This decommissioned ERA site remains active temporarily to support our final migration steps to https://ualberta.scholaris.ca, ERA's new home. All new collections and items, including Spring 2025 theses, are at that site. For assistance, please contact erahelp@ualberta.ca.
Theses and Dissertations
This collection contains theses and dissertations of graduate students of the University of Alberta. The collection contains a very large number of theses electronically available that were granted from 1947 to 2009, 90% of theses granted from 2009-2014, and 100% of theses granted from April 2014 to the present (as long as the theses are not under temporary embargo by agreement with the Faculty of Graduate and Postdoctoral Studies). IMPORTANT NOTE: To conduct a comprehensive search of all UofA theses granted and in University of Alberta Libraries collections, search the library catalogue at www.library.ualberta.ca - you may search by Author, Title, Keyword, or search by Department.
To retrieve all theses and dissertations associated with a specific department from the library catalogue, choose 'Advanced' and keyword search "university of alberta dept of english" OR "university of alberta department of english" (for example). Past graduates who wish to have their thesis or dissertation added to this collection can contact us at erahelp@ualberta.ca.
Items in this Collection
- 4Atari 2600
- 2Reinforcement Learning
- 1Artificial Intelligence
- 1Bayesian model learning
- 1Exploration
- 1Games
-
Spring 2019
In the reinforcement learning (RL) problem an agent must learn how to act optimally through trial-and-error interactions with a complex, unknown, stochastic environment. The actions taken by the agent influence not just the immediate reward it observes but also the future states and rewards it...
-
Fall 2013
This thesis presents new algorithms for dealing with large scale reinforcement learning problems. Central to this work is the Atari 2600 platform, which acts as both a rich evaluation framework and a source of challenges for existing reinforcement learning methods. Three contributions are...
-
Spring 2010
This research focuses on developing AI agents that play arbitrary Atari 2600 console games without having any game-specific assumptions or prior knowledge. Two main approaches are considered: reinforcement learning based methods and search based methods. The RL-based methods use feature vectors...
-
Fall 2018
Dyna is an architecture for reinforcement learning agents that interleaves planning, acting, and learning in an online setting. This architecture aims to make fuller use of limited experience to achieve better performance with fewer environmental interactions. Dyna has been well studied in...