ’s reduced-imaging features fails to outperform the phenotypic data in the
two-class setting.

In the three-class setting when using only the imaging data, FFT+PCA-t
and FFT+PCA-st fail to outperform the baseline. In comparison, FFT+kPCA-
st produces an accuracy of 58.48%, which is better than the baseline when us-
ing only the reduced-imaging features. When combining the phenotypic data
with the reduced imaging features, both FFT+PCA-t and FFT+PCA-st fail
to outperform the baseline whereas FFT+kPCA-st produces an accuracy of
59.65% that is better than the baseline, but is slightly inferior to kPCA-st ’s
accuracy of 61.99% in the same setting.

In general, FFT as a preprocessing step improves each method’s classifica-
tion accuracy. kPCA-st still produces the best overall result and consistently
outperforms PCA-st and PCA-t. We see that FFT+kPCA-st benefits the
most from using FFT as a preprocessing step, as it produces classification ac-
curacies that are better than the baseline and kPCA-st when using only the
imaging data, in both the two and three-class settings.

The results suggest that FFT should be used a preprocessing step to extract
the magnitudes of voxel waveforms’ frequency components before applying di-
mensionality reduction. Furthermore, results on the holdout set are consistent
with those achieved on the original dataset, which substantiates our hypothe-
sis that reducing dimensionality using kPCA-st, which reduces over both the
spatial and temporal dimensions, is better than methods that reduce only the
temporal or only the spatial dimensions, such as PCA-t. However, there is
more to be desired because the phenotypic data outperforms our methods in
either setting on the holdout set.

3.4 Potential Limitations of the Data

3.4.1 Unstandardized Scanning protocol

The ADHD200 data was collected from multiple hospitals across the world.
One possible problem with this large data release is that the scanning protocols
across all hospitals could differ. If each site used different scanning protocol,
it is likely that each site’s fMRI quality control criteria are also different. If
the criteria were different for each hospital then, the different fMRI quality
standards could potentially hurt our result.

3.4.2 Truncating scan time in preprocessed data

Every subject’s scan length was different in different hospitals. In our pre-
processed data, subject images containing longer scan lengths were truncated
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to the shortest scan length in the data. To evaluate the consequence of such
truncation, we considered learning a classifier within each hospital, using the
ADHD200 Competition’s preprocessed data.

Here, we only considered performance within sites because the temporal
and spatial dimensions were not consistent across sites. Using subjects from
the NeuroIMAGE hospital [12], we compared kPCA-st ’s performance on the
Competition’s preprocessed data, to the result that used our preprocessed
data; we observed that kPCA-st produced similar results for each dataset.
This suggests that truncating temporal information in our preprocessed data
did not substantially impact performance.

Masking

In Subsection 2.5, we mentioned that a mask was used to exclude the wave-
forms of the voxels outside of the brain. Applying the mask before BOLD-
signal normalization dramatically impacted the classification accuracy, signif-
icantly decreasing the classification accuracy. We observed that all voxels
outside of the brain had negative values and all voxels inside the brain had
positive values. The magnitude of the voxels outside of the brain depended
on the scanning site, and applying the mask prior to BOLD-signal normaliza-
tion ignored information that we believe should be included. Thus, all images
were masked after BOLD-signal normalization was applied over the averaged
image.

We believed that normalizing the signal for all 6688 spatial locations prior
to applying the mask allowed the BOLD signal to be retain information about
the site it was from. Future work should thoroughly investigate the impact of
masking prior to BOLD-signal normalization after performing image registra-
tion using the fMRI data from different sites and/or scanners.

3.5 Discussion

This article shows that applying kernel Principal Component Analysis (kPCA-
st) leads to classifiers that are statistically better than canonical PCA (PCA-
t) in every case using only the imaging data, except when FFT is used as a
preprocessing step in the two-class setting.

Without using FFT to preprocess voxel waveforms, our results show that
kPCA-st is statistically better than canonical PCA (PCA-t) when only using
imaging data in both the two-class (p=0.043) and three-class (p=0.018) set-
tings. It is also statistically better than PCA-t in the three-class setting when
using both imaging and phenotypic data (p=0.0468).

When FFT is used as a preprocessing step, FFT+kPCA-st is statisti-
cally better than FFT+PCA-st (p=4.76e-3 and p=9.26e-3) and FFT+PCA-
t (p=5.59e-3 and p=7.36e-3) when using the imaging and phenotypic data
in the two and three-class settings; it is also statistically better than PCA-t
(p=3.21e-2), but not PCA-st (p=1.02e-1), when only using the imaging data
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in the three-class setting.
kPCA-st ’s dominant performance over PCA-t in either the two-class or

three-class settings without using FFTed waveforms suggests that using non-
linear mappings to reduce over the spatial and temporal dimensions is supe-
rior to using linear mappings to reduce over the temporal dimension. How-
ever, FFT+kPCA-st fails to produce a result that is statistically better than
FFT+PCA-t, which suggests that using the FFTed waveforms greatly bene-
fits PCA-t and marginally impacts kPCA-st. A possible explanation for this
result is that kPCA-st ’s advantage over PCA-st and PCA-t is mitigated by
introducing a preprocessing step that reduces the temporal dimensions of the
imaging data.

The results show that non-linear mappings of subjects’ fMRI data to a high-
dimensional inner product space, as kPCA-st does, can increase discriminatory
power of a classifier when compared to methods that do not, such as PCA-t and
FFT. This inner product space allowed the spatial and temporal dimensionality
to be preserved unlike PCA-t, which reduced over the temporal dimensions.

Interestingly, FFT+kPCA-st outperforms the phenotypic data in both the
two and three-class setting, but only the result in the two-class setting was sta-
tistically better than the phenotypic data (p=4.7e-2). We believe that FFT+kPCA-
st ’s statistically insignificantly improvement over the phenotypic data in the
three-class setting is not a large issue, because the phenotypic data itself was
not statistically better than the baseline.

There are two potentially large consequences of our results:

1. Combining the imaging and phenotypic data improves the discrimination
of ADHD subtypes from healthy controls. This is substantiated by the
fact that separately using either FFT+kPCA-st ’s features or the phe-
notypic data, produces accuracies that are not statistically the baseline,
but their combination produces an accuracy that is statistically better
than the baseline.

2. The imaging data is only sufficient to discriminate ADHD patients from
controls when assigning ADHD subtypes to the same class.

To elaborate on the second statement: the failed distinction between sub-
types and controls may be a consequence of only having 141 and 98 subjects
for the combined type and inattentive subtypes, but 429 subjects for healthy
controls. Given that there is over three times as many images for control
subjects than ADHD combined-type patients, the second largest class, provid-
ing additional ADHD patient scans may improve accuracy in the three-class
setting.

An alternative explanation is that ADHD subtypes are not distinguishable
in the three-class setting when using only the imaging data. Our results sup-
port this claim because aggregating ADHD combined and inattentive types
into a single class improved the discriminatory power of kPCA-st in the two-
class setting. One possible explanation for this result is that the number of
features that distinguish ADHD subtypes from controls (or subtypes from each
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other) is very small in comparison to those that discriminate all ADHD pa-
tients from healthy controls.
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Chapter 4

FEP Dataset

First Episode Schizophrenia (or First Episode Psychosis, FEP) is defined as
the first psychotic episode experienced by an individual. While only having
a lifetime prevalence of about 1%, the associated cost and social debilitations
are very large in comparison to this proportion. As of 10 years ago, it was
estimated that schizophrenia costs about 2.35 billion dollars CAD [7].

FEP usually occurs between late adolescence and the early twenties, and is
often undetected until two to three years after clearly diagnosable symptoms
manifest themselves. This delayed identification is a consequence of most
subjects possessing other pre-existing conditions involving cognition, language
or behavior [7]. There is a significant push by the psychiatric community
to improve FEP detection in order to decrease the subject’s stigma, as it
often hinders their ability to re-integrate into their community. Thus, earlier
detection of FEP can lead to a subject re-integrating into the community as
a productive citizen, which helps to offset the “cost” incurred to treat these
patients.

Since kPCA-st ’s on the ADHD200 involved resting-state fMRI, we use the
FEP dataset, which contains block design fMRI for subjects with First Episode
Schizophrenia, to determine if dimensionality reduction processes’ performance
will generalize to fMRI datasets that differ in experimental design and neu-
ropsychiatric disorders.

4.1 Results

We use the same methodology as the ADHD200 data for applying PCA-t,
PCA-st and kPCA-st to the FEP dataset with one exception: m was chosen
to capture over 98% of the variance; see Section 4.2. The data matrices, Xt

and Xst, processed by PCA-t and PCA-st/kPCA-st have dimensions (52975 ∗
34) × 28 and (52975 ∗ 28) × 34 respectively. The results were obtained by
performing 17-fold cross validation, where each fold contained an FEP patient
and healthy control, resulting in a baseline accuracy of 50%.

For PCA-t we only use the m=1 largest principal component, which pro-
duces classification accuracy that were equal to the baseline. For PCA-st and
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kPCA-st, we use the m=33 and m=32 largest principal components, respec-
tively. Using PCA-st ’s 33 largest principal components produced a classi-
fication accuracy that was also equal to the baseline, suggesting that both
PCA-t and PCA-st ’s reduced imaging features were unable to discriminate
FEP patients from controls. Using kPCA-st ’s 32 largest principal components
produced a classification accuracy of 70.6% that is statistically better than the
baseline (p=0.049) and PCA-t (p = 2.4e-2).

Using the GLM’s 2 ∗ 57 ∗ 67 ∗ 50 parameters1 as features produces a clas-
sification accuracy of 73.5% that is statistically better than the baseline (p =
3.67e-2) and PCA-t (p = 2.7e-7), but is not statistically better than kPCA-st.
To eliminate the effect of the parameters that correspond to voxels outside of
the brain, we select the 52975 parameters that correspond to voxels inside the
brain; learning a classifier over the 2 ∗ 52975 parameters produced a classifica-
tion accuracy of 73.5% that is statistically better than baseline(p = 4.11e-8)
and PCA-t (p = 2.8e-2), but is not statistically better than kPCA-st.

4.2 Comparing the FEP and ADHD200 Dataset Results

Since we select m to capture 99% and 98% of the variance in the ADHD200
and FEP datasets respectively, we show that kPCA-st produces a similar result
on the ADHD200 dataset when using the m=641 principal components that
capture 98% of the variance: In the two-class setting, classification accuracies
of 70.1% (p=3.52e-3) and 73.7% (p=1.08e-4) were statistically significantly
better than baseline when using the imaging data only, or combining it with
the phenotypic data.

In comparison to using all 668 principal components on the ADHD200
dataset, kPCA-st performs slightly worse with m=641 principal components,
which shows that including the 27 smallest principal components improves the
performance by a small amount. However, for the FEP dataset we noticed that
using kPCA-st ’s m=32 largest principal components, which capture 98% of the
variance, performed statistically better than baseline and PCA-t, whereas us-
ing m=34 principal components, which capture over 99% of the variance, did
not perform not statistically better than baseline or PCA-t. This is an interest-
ing phenomenon when considering that the ADHD200 dataset’s performance
improved when the smallest 27 principal components were included.

After further investigation, we saw that kPCA-st ’s smallest principal com-
ponent captured approximately 2e-17% of the variance in the FEP dataset.
We conjecture that this principal component is produced solely because of our
choice in kernel, as the RBF kernel produces N eigenvectors whose eigenvalues
are strictly positive; we feel this is a legitimate explanation when considering
that PCA-st, which uses the linear kernel, only produced 33 eigenvectors with
strictly positive eigenvalues. Furthermore, we believe that having only 34
eigenvectors affected the proportion of variance captured by each eigenvector

1See Section 2.3.
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in the FEP dataset, as the ADHD200 data showed a decrease in performance
when using fewer principal components, but the FEP data showed an increase
in performance. We therefore use only the m=32 largest principal compo-
nents produced by kPCA-st to exclude any erratic phenomena that might be
contained in the two smallest principal components.

We considered using the FEP subjects’ full voxel waveforms as input to the
PCA variants, but found that none of the PCA variants performed statistically
better than the baseline. We also considered applying the Fourier Transform
to the FEP subjects’ voxel waveforms before they were given as input to the
PCA variants, however we observed that none of these processes performed
statistically better than baseline. It is possible that incorporating biological
information is pivotal for discriminating patients from controls in block design
fMRI when using subjects’ entire voxel waveform, as the voxels’ activation
patterns during each event type is presumably different.

We believe that kPCA-st ’s statistically significantly better results than
PCA-t on both datasets is a consequence of using a non-linear mapping to
measure the point-wise similarity between two subjects’ waveform values at
the same voxel location. When only the imaging data is used in the two-class
setting without FFT as a preprocessing step, kPCA-st ’s classification accura-
cies on both the FEP and ADHD200 datasets were roughly ≈ 70%. kPCA-st ’s
similar performance on two datasets that differed in neuropsychiatric disorder
and experimental design suggests that kPCA-st ’s performance could generalize
to different fMRI datasets.

4.3 Discussion

Dealing with block design fMRI data is difficult because it contains both rest
periods and task blocks. We have shown that using the resting period time
points for each subject’s block design fMRI produces statistically significantly
better results than the baseline and PCA-t (p=0.049) and PCA-t (p = 2.4e-
2). Such a result strengthens our claim that kPCA-st is superior to PCA-t,
especially considering that both datasets were resting-state.

We think that analyzing block design fMRI is a larger challenge than
resting-state fMRI because the variance of specific voxel waveforms–i.e. the
voxels that exhibit elevated activations during the event– will increase, while
others will not be affected. We showed that one way to alleviate such discrep-
ancies introduced by block design fMRI is to incorporate only the resting-state
time points.
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Chapter 5

Future Work

kPCA-st ’s results suggest that it can discriminate patients from controls on
datasets with different neuropsychiatric disorders and experimental designs.
This result is interesting because kPCA-st is biologically naive, suggesting
that there is ample room to improve our result.

It is reasonable to suggest that incorporating biological information when
performing dimensionality reduction of fMRI could improve the result. The
hemodynamic response function (HRF), defined as the function that models
the response of the system after brief and intense period of neural stimulation,
is an example of biological information that could be helpful in reducing fMRI
dimensionality. Previous work has shown intra-subject differences in activation
levels for different brain regions [5][29] and implies that such differences may
arise from hemodynamic factors. Nakai et al. show that there are intra-
subject differences between the HRF for the primary sensorimotor (SM1) and
supplementary motor area (SMA) [22].

When observing brain regions using fMRI, each region can be viewed as
a collection of neighbouring voxels. Since each waveform represents a voxel’s
BOLD-signal intensity over the scan duration, it is possible for voxels within a
brain region– i.e., voxels that are in close proximity – to have a similar HRF,
which would be reflected by their waveform, because of their similar vascular
properties. To test this assertion, we treat each voxel’s three-dimensional
index as a three-dimensional point and compute the euclidean distance between
voxels, which is a measure of physical proximity ; if the assertion is true, then
we can compute the k -Nearest Neighbours (k -NN) for every voxel, which are
the k nearest voxels in three-dimensions for the respective voxel, to compare
this voxel’s waveform to its neighboring voxels’ waveforms, which allows us to
observe if the waveforms are similar, as shown in Figure 5.1.

If we construct a V × T matrix for each subject, where each row is a
voxel waveform, we can perform Locally Linear Embedding (LLE) [28] on
each subject’s V ×T matrix, which would reconstruct each waveform in terms
of its K nearest neighboring voxel waveforms using d points, where d ≤ T is
a user-specified parameter.

The appealing property of applying LLE to fMRI data is that it recon-
structs a voxel waveform in terms of its k nearest neighbors, which does not
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Figure 5.1: Illustrating (right) voxel j (red) and its 4 nearest neighbors (blue), which
are determined by the euclidean distance between voxels in 3-D space, and their respective
waveforms (right). These waveforms belonged to a healthy control from the FEP dataset.

require the BOLD-signal to be normalized, as the weights used to reconstruct
the respective voxel waveform in terms of its neighboring waveforms are ro-
tation, shift, and translation invariant. Furthermore, LLE is unaffected by
subjects in the same class having different waveforms for the same voxel lo-
cation, as the weights used to reconstruct a voxel waveform in terms of its
neighbors are relative to the respective waveform. Thus, LLE exploits the
property of physical proximity to reduce dimensionality. Preliminary results
suggest that LLE is a dimensionality reduction method that may generalize
to all fMRI data, but we are still in the process of evaluating performance on
the ADHD200 dataset.

The above example illustrates how to encode very general biological in-
formation into a graphical model that is used to reduce fMRI dimensionality.
The unifying intuition behind the dimensionality reduction methods that re-
duce fMRI to produce a statistically better result than the baseline, is that
they focus on comparing the voxel waveforms across all subjects in the dataset.
We believe that future work should focus on encoding biological information
that is specific to a neuropsychiatric disorder, because these graphical models
may improve the discrimination of patients from controls; one way to encode
this information would be to assign priors for voxel locations that correspond
to brain regions that are associated with a specific neuropsychiatric disorder.
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Chapter 6

Conclusion

This dissertation investigated dimensionality reduction of fMRI data using two
separate datasets that differed in neuropsychiatric disorder and experimental
design. We showed that kPCA-st produced accuracies that were statistically
significantly better than PCA-t on both the FEP and ADHD200 datasets when
using the resting-state data only.

When FFT was used as a preprocessing step, as was done for the ADHD200
dataset, FFT+kPCA-st produced a statistically significantly better result than
FFT+PCA-t in every setting except the two-class setting when using only the
imaging data. Given that FFT+kPCA-st, FFT+PCA-t and FFT+PCA-st
had very similar accuracies in the two-class setting when using only the imaging
data, the reduced temporal dimensionality afforded by FFT as a preprocess-
ing step improved the performance of PCA-st and PCA-t, but had negligible
impact on kPCA-st.

Our results support the statement that dimensionality reduction methods,
such as kPCA-st, that use non-linear mappings to reduce over both the spa-
tial and temporal dimensions improve the diagnostic system’s discrimination of
group differences in comparison to methods that reduce only the spatial or only
the temporal dimensionality, such as PCA-t. This statement is strengthened
when considering that it was true for two datasets that differed in neuropsy-
chiatric disorders and experimental design.

While the performance of kPCA-st is not at the level where fMRI-based di-
agnosis is feasible, the results are a proof-of-concept for fMRI-based diagnosis.
kPCA-st reduces fMRI dimensionality by measuring the point-wise similarity
between two subjects entire fMRI image (after applying mapping Φ) in an
inner-product space. The diagnostic classifier learned over the reduced imag-
ing features produced by kPCA-st distinguishes patients from controls at a
statistically better level than guessing the majority class. Preliminary results
from our recent work (LLE) gave accuracies of 82.3% on the FEP dataset and
68.6% on the ADHD200 dataset when using only the NYU subjects from the
original dataset1. These results substantiate the claim that fMRI has diagnos-
tic value, but the real question is: how much?

1The baseline for this dataset is 51.5%.
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Appendix A

Supplementary Information for
Clinical Researchers

A.1 ADHD200 Dataset

A.1.1 Demographics

The ADHD200 Global Competition was an initiative which focused on expe-
diting the scientific community’s understanding of ADHD by publicly sharing
a dataset consisting of 776 fMRI images collected at eight different hospi-
tals, where each hospital provided various amounts of phenotypic data for the
respective subject’s fMRI. All hospitals provided the age, gender and handed-
ness of the subject. We briefly discuss the distribution of the phenotypic data
for each hospital. Table 3.1 provides the distribution of diagnoses for each
hospital.

Kennedy Krieger Institute (KKI)

The Kennedy Krieger Institute (KKI) contained 78 subjects, where 42 were
male and 36 were female. The subjects’ average age in this dataset is 10.27
years, where the oldest and youngest subjects were 12.99 and 8.02 years of
age, respectively. All of the KKI subjects had Verbal, Performance and Full4
IQ scores from the Wechsler Intelligence Scale for Children (WISC-IV) and
ADHD Index, Inattentive and Hyperactivity/Impulsivity scores obtained from
the Connors’ Parent Rating Scale-Revised, Long Version (CPRS-LV).

NeuroIMAGE

The NeuroIMAGE sample contained 38 subjects, where 24 were male and 14
were female. The subjects’ average age was 17.42 years, with the oldest and
youngest subjects being 21.74 and 11.05 years of age, respectively. No IQ or
ADHD Index scores were provided for these subjects.
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Peking

The Peking hospital contained 194 subjects, where 142 were male and 52
were female. The subjects’ average age was 11.98 years, with the oldest and
youngest subjects being 17.33 and 8.42 years of age. All of the Peking subjects
had Verbal, Performance and Full4 IQ scores from the Wechsler Intelligence
Scale for Chinese Children (WISCC-R). 172 subjects also had ADHD Index
scores obtained from the ADHD Rating Scale IV (ADHD-RS).

New York University (NYU)

The New York University (NYU) hospital contained 188 subjects, where 118
were male and 70 were female. The subjects’ average age was 11.86 years, with
the oldest and youngest subjects being 17.96 and 7.17 years of age, respectively.
All of the NYU subjects had Verbal, Performance and Full4 IQ scores from
the Wechsler Intelligence Scale for Children (WISC-IV) and ADHD Index,
Inattentive and Hyperactivity/Impulsivity scores obtained from the Connors’
Parent Rating Scale-Revised, Long Version (CPRS-LV).

University of Pittsburgh

The University of Pittsburgh hospital contained 66 subjects, where 31 were
male and 35 were female. The subjects’ average age was 15.67 years, with the
oldest and youngest subjects being 20.45 and 10.11 years of age, respectively.
Only 34 of these subjects had Verbal, Performance and Full4 IQ scores from
the Wechsler Intelligence Scale for Children (WISC-IV), and none had ADHD
Index scores.

Washington University in St. Louis

The Washington University in St Louis hospital contained 40 subjects, where
22 were male and 18 were female. The subjects’ average age was 12.53 years,
with the oldest and youngest subjects being 21.83 and 7.09 years of age, re-
spectively. All of these subjects had a Full4 IQ that was obtained from the
Two subtest Wechsler Abbreviated Scale of Intelligence (WASI), but did not
have any other IQ or ADHD Index scores.

Oregon Health and Science University (OHSU)

The Oregon Health and Science University sample contained 64 subjects, where
35 were male and 29 were female. The subjects’ average age was 8.96 years,
with the oldest and youngest subjects being 11.92 and 7.33 years of age, re-
spectively. All of these subjects had a Full4 IQ that was obtained from the
Wechsler Abbreviated Scale of Intelligence (WASI) and ADHD Inattentive
and Hyperactivity/Impulse scores obtained from the Connors’ Rating Scale-
3rd Edition.
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A.1.2 Diagnosis/Labels

As we mentioned in the introduction, there is substantial variability in the
mental-health-related expertise of clinicians that diagnose ADHD in the United
States. We feel that this variability could be reflected in the subject labels for
each hospital. For example, New York University contains 97 ADHD patients
and 91 healthy controls. These 97 ADHD patients account for 40% of the
ADHD subjects in the dataset. Given the variability of the mental-health-
related expertise of the clinicians, it is possible that these labels are incorrect.

We see one very real limitation with fMRI-based diagnosis: It requires
expertly labelled data, where labelling this data is expensive. Given the com-
prehensiveness of psychiatric evaluation for many neuropsychiatric disorders,
the labels are usually reliable. In the United States, however, neuropsychiatric
disorders such as ADHD are not labelled exclusively by psychiatrists. It would
be desirable to use fMRI to learn a diagnosis because it would substantially
reduce the expense to diagnose subjects through comprehensive evaluations.
In order to learn a diagnosis, we still need an expertly-labelled dataset to learn
features that distinguish patients from healthy controls. To address this chal-
lenge, we first need to reduce fMRI dimensionality such that we can use the
reduced features to reproduce an expert’s diagnosis.

A.1.3 Rest Periods of Block Design fMRI vs resting-
state fMRI

We use the last 2 time points of every rest period in the FEP subjects’ block
design fMRI data to homogenize the comparison of the PCA Variants. We
acknowledge that the rest period time points are not the same as those from
resting-state fMRI. This is a consequence of voxels’ BOLD-signal activation
returning to the baseline between the task blocks. Since the volume time for
the FEP dataset is 3 seconds and the rest period is 18 seconds long, there are
6 time points for every rest period. For the first two-thirds of this rest-period,
the voxels’ BOLD-signal activation is returning to baseline. For the last third
(2 time points), the voxels are at their baseline activation level.

It is clear that resting-state fMRI involves subjects sitting idly during the
scan, and rest-periods in a block design fMRI also involve subjects sitting idly
between task blocks. Since we account for the voxels’ BOLD-signal activation
returning to their baseline by selecting the last 2 time points of every rest
period, we feel that these time points are similar but not identical to resting-
state fMRI time points. It is possible that resting-state fMRI is different from
the volumes collected at last 2 time points of a rest period in block design
fMRI, however more data and investigation is required.
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Appendix B

Support Vector Machine

Given N labeled data points xi ∈ Rp and yi ∈ {−1, 1} for all i=1,. . . ,N,
the dataset consists of N pairs (x1, y1), . . . , (xN , yN) ∈ Rp. Per Tibshirani et
al. [16], define a hyperplane by

{x : f(x) = xTw + w0 = 0}

where w is a unit vector: ||w|| = 1, and f(x) gives the signed distance from a
data point x to the hyperplane defined by f(x) = xTw + w0 = 0. Assuming
that the classes are separable, we can find a function f(x) = xTw + w0 that
satisfies yif(xi) > 0 for all i = 1, . . . , N . This hyperplane creates the largest
margin between the data points for class 1 and -1. To recover this hyperplane,
we solve the optimization problem

min
w,w0

||w||

subject to yi(x
T
i w + w0) ≥ 1, i = 1, . . . , N

(B.1)

where w is the vector that produces this hyperplane on the N pairs that are
given as input, and 1

||w|| is the size of the margin on each side of the hyperplane,
as shown in Figure B.1.

Support Vector Machines (SVM) are a supervised learning method in Ma-
chine Learning commonly used for classification. SVM seeks to find the (p−1)-
dimensional maximum margin hyperplane, which is defined as the hyperplane
that best separates the data. When the data points for each class do not
overlap– i.e., they are separable – then the formulation above will find the
maximum margin hyperplane.

In the case where the data is not separable, which is often the case when
dealing with real-world datasets, the maximum margin hyperplane that con-
tains the least number of misclassified data points is selected. Define ξi as the
slack variable representing the proportional amount by which the prediction
for xi, which is given by f(xi) = xTi w + w0, is on the wrong side of its mar-
gin. Then the maximum margin hyperplane can be found from solving the
following optimization problem:
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Figure B.1: A maximum-margin hyperplane produced from SVM on separable data.

min
w,b

1

2
||w||2 + C

n∑
i=1

ξi

subject to

{
yi(x

ᵀ
iw + w0) ≥ 1− ξi ∀i

ξi ≥ 0,
∑
ξi ≤ constant

(B.2)

This optimization problem can be expressed as a quadratic programming
solution that can be solved using the method of Lagrange Multipliers. LibSVM
toolbox’s C−SV C classification algorithm solves the dual, and is the algorithm
used to produce the classification results with the shrinking parameter disabled
(‘-h 0’).

45



Appendix C

Kernel Principal Component
Analysis

We select a transformation Φ(xi) : Rn → Rp, n < p that is applied to the
covariance matrix. This produces a covariance matrix S = 1

n

∑
i Φ(xi)Φ(xi)

ᵀ,
which only applies if the data is centered over its origin. For any eigenvector
of S we will have:

1

n

∑
i

Φ(xi)
(
Φ(xi)

ᵀe
)

= λe (C.1)

We want to find the [eigenvalue, eigenvector] pairs, [λ, e]. The naive ap-
proach would solve this using a p × p matrix, where it is possible for p � n.
We can avoid solving in a higher-dimensional space by recognizing that for any
λ 6= 0 =⇒ e ∈ span({Φ(·)}), which means that we can write the eigenvec-
tor as the linear combination e =

∑
i αiΦ(xi) which can be substituted into

Equation C.1:

1

n

∑
i

Φ(xi)Φ(xi)
ᵀ
∑
i

αiΦ(xi) = λ
∑
i

αiΦ(xi) (C.2)

Note that all of the Φ(xi) expressions are in an inner product in equation C.2,
so take the inner product with all data points Φ(x`), where ` = 1 : n

λ
∑
i

αiΦ(x`)
ᵀΦ(xi) = λ

∑
j

αi

∑
i

(
Φ(x`)

ᵀΦ(xi)
)(

Φ(xi)
ᵀΦ(xj)

)
(C.3)

For many classes of kernel functions, we have

Ki,j = Φ(xi)
ᵀΦ(xj) = K(xi,xj)

thereby allowing us to rewrite Equation C.3 as

λKα =
1

n
K2α
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The kth principal component can be extracted using the kth eigenvector ek as
follows:

yk = eᵀ
kK

where yk = [y1,k, . . . , yn,k], and yi,k corresponds to the kth principal component
for the ith data point.

Note that kernel matrix K only grows with the number of samples instead
of the dimensionality, which was the case in standard PCA. This article only
uses the following kernel:

Radial Basis Function (RBF) kernel :

K(xi,xj) = exp

(
−〈(xi − xj), (xi − xj)〉

2σ2

)
where σ is a parameter given as input, xi and xj are the ith and jth subjects
imaging data reshaped into one dimensional vectors.
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