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To my piano.



Abstract

This thesis presents new algorithms for dealing with large scale reinforcement learn-

ing problems. Central to this work is the Atari 2600 platform, which acts as both

a rich evaluation framework and a source of challenges for existing reinforcement

learning methods. Three contributions are presented; common to all three is the

idea of leveraging the highly structured nature of Atari 2600 games in order to

achieve meaningful results.

The first part of this work formally introduces the notion of contingency aware-

ness: the recognition that parts of an agent’s observation are under its control, while

others are solely determined by its environment. Together with this formalization,

I provide empirical results showing that contingency awareness can be used to gen-

erate useful features for value-based reinforcement learning in Atari 2600 games.

The second part investigates the use of hashing in linear value function approx-

imation. My work provides a new, theoretically sound hashing method for linear

value function approximation based on prior work on sketches. Empirically, the new

hashing method offers a significant performance advantage compared to traditional

hashing, at a minuscule computational cost.

My third contribution is the quad-tree factorization (QTF) algorithm, an infor-

mation-theoretic approach to the problem of predicting future Atari 2600 screens.

The algorithm relies on the natural idea that future screens can be efficiently fac-

tored into image patches. QTF goes a step further by providing a hierarchical-

decomposition screen model, so that image patches are only as large as they need

to be.

Together, the contributions in this thesis are motivated by the need to efficiently

handle the Atari 2600’s large observation space – the set of all possible game screens –

in arbitrary Atari 2600 games. This work provides evidence that general, principled

approximations can be devised to allow us to tackle the reinforcement learning

problem within complex, natural domains.
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Here then is the only expedient, from which we can hope for success in
our philosophical researches, to leave the tedious lingering method, which
we have hitherto followed, and instead of taking now and then a castle or
village on the frontier, to march up directly to the capital or center of these
sciences, to human nature itself; which being once masters of, we may every
where else hope for an easy victory.

A Treatise of Human Nature
David Hume

Chapter 1

Introduction

Early in Jack London’s novel White Fang, one of the characters, Henry, finds himself

hunted by a pack of wolves eager to make a meal out of him. As he sets up camp

and prepares for a sleepless night in the Yukon wilds, he begins to marvel at the

complexity of the human body:

He watched his moving muscles and was interested in the cunning mech-
anism of his fingers. [...] He studied the nail-formation, and prodded the

finger-tips, now sharply, and again softly, gauging the while the nerve-
sensations produced. It fascinated him, and he grew suddenly fond of
this subtle flesh of his that worked so beautifully and smoothly and

delicately1.

In the twenty-first century, a less poetic Jack London might have instead found

himself concerned with reinforcement learning research. Perhaps then he would

have couched his feelings in more succinct terms; he might have wondered at the

astoundingly high-dimensional nature of the human brain’s observation space. More

importantly, he would have reminded his readers that we are rarely aware of this

fact, and go about our daily lives as if we were not taking big and small decisions

every fraction of a second, decisions that depend on successfully integrating a large

number of sensory cues. By contrast, most modern reinforcement learning tech-

niques remain plagued by various forms of the curse of dimensionality (Bellman,

1957): as the number of dimensions in the state, observation or action spaces in-

creases, the computation, memory or sample complexity of such techniques increases

exponentially.

The overarching research question behind this thesis is whether efficient algo-

rithms can be devised for a given set of structured reinforcement learning

1Jack London, White Fang, 1906, retrieved from http://www.gutenberg.org/ebooks/910.
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domains whose structure is unknown but assumed to come from a large

class of possible structures. This question is addressed through three indepen-

dent contributions:

1. Chapter 4 investigates contingency awareness: the notion that only a portion

of the observation space is under an agent’s control.

2. Chapter 5 studies tug-of-war hashing as a mean of compactly learning from

a large number of possible state features, of which only a few are relevant to

any particular domain.

3. Finally, Chapter 6 directly tackles learning generative models of domains with

recursively factored observation spaces, in particular domains whose observa-

tion space is organized in a image-like manner.

At the center of this work is the Atari 2600 video game platform, which of-

fers us a highly challenging set of reinforcement learning environments. Although

challenging, these environments remain simple enough that we can hope to achieve

measurable progress as we attempt to solve them. One of the many challenges

offered by the Atari 2600 lies in having agents perceive their environment as a

160× 210-pixel screen image. While still far from Jack London’s “subtle flesh”, the

Atari 2600 is a sufficiently complex platform to force us to face the challenges of

high-dimensionality.

The algorithms presented here share three common traits. They are fast : all

implemented agents operate at or faster than Atari 2600 real-time, without requiring

undue low-level optimizations. These algorithms are also scalable by design: in all

cases computation is linear in the dimensionality of the observation space. Finally,

these algorithms aim to be domain-independent, i.e. to be applied to arbitrary Atari

2600 games, where here I consider each game to be a particular domain. The ideal

aim of domain-independence, proposed by Naddaf (2010), provides a certain degree

of confidence in the generality of these algorithms.

I begin by reviewing basic reinforcement learning ideas (Chapter 2), before de-

scribing the Atari 2600 platform and formalizing relevant Atari 2600 notions (Chap-

ter 3). Chapter 4 investigates how knowledge of an agent’s contingencies – what it

controls – can significantly improve learning. In Chapter 5, I consider the problem

of high-dimensionality from the perspective that features generated for linear value

2



function approximation can often be hashed into a much smaller, and thus more

easily learned, space. Finally, in Chapter 6 I propose a new algorithm, quad-tree

factorization, for learning forward, probabilistic models of Atari 2600.

3



Chapter 2

Reinforcement Learning

In reinforcement learning we consider an agent needing to perform sequential de-

cision-making in a known or unknown environment. The agent’s goal is to maximize

its future rewards; such rewards may be directly provided by the environment (Sut-

ton and Barto, 1998), intrinsically generated (Oudeyer et al., 2007) or even more

broadly derived from gathering knowledge about the world (Sutton et al., 2011).

This chapter describes two complementary views of reinforcement learning: the

Markov Decision Process (MDP) setting (Puterman, 1994) and the approximate

AIXI setting (Hutter, 2005; Veness et al., 2011). In an MDP, the environment

dynamics are assumed to be summarized within a state variable; knowledge of this

state (and of the environment dynamics) is sufficient to predict future rewards. The

MDP setting allows us to derive strong algorithmic guarantees, but often obfuscates

the reality of complex domains. By contrast, the approximate AIXI setting makes no

Markov assumption and allows the agent to make decisions based on its whole action-

observation history. This flexibility makes it easy to specify many different kinds

of learning agents. While real-world approximate AIXI implementations necessarily

impose limitations on the class of models they consider, the framework’s generality

helps the designer to focus on interesting modelling techniques, such as the quad-tree

factorization described in Chapter 6.

2.1 Markov Decision Processes

I first review Markov Decision Processes, using material largely drawn from the

introductory textbook of Sutton and Barto (1998). Under the MDP setting, an

agent’s environment is described as an MDP M whose components are

4



• a state space S,

• an action space A,

• a transition function P : S ×A → Dist(S),

• a reward function R : S ×A → R, and

• a discount factor γ,

where Dist(X ) is the space of all probability distributions over the set X . In this

thesis, I assume that S and A are finite. At each time step t, the agent observes

the state st ∈ S and selects an action at ∈ A. The agent then receives a reward

rt := R(st, at) and a new state st+1 is drawn from the distribution P (· | st, at). In

an MDP, state transitions satisfy the Markov property: for all st+1 and any history

of states and actions s0, a0, . . . , st, at, we have

Pr(st+1 | s0, a0, . . . , st−1, at−1, st, at) = Pr(st+1 | st, at) := P (st+1 | st, at).

An agent’s behaviour is typically described by a policy π : S → Dist(A) mapping

states to probability distributions over actions. From any state st, the agent’s goal

is to find a policy that maximizes its expected return defined as the expected sum

of discounted future rewards:

E

[ ∞∑
i=0

γirt+i

∣∣∣ st] ,

where the expectation is over the sequence of future states {st+1, st+2, . . . } induced

by P and π.

2.1.1 Optimal Policies and Value Functions

For a given policy π and MDP M there exists a corresponding a value function

Qπ(s, a) : S × A → R mapping state-action pairs to the expected return achieved

by starting in s, taking action a and subsequently following π. Formally,

Qπ(s, a) := R(s, a) + γ
∑
s′∈S

P (s′ | s, a)E

[ ∞∑
i=0

γiri|s0 = s′

]
The Markov property allows us to express Qπ(s, a) recursively in a form known

as the Bellman equation:

5



Qπ(s, a) = R(s, a) + γ
∑
s′∈S

P (s′ | s, a)
∑
a′∈A

π(a′ | s)Qπ(s′, a′) (2.1)

An optimal policy π∗ maximizes the expected return at every state. The Bellman

optimality equation captures this fact by replacing the expectation above with the

maximum operator in order to define the (unique) optimal value function:

Q∗(s, a) = R(s, a) +
∑
s′∈S

P (s′ | s, a) max
a′∈A

Q∗(s′, a′) (2.2)

Knowing Q∗(s, a) allows an agent to behave optimally by constructing π∗ such

that

π∗(a|s) =

{
1 if a = arg maxa′∈AQ

∗(s, a′)
0 otherwise

,

where ties in arg maxa′∈AQ
∗(s, a′) are assumed to be broken arbitrarily. As learning

Q∗(s, a) is sufficient to obtain π∗, many reinforcement learning approaches focus on

estimating the former; such approaches are called value-based. In particular, the

SARSA(λ) algorithm (Rummery, 1995; Sutton and Barto, 1998), described next,

learns a value function from state transitions.

2.1.2 SARSA(λ): Learning from Experience

Often the environment dynamics are unknown and the agent must learn its policy

from experience. In this case, value-based reinforcement learning typically involves

the repetition of two steps: (1) learning Qπ(s, a) from interactions with the envi-

ronment, for a fixed π, and (2) improving the current policy π. The SARSA(λ)

algorithm performs the first of these tasks1.

Given a fixed policy π, SARSA(λ) produces a sequence of value function es-

timates {Qπt (s, a)}; under appropriate conditions, Qπt (s, a) converges to Qπ(s, a)

(Rummery, 1995). For each observed transition st, at, rt, st+1, at+1, SARSA(λ) per-

forms the following update:

1In practice, the policy improvement step is often reduced to ε-greedy action selection: the agent
selects actions uniformly at random with probability ε and otherwise acts greedily with respect to
Qπ(s, a).
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δt ← rt + γQt(st+1, at+1)−Qt(st, at)

et(s, a) ← γλet−1(s, a) + I[s= st,a= at] ∀s ∈ S, a ∈ A

Qt+1(s, a) ← Qt(s, a) + αtδtet(s, a) ∀s ∈ S, a ∈ A,

where αt ∈ [0, 1) is a step-size parameter, λ ∈ [0, 1] is an eligibility trace parameter,

et(s, a) is an eligibility trace with e0(s, a) = 0 for all s ∈ S, a ∈ A, and I[·] is

the indicator function. Note that, at each time step, the eligibility trace for every

state-action pair (s, a) is updated by SARSA(λ). The term δt is known as the

temporal-difference error : the difference between the predicted return Qt(st, at) and

the one-step estimate of the return, rt + γQt(st+1, at+1). The purpose of the λ

parameter is to propagate the temporal-difference error backwards in time. On one

end of the spectrum, λ = 1 corresponds to estimating Qπ(s, a) using Monte-Carlo

samples of the return; λ = 0 instead bootstraps each estimate from its successor.

Varying λ trades off bias and variance, with intermediate values often performing

best (Sutton, 1996). Because Qπt (s, a) is stored explicitly in a table, this method is

referred to as tabular SARSA(λ).

2.1.3 Linear Value Function Approximation

In most reinforcement learning problems, explicitly storing a value function for all

state-action pairs is undesirable: there are often more states than what can be

stored in memory. In discrete domains, this issue usually arises because the state is

described by a set of features, so that the size of the state space is exponential in

the number of such features2. In this case, we must approximate the value function

estimates. Linear approximation is one such value function approximation scheme,

of particular interest because it has been well-studied (Tsitsiklis and Van Roy, 1997;

Boyan, 2002; Sutton et al., 2008), is stable, and can be efficiently implemented.

Given φ : S × A → Rn mapping state-action pairs to feature vectors, the value

function estimate Qπt (s, a) is linearly approximated as θt · φ(s, a), where θt ∈ Rn is

the weight vector at time t. The gradient descent SARSA(λ) update is defined as:

2Assuming that each feature takes on finitely many values.
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δt ← rt + γθt · φ(st+1, at+1)− θt · φ(st, at)

et ← γλet−1 + φ(st, at)

θt+1 ← θt + αtδtet,

where αt ∈ (0, 1) is a step-size parameter, λ ∈ [0, 1] is an eligibility trace parameter

and et ∈ Rn is an eligibility trace vector.

2.1.4 Convergence of SARSA(λ)

As discussed in Section 2.1.2, the value function estimate Qπt (s, a) learned by tabular

SARSA(λ) converges to Qπ(s, a) under certain conditions on the step-size αt, the

policy π and the MDP M (Rummery, 1995; Singh and Sutton, 1996). Under a

similar set of assumptions, SARSA(λ) with linear value function approximation also

converges, albeit to a solution whose approximation error depends on the choice of

φ and λ (Tsitsiklis and Van Roy, 1997). I now review a version of this convergence

result pertaining to state-action values.

Together, a fixed policy π and a MDP M form a Markov chain whose states

are (s, a) pairs and the transition probability between (s, a) and (s′, a′) is given by

P (s′|s, a)π(a′|s′). Let Φ ∈ R|S||A|×n be the matrix of feature vectors φ(s, a). I begin

with a set of assumptions.

Assumptions

1. The Markov chain induced by π andM is ergodic and has a unique stationary

distribution µ ∈ Dist(S ×A),

2. Φ has full column rank (there are no redundant features), and

3. The step-sizes αt are positive, nonincreasing and predetermined; furthermore,∑∞
t=0 αt =∞ and

∑∞
t=0 α

2
t <∞.

Denote by 〈·, ·, 〉µ the inner product induced by µ, i.e. 〈x, y〉µ := xTDy, where

x, y ∈ R|S||A| and D ∈ R|S||A|×|S||A| is a diagonal matrix with entries µ(s, a). The

norm ‖·‖µ is defined as
√
〈·, ·〉µ. The following theorem, originally presented by

Tsitsiklis and Van Roy (1997), bounds the error of SARSA(λ) with linear value

function approximation:
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Theorem 2.1.1. Let M = 〈S,A, P,R, γ〉 be an MDP and π : S → Dist(A) be

a policy. Denote by Φ ∈ R|S||A|×n the matrix of full feature vectors and by µ the

stationary distribution on (S,A) induced by π and P . Under assumptions 1-3),

SARSA(λ) converges to a unique θπ ∈ Rn with probability one and this θπ satisfies

‖Φθπ −Qπ‖µ ≤
1− λγ
1− γ

‖ΠQπ −Qπ‖µ ,

where Qπ ∈ R|S||A| is a vector representing the exact solution to Equation 2.1 and

Π := Φ(ΦTDΦ)−1ΦTD is the projection operator.

Theorem 2.1.1 states that SARSA(λ) with linear value function approximation

converges to the nearest approximation to Qπ(s, a) within the space of value func-

tions {Φθ : θ ∈ Rn}, up to a multiplicative factor depending on λ and γ; the error

in value for each state-action pair (s, a) is weighted by the pair’s relative stationary

distribution frequency µ(s, a).

2.2 The AIXI Setting

The Markov assumption simplifies the design and theoretical validation of rein-

forcement learning algorithms; however, in real-world applications it is often what

its name implies: a theoretical assumption rather than a property of the domain.

An alternative, the AIXI setting (Hutter, 2005), obviates the question of Markov

state and instead deals directly with the sequence of past observations, actions and

rewards. This perspective on the reinforcement learning problem allows us to em-

phasize the need for more general (non-Markov) agents. In this section I focus on the

AIXI description of environments and environment models necessary to the work of

Chapters 4 and 6 and omit the decision-making component for clarity. For a gentle

introduction to the full AIXI setting, see Chapter 2 in (Legg, 2008); most of the

ideas described in this section stem from the presentation by Veness et al. (2011).

2.2.1 Environments

In the AIXI setting, an environment is defined using

• An observation space O,

• An action space A, and

• A reward space R .
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Again, I assume here that these spaces are finite. Observations and rewards

are grouped together as percepts drawn from the percept space X := O ×R. The

history space is denoted by H := (A×X )∗ ∪ (A×X )∗×A. A sequence of percepts

x1, x2, . . . , xn is denoted by x1:n, with x<n denoting the prefix x1:n−1 and ε denoting

the empty sequence. Sequences of actions are similarly denoted by a1:n and histories

by (ax)1:n. An environment ρ is a sequence of conditional probability functions

{ρ0, ρ1, . . . }, with ρi : An → Dist(X n), constrained by the chronological condition:

∀a1:n∀x1:n−1 : ρn−1(x<n | a<n) =
∑
xn∈X

ρn(x1:n | a1:n), (2.3)

with ρ0(ε|ε) = 1; ρn(x1:n|a1:n) can naturally be interpreted as the probability of

observing x1:n given a fixed action sequence a1:n. The subscript to ρn is always

implied by its arguments, and is dropped from here onwards. Throughout I assume

that, for any sequence x1:n ∈ X n and any a1:n ∈ An, ρ(x1:n | a1:n) > 0.

The probability of observing xn given (ax)<n and an is defined as

ρ (xn | (ax)<nan) :=
ρ(x1:n | a1:n)

ρ(x<n | a<n)
(2.4)

This notion of environment is used in two distinct ways. It is first used to

describe the true, underlying dynamical system that generates the string of percepts

x1:n. It also describes an agent’s environment model. In the AIXI setting, an

environment model provides a probability distribution over future symbols and this

distribution depends on the observed history. In general, we do not have access

to the environment; one question of interest is then how to learn an approximate

description of its dynamics, i.e. an environment model.

2.2.2 Redundancy

Given an environment model ρ and an environment µ, we quantify the accuracy of

ρ’s predictions about the string x1:n by measuring its redundancy with respect to µ,

defined as

− log2 ρ(x1:n | a1:n)− (− log2 µ(x1:n | a1:n))

The redundancy of ρ is the additional number of bits required to encode x1:n

using the probability distribution of ρ rather than the true model µ. If we fur-
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ther consider the expected redundancy when x1:n is drawn from µ, we obtain the

Kullback-Leibler divergence of ρ(·|a1:n) from µ(·|a1:n):

DKL(µ ‖ ρ) := Ex1:n∼µ
[

log2 µ(x1:n | a1:n)

log2 ρ(x1:n | a1:n)

]
.

Note that the Kullback-Leibler divergence is not symmetric, i.e. in general

DKL(µ ‖ ρ) 6= DKL(ρ ‖µ).

2.2.3 Mixture Environment Models

Often we are given a class M of environment models whose predictions we would

like to combine so as to guarantee that the resulting environment model is as good

as the best-performing model inM. Bayesian model averaging is one way to achieve

this goal. Informally, model averaging weighs each model ρ ∈ M in proportion to

how accurate its predictions are. Initially, each ρ ∈ M is assigned a prior weight

wρ0, leading to the following definition:

Definition 2.2.1. Given a finite model class M and for each model ρ ∈M a prior

wρ0 > 0 such that
∑

ρ∈Mwρ0 = 1, the mixture environment model ξ is defined as

ξ(x1:n | a1:n) :=
∑
ρ∈M

wρ0ρ(x1:n | a1:n)

A mixture environment model satisfies Equation 2.3, and so is also an environ-

ment model. This equivalence can be derived as follows:

∀a1:n∀x1:n :
∑
xn∈X

ξ(x1:n | a1:n) =
∑
xn∈X

∑
ρ∈M

wρ0ρ(x1:n | a1:n)

=
∑
ρ∈M

wρ0
∑
xn∈X

ρ(x1:n|a1:n)

=
∑
ρ∈M

wρ0ρ(x<n|a<n)

= ξ(x<n | a<n).

The probability of observing xn given (ax)<n and an under ξ is therefore

ξ(xn | (ax)<nan) =
ξ(x1:n | a1:n)

ξ(x<n | a<n)

Given a model classM, a prior weight wρ0 > 0 for each ρ ∈M and an arbitrary

ρ′ ∈M, we can bound the redundancy of the environment mixture model as follows:
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− log2 ξ(x1:n | a1:n) = − log2

∑
ρ∈M

wρ0ρ(x1:n | a1:n) ≤ − log2w
ρ′

0 − log2 ρ
′(x1:n | a1:n).

(2.5)

In particular, Equation 2.5 guarantees that on a per-symbol prediction basis, a

mixture environment model asymptotically performs as well as the best model in

M. This follows by considering the average log-likelihood of each symbol under ξ

and ρ′:

lim
n→∞

[
− 1

n
log2 ξ(x1:n | a1:n)

]
≤ lim

n→∞

[
− 1

n
log2w

ρ′

0 −
1

n
log ρ′(x1:n | a1:n)

]
(2.6)

where the term − 1
n log2w

ρ′

0 vanishes as n→∞.
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Chapter 3

The Arcade Learning
Environment

The

contributions in this thesis are all evaluated using the Arcade Learning Environ-

ment, a set of reinforcement learning domains based on Atari 2600 games (Bellemare

et al., 2013a). The aim of this chapter is to

1. Describe the Atari 2600 platform and the Arcade Learning Environment,

2. Provide Atari-specific notation used in later chapters, and

3. Describe my contributions to the problem of multi-domain evaluation, in par-

ticular to the question of how to best compare agents evaluated on a set of

Atari 2600 games.

This chapter focuses on details and concepts necessary to understand the other

contributions of this thesis; further precision, discussion, and exhaustive benchmark

results can be found in the journal article on the Arcade Learning Environment

(Bellemare et al., 2013a).

3.1 The Atari 2600

The Atari 2600 is a home video game console developed in 1977 and sold in retail

stores for over a decade (Montfort and Bogost, 2009). The Atari 2600 popularized

the use of general-purpose CPUs in game console hardware, with game code dis-

tributed through cartridges. Over 500 original games were released for the console;

A version of this chapter has been published (Bellemare et al., 2013a).
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Figure 3.1: Screenshots of Pitfall! and Space Invaders.

“homebrew” games continue to be developed now, over thirty years later. The games

vary widely and include puzzles, sports, action-adventure games, board games, as

well as a plethora of shooter variants. The console’s joystick, as well as some of the

original games such as Adventure and Pitfall!, are iconic symbols of early video

games. Nearly all arcade games of the time – Pac-Man and Space Invaders are

two well-known examples – were ported to the console.

Despite the number and variety of games developed for the Atari 2600, its hard-

ware is relatively simple. It has a 1.19MHz CPU and can be emulated much faster

than real-time on modern hardware. The cartridge ROM (typically 2–4kB) holds

the game code, while the console RAM itself only holds 128 bytes (1024 bits). A sin-

gle game screen is 160 pixels wide and 210 pixels high with pixel colours drawn from

a 128-colour palette. A one-button, two-axis digital joystick provides input to most

games; other controllers, including an analog “paddle” for Pong-like games, are also

available. While human-level performance across a wide range of Atari 2600 games

has yet to be demonstrated using current artificial intelligence methods, the plat-

form’s hardware limitations ensures that these games are not too complex. As such,

studying the limitations of applying existing methods to Atari 2600 games should

conceivably lead to near-term advancements in learning, modelling, and planning.

3.1.1 The Arcade Learning Environment

The Arcade Learning Environment (ALE), originally developed by Yavar Naddaf as

part of his Master’s work (Naddaf, 2010) and subsequently improved throughout my

thesis work, provides a reinforcement learning interface around Atari 2600 games.

ALE is built on top of Stella1, an open-source Atari 2600 emulator. It allows the

user to interface with the Atari 2600 by receiving joystick motions, sending screen

1http://stella.sourceforge.net/
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and RAM information, and emulating the platform. ALE also provides a game-

handling layer which transforms each game into a standard reinforcement learning

problem by identifying the accumulated score and whether the game has ended. By

default, each observation consists of a single game screen (frame): a two-dimensional

array of 7-bit pixels, 160 pixels wide by 210 pixels high. The action space consists

of the 18 discrete actions defined by the joystick controller. Analog controllers

such as the well-known paddle are approximated from the discrete action set using

simple differential equations. The Atari 2600 generates 60 frames per second of

real-time play, and at full speed emulates up to 6000 frames per second on a modern

laptop computer. The reward at each time-step is defined on a game by game basis,

typically by taking the difference in score or points between frames. An episode

begins on the first frame after a reset command is issued, and terminates when the

game ends. The game-handling layer also offers the ability to end the episode after

a predefined number of frames; this functionality is needed for a small number of

games to ensure that they always terminate. This prevents situations such as in

Tennis, where a degenerate agent could choose to play indefinitely by refusing to

serve. The Arcade Learning Environment is open-source and publicly available2.

3.1.2 Domain-independent Agents

In his Master’s thesis, Naddaf (2010) proposed the concept of domain-independent

Atari 2600 agents: agents that can play arbitrary Atari 2600 games without game-

specific tuning. The appeal of such agents is twofold: first, they are by their very

nature a step closer to “big” general intelligence (e.g., Russell, 1997; Hutter, 2005;

Legg, 2008); second, the domain-independent requirement helps guarantee the broad

usefulness of developed algorithms. The domain-independent methodology (Belle-

mare et al., 2013a) is based on three principles:

1. Use many games. Agents should be tested on a large number of domains.

2. Diversify games. Domains should exhibit different environment dynamics.

3. Divide into training/testing. Games should be designed using a small

fraction of domains (the training set), and later evaluated using many domains

(the testing set).

2http://www.arcadelearningenvironment.org
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The Arcade Learning Environment provides us with a large collection of Atari

2600 games; this collection constitutes our set of reinforcement learning domains.

In particular, algorithms in Chapters 4, 5, and 6 were respectively evaluated using

51, 55 and 20 games. Games were drawn at random from a larger set (Naddaf,

2010) and range from map-based adventure games to three-dimensional shooters.

The same five training games3 were used throughout.

3.2 Evaluating Metrics for General Atari 2600 Agents

Evaluating agents on many games, albeit desirable, poses an interpretation problem.

While in all games, the agent’s goal is to maximize its score, scores for different games

cannot be easily compared. Each game uses its own scale for scores, and different

mechanics make some games harder to learn than others. This section describes the

approach taken in this thesis: scores are first normalized, then aggregated. Nor-

malizing scores is necessary to perform inter-game comparisons, while aggregation

allows us to concisely give results across the full set of games used.

3.2.1 Score Normalization

Let sg,1 and sg,2 denote the scores achieved by two algorithms in a particular

game g. The aim of score normalization is to translate two sets of scores S1 =

{sg1,1, . . . , sgn,1} and S2 = {sg1,2, . . . , sgn,2} so that they can be compared across

games. Each score sg,i is transformed into a normalized score zg,i; in the ideal

case, zg,i = zg′,i implies that algorithm i performs as well on game g as on game

g′. The two normalization methods described below are defined using a score range

[rg,min, rg,max] computed for each game. Given a score range, the corresponding

normalized score is defined as

zg,i :=
sg,i − rg,min

rg,max − rg,min

The Baseline Score

We can often easily design and evaluate agents that act according to trivial policies,

for example the random policy. Although we expect them to perform poorly across

the set of Atari 2600 games, these agents constitute an interpretable performance

3Asterix, Beam Rider, Freeway, Seaquest, and Space Invaders.
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baseline. Given a set of baseline agents (acting according to trivial policies or not),

the range of scores they achieve on a particular game naturally defines a score range

for that game. Let bg,1, . . . , bg,k be a set of reference scores. A method’s baseline

score is computed using the score range [mini∈{1,...,k} bg,i,maxi∈{1,...,k} bg,i]. In this

thesis, baseline scores are obtained using 37 policies:

1. Random. Actions are selected uniformly at random,

2. Constant. The same action is repeated at every time step (one policy per

action, for a total of 18 policies), and

3. Perturb. At every time step, the agent takes a fixed action with probability

0.95 and otherwise acts uniformly at random (one policy per action, for a total

of 18 policies).

Incorporating scores achieved by human players into the baseline score range

is desirable for interpretability purposes, but raises a wealth of issues. Humans

often play games without seeking to maximize score; humans also benefit from prior

knowledge that is difficult to incorporate into domain-independent agents. More

importantly, selecting an appropriate range of scores (or an appropriate skill level)

poses a significant challenge, as scores achieved by humans vary considerably from

player to player.

The Inter-Algorithm Score

An alternative to baseline normalization is to define a score range based on the scores

achieved by the algorithms being evaluated. Given k algorithms, each achieving

score sg,i on game g, 1 ≤ i ≤ k, the inter-algorithm score is defined using the score

range [mini∈{1,...,k} sg,i,maxi∈{1,...,k} sg,i]. By definition, zg,i ∈ [0, 1]; a special case of

this kind of normalization is when k = 2, where zg,i ∈ {0, 1} indicates which of the

two compared algorithms performs better.

Because inter-algorithm scores are bounded, they are often more easily inter-

preted than baseline scores (see Chapter 4 for a comparison of the two methods).

However, inter-algorithm score normalization gives no indication of the objective

performance of the best algorithm. A good example of this is the game Venture,

for which none of the agents described in this thesis achieves a meaningful score.

Inter-algorithm scores are thus best used to complement other scoring metrics.
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Figure 3.2: A score distribution (taken from Chapter 5) over fifty-five games.

3.2.2 The Score Distribution

Once normalized scores are obtained for each game, the next step is to produce

measures that reflect how well each agent performs across the set of games. Two

simple measures are the average and median normalized scores. Although easily

comparable, both average and median hide the details of how algorithms perform,

are unduly affected by outliers, and in general paint a picture that is difficult to

interpret. On the other hand, simply reading a large table of scores is cumbersome.

An alternative is to present the set of normalized scores as a score distribution. The

score distribution is a natural generalization of the median: it shows the fraction

of games on which an algorithm achieves a certain normalized score or better. It

is essentially a quantile plot or inverse empirical CDF. Figure 3.2 presents some

of the empirical results of Chapter 5, comparing two methods (tug-of-war hashing

and standard hashing), as a score distribution. Here the tug-of-war method per-

forms better, and so achieves good scores on a larger fraction of games compared to

standard hashing.

3.3 Notation

This section provides the notation necessary to mathematically describe Atari 2600

games as reinforcement learning environments. In later chapters, this notation is

used to instantiate various theoretical results to Atari 2600 domains. Although for

practical reasons some of the terms below explicitly refer to components of Atari

2600 games, the aim of this notation is to describe the general class of domains whose
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observation space exhibits two-dimensional structure, i.e. image-like observations.

Let O, the observation space, be the set of all possible Atari 2600 images. Denote

by Dx ⊂ N and Dy ⊂ N the set of row and column indices, respectively, and let

D := Dx × Dy be the joint index space. The colour space C is a finite set of

possible pixel colours. A pixel is a tuple (x, y, c) ∈ D × C =: P the pixel space.

Each observation is therefore a set of |D| pixels. Whenever convenient, I also use

the notation ox,y to denote the colour at location (x, y) in observation o ∈ O:

ox,y = c such that (x, y, c) ∈ o. When a time index is given, as in ot, the notation is

ot,x,y.

The action space A of the Atari 2600 consists of 18 discrete actions, correspond-

ing to joystick motions along the x and y axes and button presses. Throughout this

work I ignore the factorization of A into its components and treat A as a set of

atomic actions.

The reward space R ⊂ R is bounded above and below by the largest and small-

est achievable rewards. Note that, by virtue of the finite state machine nature of

the Atari 2600, the reward space is also finite. In effect, all games considered in

this thesis have integer rewards, though this is not a requirement of the proposed

algorithms.

Much of my experimental work relies on the decomposition of the image into

image patches, which often provide more information than individual pixels. In this

work an image patch is a rectangular portion of the whole image; image patches are

defined as sets of pixels. the Let (a, b) ∈ R×R be a pair representing the width and

height of an image patch. A patch pa,bx,y : O → 2P selects a subset of the image:

pa,bx,y(o) :=
{

(x′, y′, c) : (x′, y′, c) ∈ o, x ≤ x′ < x+ a, y ≤ y′ < y + b
}

Similarly we define the subset of locations la,bx,y : O → 2D corresponding to the

patch pa,bx,y(o):

la,bx,y(o) :=
{

(x′, y′) : ∃c ∈ Cs.t.(x′, y′, c) ∈ o, and x ≤ x′ < x+ a, y ≤ y′ < y + b
}

Each image patch of size a × b corresponds to a unique lexicographic index

ıa,bx,y(o) ∈ N ranging from 0 to |C|a×b − 1. This index is constructed by iterating

through the patch’s pixels in row-column order and encoding each pixel as a 7-bit

value. Formally:
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ıa,bx,y(o) :=

y+b−1∑
y′=y

x+a−1∑
x′=x

|C|a(y′−y)+(x′−x)bit(ox′,y′) ,

where bit : C → {0, . . . , |C| − 1} denotes a mapping from colours to indices. Out-of-

screen pixels are encoded using a special colour in C.

3.4 Related Work

Diuk et al. (2008) were the first to experiment with the Atari 2600 domain. Their

research on object-oriented reinforcement learning focused on a restricted version

of the game of Pitfall!, in which the agent’s goal is to exit the screen to the

right. Wintermute (2010) similarly studied how to extract objects from Atari 2600

game screens, focusing on a restricted version of Frogger II; once extracted, the

objects were then embedded into a logic-based architecture (SOAR) for planning

purposes. Cobo et al. (2011) investigated automatic feature discovery using their

own implementations of Pong and Frogger. Stober and Kuipers (2008) also used

their own version of Pong to study an algorithm for the lifelong learning setting,

in which the agent seeks to organize raw sensory information into a high-level rep-

resentation of its environment. Hausknecht et al. (2012) proposed an algorithm,

the Visual Processing Architecture, whose purpose is to extract high-level features

– object labellings – from Atari 2600 screens. Their procedure improves on the

DISCO algorithm (Naddaf, 2010) by adding the ability to cluster objects based on

pixel similarity and including a form of self-detection. They evaluated their archi-

tecture, including a generic algorithm-based policy search algorithm, on Asterix

and Freeway. Finally, Talvitie and Singh (2008) studied predictions in partially

observable domains using a simplified version of Breakout.

The research on Atari 2600 games (and clones) described above has collectively

shown the critical importance of algorithms that can handle large, factored obser-

vation spaces. However, common to this research is a focus on a very small number

of games – here, one or two. Often this focus stems from a need to engineer as-

pects of the problem, for example labelling Pitfall! objects in the work of Diuk

et al. (2008). Emphasizing the development of domain-independent agents by con-

sidering a large number of games is appealing because it diminishes the benefits of

domain engineering, if for no other reason than the sheer amount of work required

to engineer fifty or sixty different domains.
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At once Stockstill thought, He’s taking credit for it, in his own mind. Para-
noid delusions of omnipotence; everything that takes place is due to him.

Dr. Bloodmoney
Philip K. Dick

Chapter 4

Contingency Awareness

Large domains typically exhibit regularities in their observation and action spaces

which facilitate decision-making. In Atari 2600 games, one interesting source of

regularity is pixel motion: most pixels within a game screen “move” from frame

to frame. Furthermore, most of this motion is independent of the agent’s choice

of action. Thus in Freeway (Figure 4.1) the agent controls the left-hand chicken

but not the motion of the cars. This idea is captured by the notion of contingency

awareness, which this chapter introduces and formalizes.

Contingency awareness describes the agent’s knowledge of which parts of the ob-

servation are under its control, and which are solely determined by the environment.

Contingency awareness is a natural notion when used to describe human behaviour:

most humans are keenly aware that the better part of their world acts independently

of their will. The formalism that I present here pertains to a notion of contingency

awareness that is directly related to learning agents acting in factored domains.

Following the notation of Section 3.3, I use the term pixel to denote one of the

atomic components of a larger factored observation space. Section 4.1 first defines

the notion of contingent regions: the subset of pixels whose colour depends on the

agent’s action. I then describe supervised learning models that map observations to

contingent regions (Section 4.2), and subsequently how to make use of such predic-

tions to design better features for linear value function approximation (Sections 4.3

and 4.4). Finally, these ideas are empirically validated in Section 4.5.

A version of this chapter has been published and presented at the AAAI Conference on Artificial
Intelligence (Bellemare et al., 2012a).
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Figure 4.1: Regularity in the game of Freeway. The agent controls the chicken (blue
dotted arrows) but not the motion of the cars (solid black arrows).

4.1 Contingent Regions

Recall the AIXI setting described in Section 2.2: at every step the agent observes a

percept xt ∈ X , where X = O×R, and takes an action at ∈ A. In this setting, the

history ht := a1x1a2x2 . . . xt contains all of the information available to the agent.

Recall also that an environment ρ maps histories h ∈ H to probability distribu-

tions. To simplify the description of contingent regions, I define a deterministic

environment as a mapping ρ : (A×X )∗ ×A → X and take X = O.

Informally, the contingent regions at time t is the set of pixels whose colour at

time t+ 1 depends on at. When the environment is deterministic and can be simu-

lated, computing the contingent regions can be done efficiently. The first definition

of contingent regions reflects this fact:

Definition 4.1.1. Given a history h ∈ (A×X )∗ and a deterministic environment

ρ : (A×X )∗ ×A → X , the contingent regions C(h) of history h are defined as

C(h) :=
{

(x, y) ∈ D : ∃a, a′ ∈ A, ox,y(ha) 6= ox,y(ha
′)
}
,

where D is the joint index space and ox,y(ha) denotes the colour of the pixel at

location (x, y) within the observation ρ(ha).

This definition is called the oracle contingent regions to reflect the fact that

computing it requires more information than is usually available to the agent: it
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requires testing all actions a ∈ A from h. Figure 4.2 depicts the process through

which C(h) can be computed in Atari 2600 games.

History h

i = i + 1; load statei=0; save state

ρ(hai)

ai

C(h)

Set of next frames 

Figure 4.2: Process for generating the oracle contingent regions C(h). At the core
of the process is the ability to reset the simulator to a given state (corresponding to
a particular history). On the right, C(h) is represented as a white overlay on top of
the normal screen (the red arrow indicates the location of C(h)).

Definition 4.1.1 can be revised to account for stochastic environments by re-

placing the pixel comparison ox,y(ha) 6= ox,y(ha
′) by a comparison between distri-

butions over pixel colours: Tx,y(·|ha) 6= Tx,y(·|ha′), where Tx,y(·|ha) refers to the

distribution over the colour of the pixel at (x, y). Given a stochastic environment

ρ : (A×X )∗ ×A → Dist(X ), this pixel colour distribution is defined as

Tx,y(c|ha) :=
∑
z∈X

ρ(z|ha)I[(x,y,c)∈z],

leading to the second definition of contingent regions:

Definition 4.1.2. Given a history h ∈ (A × X )∗ and a stochastic environment

ρ : (A × X )∗ × A → Dist(X ), the online contingent regions C(h) of history h are

defined as

C(h) :=
{

(x, y) ∈ D : ∃a, a′ ∈ A, Tx,y(· |ha) 6= Tx,y(· |ha′)
}
,

where Tx,y(·|ha) denotes the distribution over colours at (x, y).

The second definition is called the online contingent regions to reflect that, unlike

Definition 4.1.1, it can be computed from a learned observation model1. When

1The term online, also used in Bellemare et al. (2012a), reflects the desire to learn the contingent
regions without a preparatory model learning period. In the experiments presented here, however,
we separated model learning and contingent regions learning in order to simplify the experimental
setup.
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the true pixel colour distribution Tx,y(·|ha) is unavailable, Definition 4.1.2 can be

approximated by replacing each Tx,y(·|ha) with a learned approximation T̃ (·|ha) and

the non-equality test with a KL divergence test:

C̃(h) :=
{

(x, y) ∈ D : ∃a, a′ ∈ A, D(T̃x,y(·|ha) || T̃x,y(·|ha′)) ≥ δ
}

, (4.1)

where δ ∈ (0,∞) is a threshold parameter and D(p||q) denotes a symmetric form of

the KL divergence,

D(p || q) := DKL(p || q) +DKL(q || p)

DKL(p||q) :=
∑
s∈S

p(s) log
p(s)

q(s)

Despite the approximations involved, Definition 4.1.2 is appealing because it

can be applied to no-reset, stochastic domains, and is thus more broadly applicable.

In the experiments below, computing the online contingent regions first involves

learning the pixel models T̃x,y(·|ha) from data, and subsequently computing C(h)

from the pixel models.

4.2 Learning a Contingent Regions Model

The two definitions of contingent regions above formalize the notion of contingency

awareness. In this section, I describe how to learn a model that can predict C(h).

The purpose of such a model is twofold: first, to enable agents to access C(h)

when a simulator is unavailable and second, to cache the otherwise slow process

of extracting C(h) at run-time. Learning a contingent region model can thus be

viewed as a preprocessing step whose sample cost is amortized by repeated use: the

contingent region models used later this chapter and in Chapter 5 were learned once

and subsequently reused.

We now cast the problem of learning a contingent region model as a supervised

learning task. Let r be a set of tuples (x, y, t) ∈ Dx × Dy × {0, 1} representing

a labelling of the pixels within an observation. Let R denote the set of all such

labellings, and let rx,y := t ∈ {0, 1} such that (x, y, t) ∈ r. For a given set of

reference histories H := {h1, h2, . . . }, we construct the following set of training

examples:
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{(
h, r
)
∈ H ×R : rx,y = I

[
(x, y) ∈ C(h)

]}
. (4.2)

Predicting C(h) atomically, as per Equation 4.2, is generally neither feasible nor

desirable: in Atari 2600 games, a single prediction consists of 210× 160 pixels. The

remainder of this section is thus concerned with developing approximations that

help learn efficient and accurate contingent region models. At the core of these

approximations is the factored nature of the Atari 2600 observation space, which

lets us make individual pixel predictions using local screen regularities.

4.2.1 Block Decomposition

In many cases, predicting the contingent regions at the pixel level is unnecessary. To

reduce the method’s computational cost, we divide the observation space into k× k

blocks, k ∈ N, and assume that pixels within a block share the same contingency

behavior. This leads to the following definition of the contingent regions using a

block size of k:

Bk(h) :=
{

(x, y) ∈ D : Sk(x, y) ∩ C(h) 6= ∅
}
,

where Sk(x, y) :=
{

(x′, y′) ∈ D : gk(x, y) = gk(x
′, y′)

}
, gk(x, y) := (fk(x), fk(y))

and fk(x) := k dx/ke − bk/2c. The approximate block contingent regions B̃k(h) is

defined similarly, with C̃(h) replacing C(h) in the above definition.

The block decomposition leads to a speedup proportional to k2 since only one

prediction is made for every k × k block of pixels. Figure 4.3 shows an example of

the exact contingent regions of a Seaquest frame and its corresponding 5×5 block

decomposition.

Figure 4.3: Exact (left) and 5x5 block-decomposed (right) contingent regions in
Seaquest.
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4.2.2 Local Features

Whether a particular pixel is part of a screen’s contingent regions can usually be

inferred from its colour and the colour of neighbouring pixels. A natural idea is

to use features of the history h, rather than h itself, to predict whether a location

(x, y) is part of C(h). These features can then be used to learn a contingent region

model, as will be discussed in Section 4.2.3 below.

Let φ : H ×D → Rm be a mapping from histories to feature vectors. Given an

image o ∈ O and a location l = (x, y) within this image, recall the definition of the

lexicographic index of an image patch of size a× b (Section 3.3):

ıa,bx,y(o) :=

y+b−1∑
y′=y

x+a−1∑
x′=x

|C|a(y′−y)+(x′−x)bit(ox,y)

There are |C|ab such possible indices; here each pixel is encoded using |C| bi-

nary features2, so that each index ıa,bx,y(o) corresponds to a binary vector of length

|C|ab. Let x′ = x −
⌊
a
2

⌋
and y′ = y −

⌊
b
2

⌋
; the concatenation of the binary vectors

corresponding to ıa,bx′,y′(ot) and ıa,bx′,y′(ot−1) then forms our mapping φ. This mapping

represents a binary encoding of the pixels within a a× b window centered on a given

pixel, for both the current and last images. Here the window size a = b = 21 is

large enough to capture local motion, and thus contingency that depends on nearby

pixels. Figure 4.4 depicts the process of converting the neighbourhood of location

l, derived from history h, into a binary feature vector φ(h, l).

4.2.3 Logistic Regression

When predicting each pixel individually and using the block decomposition, the set

of training examples becomes

T :=
{(
h, l, t

)
∈ H ×D/k × {0, 1} : t = I[l∈C(h)]

}
, (4.3)

where D/k stands for the set of representatives in the k block contingent regions,

i.e. locations (x, y) ∈ D for which fk(x) = x and fk(y) = y.

The training set above can easily be constructed from a given set of histories

H. The next step is to learn a model of the contingent regions; this is done by

fitting a parametrized logistic regression model to the training set and finding an

2While each pixel can be uniquely encoded using 7 binary features, the form of encoding used
here is better simplifies model learning using logistic regression.
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ıa,bx,y(ot)

ıa,bx,y(ot−1)

ot
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binary 
features
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1

0
0

0
1

Figure 4.4: Process for generating the binary feature vectors representing pixel
neighbourhoods. Each pixel is ultimately encoded using one of 129 binary features,
including one feature indicating the out-of-bounds colour.

approximate maximum likelihood solution. Under this logistic model, the likelihood

that a pixel at location l ∈ D is part of Bk(h) is p(l |h; w) := σ
(
wTφ(h, l)

)
, where

w ∈ Rm is a vector of weights, σ(x) := (1 + exp(−x))−1 is the logistic function and

φ(h, l) is the feature vector described above. The logistic function was chosen here

because it outputs a probability-like quantity and for its ease of use in the presence

of many, redundant features. Given a set of training points T of the form specified

by Equation 4.3, the likelihood of the observed data under the logistic model is

p(T ; w) :=
∏

(h,l,t)∈T

p(l |h; w)t(1− p(l |h; w))1−t. (4.4)

Equation 4.4 can be maximized by minimizing the cross entropy error function3

E(w) := − log(p(T ; w)), which upon rearranging and simplifying becomes

E(w) := −
∑

(h,l,t)∈T

[
t log p(l |h; w) + (1− t) log

(
1− p(l |h; w)

)]
.

Stochastic gradient is used to minimize E(w) in order to avoid keeping the entire

training set in memory. For the kth training example (hk, lk, tk) ∈ T , this yields the

update equation

wk ← wk−1 + η
[
tk − σ

(
wT
k−1Φlk(hk)

)]
φ(hk, lk) ,

where η ∈ R is a step-size parameter.

3The cross entropy error function is the matching loss for the logistic function(Auer et al., 1995).
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4.2.4 The Pixel Colour Change Model

Although Equation 4.1 gives a natural criterion for detecting contingent regions with

a probabilistic pixel colour model, learning such a model over the full 7-bit Atari

colour space requires a prohibitive number of samples. Instead, an acceptable level

of accuracy can be achieved by predicting whether a pixel changes colour rather

than predicting the colour to which it changes. In effect, this reduces learning a full

pixel colour model (the T̃ ax,y term) to learning a binary predictor. This also reduces

the number of summands needed to compute the symmetrized KL divergence by a

factor of 26. The pixel colour model is otherwise learned in the same fashion as the

contingent region model, using logistic regression and stochastic gradient descent.

4.2.5 Model Learning Results

I studied how well contingent region models could learn to predict the contingent re-

gions across all games, in both oracle (Definition 4.1.1) and online (Definition 4.1.2)

settings. In the oracle setting I constructed the training set using the emulator’s

load/save state functions. In the online setting I first trained a pixel colour change

model, then generated the training set using a KL divergence test.

In both settings, a time step corresponds to five frames. Training data was gen-

erated by sampling game situations that occurred near a human-provided trajectory.

I played each game for at least two minutes and recorded the resulting trajectory.

These trajectories do not constitute expert trajectories, but rather help provide rep-

resentative coverage of the histories. Hybrid trajectories were then constructed by

following the human-provided trajectory for a uniformly random number of steps

and then taking 300 additional, uniformly random actions. Pixel colour change

models were learned from 2,000,000 samples. Predictors for both settings were then

trained on 200,000 samples. The divergence threshold parameter in Equation 4.1

was set to δ = 4.0.

Table 4.1 reports relevant statistics for the learned models, while Figure 4.5

compares the ground truth block decomposition to sample predictions made by

both models. A model’s accuracy is the average proportion of pixels that it cor-

rectly labels. Precision is the average fraction of pixels labelled by the model as

part of C(h) which actually are under the agent’s control. Recall is the average

fraction of pixels in the contingent regions which are labelled as such by the model.

Of note, the oracle learning procedure yielded a highly accurate model; the low
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Accuracy Precision Recall
Offline Online Offline Online Offline Online

Mean 0.969 0.919 0.396 0.217 0.573 0.356
Min. 0.800 0.365 0.016 0.000 0.000 0.000
Max. 1.000 0.998 0.769 0.836 0.985 0.985

Table 4.1: Prediction statistics for the learned contingent region models. Each
model was learned once; minimum and maximum reflect prediction accuracy across
the 51 games.

precision and recall values can be explained by the use of the block decomposition

(Section 4.2.1). In practice, the contingent regions predictor correctly identified the

contingent regions surrounding important, controllable objects. Block decomposi-

tion yields results that are sufficiently accurate for many purposes, including avatar

tracking (described below in Section 4.3), even though it cannot precisely capture

the boundaries of the contingent regions. The accuracy of the online learning pro-

cedure varied widely across games. While the pixel change models were generally

accurate, no single value of δ provided a good approximation of the contingent re-

gions (Equation 4.1) for all games: Space Invaders worked best with δ = 0.1,

while Beam Rider required δ = 10.0. The online results of Table 4.1 reflect the

choice of δ = 4.0 as a compromise, which resulted in false positives in Beam Rider

and Seaquest and predicted contingent regions in Space Invaders.

4.3 Tracking the Player Avatar

The contingent region model described in the previous section does not directly lead

to improved agents. It does, however, provide us with key information about the

domain. In most Atari 2600 games, the player controls an avatar: a chicken, a plane,

or a superhero. This section presents an algorithm that uses a learned contingent

region model to track the location of this avatar. Here I assume that such an avatar

• exists,

• moves smoothly, and

• generates large, contiguous contingent regions in its neighbourhood.

The algorithm is a standard Bayes filter (Russell and Norvig, 2003) with the

following components:
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Figure 4.5: From left to right: contingent regions ground truth B5(h); predictions
from the model learned in the oracle setting; predictions from the model learned in
the online setting.
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• a truncated Gaussian motion model,

• a Gaussian observation model, and

• a prior over the player location.

In what follows, (xt, yt) denotes the (unobserved) player avatar location, with

µt(x, y) := Pr(xt = x, yt = y) and a uniform prior µ0(x, y) = (dwdh)−1, where

dw = 160 and dh = 210 denote the screen width and height, respectively. I first

describe tracking for when the true contingent regions C(ht) are observed, and then

describe how to adapt it to use predictions from the contingent region model of the

previous section.

4.3.1 Motion Model

Let rm ∈ N be a radius parameter. The truncated motion model M : Z×Z→ [0, 1]

is defined as

M(∆x,∆y) :=

{
1
Z exp−(∆2

x+∆2
y)/2 if − rm ≤ ∆x,∆y ≤ rm

0 otherwise

where Z is an appropriate normalizing constant so that
∑

∆x

∑
∆y
M(∆x,∆y) = 1.

The motion posterior µ′t is then defined as

µ′t(x, y) :=


dw−1∑
x′=0

dh−1∑
y′=0

M(x− x′, y − y′)µt−1(x′, y′) if 0 ≤ x < dw, 0 ≤ y < dh

0 otherwise

(4.5)

Note that in the formulation above, the motion model is independent of the

action taken. Although a more natural model might involve shifting the probability

mass left when the agent presses left, and similarly with the other directions, this

approach fails in games where the range of motion is restricted, such as Space

Invaders. The need for a more agnostic motion model is an example of the difficulty

in designing domain-independent Atari 2600 agents.

4.3.2 Observation Model

Within our Bayes filter an observation corresponds to a labelling of each pixel as

belonging or not to the contingent regions, similar to the labelling r used to describe

the training set of Equation 4.2. Let ct(x, y) ∈ {0, 1} denote the noisy observation
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that (x, y) ∈ C(ht), and let ct ∈ {0, 1}dw×dh be the noisy observation of the whole

contingent regions. Separating the true underlying contingent regions C(ht) from its

observation ct is necessary to avoid computing a degenerate posterior, and will later

allow us to interpret the output of the contingent region model as a probability.

We make the assumption that each location is independently observed, and that

ct(x, y) = 1 is more likely in pixels close to the avatar location:

Pr(ct|xt, yt, C(ht)) :=
∏

0≤x<dw

∏
0≤y<dh

Pr(ct(x, y)|xt, yt, C(ht))

Pr(ct(x, y) = 1|xt, yt, C(ht)) := O(x− xt, y − yt)

Pr(ct(x, y) = 0|xt, yt, C(ht)) := 1−O(x− xt, y − yt)

with

O(∆x,∆y) :=

{
1
Z exp−(∆2

x+∆2
y)/c if − ro ≤ ∆x,∆y ≤ ro

0 otherwise

where ro ∈ N is a radius parameter, Z is a normalizing constant and c ∈ R is a

width parameter (empirically c = 5 was found to give good tracking performance).

While c effectively determines ro, the latter is made explicit to emphasize the need

for a fast tracking algorithm; in the experiments below ro = 7.

4.3.3 Belief Update

We combine the observation model and the motion posterior to obtain µt(x, y), the

posterior distribution over the avatar location at time t given C(ht), C(ht−1), . . . :

µt(x, y) :=
1

Z
µ′
t(x, y)

∏
x′,y′

[
O(x− x′, y − y′)I[(x′,y′)∈C(ht)](1−O(x− x′, y − y′))I[(x′,y′)/∈C(ht)]

]
,

(4.6)

where Z is again a normalizing constant so that
∑

0≤x<dw

∑
0≤y<dh

µt(x, y) = 1. The full

belief update proceeds as follows:

1. Observe C(ht),

2. Compute µ′t(x, y) as per Equation 4.5, then

3. Compute µt(x, y) as per Equation 4.6.
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4.3.4 Belief Update with the Contingent Regions Model

In practice, the contingent region model produces the probability Pr((x, y) ∈ C(ht)|ht),

rather than an actual observation C(ht). Although sampling C(ht) from this proba-

bility distribution would allow us to update µt(x, y) using Equation 4.6, the following

shows that it is also possible to directly use σt(x, y). Let σt(x, y) ∈ (0, 1) denote

the output4 of the contingent region model σ for location (x, y), interpreted as a

probability:

Pr((x, y) ∈ C(ht)|xt, yt, σ) := σt(x, y)

We now recover the observation ct ∈ {0, 1}dw×dh from the assumed independence

of the ct(x, y) terms:

Pr(ct|xt, yt, σ) =
∑
C(ht)′

Pr
(
ct|xt, yt, C(ht)

′)Pr
(
C(ht) = C(ht)

′|xt, yt, σ
)

=
∏

0≤x<dw

∏
0≤y<dh

[
Pr
(
ct(x, y)|xt, yt, (x, y) ∈ C(ht)

)
Pr
(
(x, y) ∈ C(ht)|xt, yt, σ

)
+

Pr
(
ct(x, y)|xt, yt, (x, y) /∈ C(ht)

)
Pr(
(
(x, y) /∈ C(ht)|xt, yt, σ

)]
=

∏
0≤x<dw

∏
0≤y<dh

[
Pr
(
ct(x, y)|xt, yt, (x, y) ∈ C(ht)

)
σt(x, y) +

Pr
(
ct(x, y)|xt, yt, (x, y) /∈ C(ht)

)
(1− σt(x, y))

]
,

where C(ht) denotes the true, unobserved contingent regions and the second line

follows from the binomial expansion (there are 2dw×dh possible contingent regions

C(ht)
′). We obtain the belief update equation

µt(x, y) :=
1

Z
µ′
t(x, y)

∏
x′,y′

[O(x− x′, y − y′)σt(x′, y′) + (1−O(x− x′, y − y′))(1− σt(x′, y′))] .

where Z is such that
∑

x,y µt(x, y) = 1.

4.3.5 Avatar Tracking Results

Quantitatively evaluating avatar tracking across a large set of games poses a chal-

lenge: obtaining a ground truth signal involves either a difficult, error-prone study of

4Recall that the sigmoid function σ(x) := (1 + exp(−x))1 takes values in (0, 1).
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the RAM contents for each game, or manually labelling tens of thousands of frames.

Here, I instead provide some qualitative tracking results.

Figure 4.6 depicts nine frames for both Seaquest and Beam Rider. Each frame

shows the predicted contingent regions, as well as the estimated avatar location. In

both cases, the Bayes filter closely tracks the avatar. In Beam Rider, there are in

fact two contingent regions: the space ship and the missile (top-right corner). Here,

the Bayes filter naturally selects the largest contiguous contingent region.

Even when the contingent region model predicts well, avatar tracking can be

nontrivial. The following three examples illustrate the difficulties in tracking based

on contingent regions. In Asterix (Figure 4.7, top) the player’s lives are correctly

labelled as part of the contingent regions. Here the issue is that controllable portions

of the screen generate large, contiguous contingent regions unrelated to the avatar.

In Kung-Fu Master (Figure 4.7, middle), the situation is different. Kung-Fu

Master belongs to a genre called scrollers, where the whole background shifts with

the avatar’s motions. As depicted, the tracking mechanism fails when the left and

right actions are applied. Another, subtler issue arises in Alien (Figure 4.7, bot-

tom): the player’s location on the screen determines the colour of other objects

(pebbles and monsters). These and similar issues indicate that avatar tracking via

the notion of contingency awareness is necessarily imperfect. However, anecdotal

evidence suggests the avatar tracking mechanism degrades gracefully rather than

catastrophically. In Alien, for example, the avatar is successfully tracked a frac-

tion of the time. As the next section will show, the learning agent can sometimes

compensate, for example by learning to stay still in Kung-Fu Master.

4.4 Feature Generation Methods

I now describe a way to provide the tracked avatar location to a learning agent in

order to improve its performance. Here I consider a reinforcement learning agent us-

ing linear value function approximation and SARSA(λ) (Section 2.1.2). The avatar

location is provided to the agent by extending the set of features it uses to learn

value functions in Atari 2600 games.

4.4.1 Basic

In his Master’s thesis, Naddaf (2010) proposed a simple way to generate features

for Atari 2600 games, called BASS. BASS encodes the presence of colour at various
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Figure 4.6: Avatar tracking in Seaquest and Beam Rider. The predicted contin-
gent regions is overlaid in white and the estimated location is indicated by the red
crosshairs.
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Figure 4.7: Three problematic games for avatar tracking. From top to bottom:
Asterix, Kung-Fu Master and Alien.
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Game Screen Background Foreground Basic Features

Figure 4.8: The Basic feature generation method. The background is first sub-
tracted; the resulting foreground is then divided into tiles and encoded as a binary
vector.

locations on the screen as a set of binary features, and also encodes all pairwise

combinations of these features. The Basic method, first introduced in the companion

paper to this chapter (Bellemare et al., 2012a), is a simplified version of BASS where

pairwise combinations are omitted.

Figure 4.8 summarizes the actual feature generation process. As a preprocessing

phase to the Basic method, the game’s background is extracted by taking, from a

small set of screen samples, the most frequently occurring pixel at each location.

The Basic method first subtracts the background from the current game screen.

The resulting foreground image is then divided into a × b tiles, a, b ∈ N. Finally,

the presence of each of the 128 colours in each tile is encoded as one large binary

vector. For a given observation o, ō denotes the foreground image

ō := {(x, y, c) : (x, y, c) ∈ o, c 6= bgx,y},

where bg ∈ O denotes the extracted background; the foreground ō is thus a subset

of the full observation. The term tile[(i, j, c)] denotes that tile (i, j) contains colour

c, formally

tile[(i, j, c)] :=

{
1 if ō ∩ {(x, y, c) : (x, y) ∈ la,bai,bj(o)} 6= ∅
0 otherwise

where la,bai,bj(o) is the set of locations corresponding to image patch pa,bai,bj(o) (Section

3.3). Recall that C is the set of possible colours, dw the screen width and dh the

screen height; assuming that a is a multiple of dw and b, a multiple of dh, there are

dw
a
dh
b |C| possible (i, j, c) tuples. Let f(i, j, c) := dw

a |C|j+ |C|i+ c be the unique index

describing the tuple (i, j, c) and f−1(k) its reverse mapping. The kth component of

the feature vector generated by the Basic method, φBasic, is defined as
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φBasick := tile[f−1(k)]

In other words, the Basic feature generation method provides a binary encoding

representing the presence of colours in the tiled foreground.

4.4.2 Extended

In many Atari 2600 games, the most relevant object relationship concerns the avatar

and other objects, for example when obstacles must be avoided. The Extended fea-

ture generation method focuses on this relationship by jointly encoding the location

of the player avatar (as determined by the tracking mechanism of the previous sec-

tion) and φBasic. Figure 4.9 depicts the two discretizations involved: the screen

is divided into a × b tiles by the Basic feature generation, and also divided into a

different set of c× d tiles when encoding the avatar location. Let L := |φBasic| be

the length of the Basic vector, and T := dw
c ×

dw
d be the number of possible loca-

tions output by the tracking mechanism. The vector generated by the Extended

method, φExtended, has length L× (T + 1), and consists in the concatenation of the

vector φBasic with T other vectors of the same length. Of these T vectors, exactly

one contains nonzero entries at any given time, corresponding to the current avatar

location. Formally, this vector is defined component-wise (with 0 ≤ k < L(T + 1))

as

φExtendedk :=


φBasick if 0 ≤ k < L

φBasick mod L if g(x, y) =
⌊
k−L
L

⌋
0 otherwise

(4.7)

where (x, y) is the estimated avatar location and g(x, y) := cx′ + y′ denotes the

indexing from avatar locations to a discretized tile index, with x′ :=
⌊
x
c

⌋
, y′ :=

⌊y
d

⌋
.

From Equation 4.7 it is clear that, when there are l non-zero features in φBasic, only

2l non-zero features are present in φExtended, a significant economy in comparison

to the O(l2) features generated by BASS.

4.4.3 MaxCol

The MaxCol feature generation method is a simplification of the Basic method

which does not depend on a background extraction step. Rather than performing

background subtraction to reduce the number of colours present in a tile, MaxCol
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Figure 4.9: The Extended feature generation method jointly encodes the discretized
foreground (left) and discretized avatar location (right).

only encodes the tile’s two most frequent colours. For a given a × b image patch

pa,bx,y(o), its two most frequent colours c1 and c2 are defined as

c1 := arg max
c∈C

|{(x, y, c) : (x, y, c) ∈ pa,bx,y(o)}|

c2 := arg max
c∈C\{c1}

|{(x, y, c) : (x, y, c) ∈ pa,bx,y(o)}|

Denote by ca,bx,y(o) the set of the two most frequent colours of patch pa,bx,y(o).

MaxCol generates a feature vector φMaxCol, formally defined as

freq[(i, j, c)] :=

{
1 if c ∈ ca,bai,bj(o)

0 otherwise

φMaxCol
k := freq[f−1(k)]

4.4.4 Extended MaxCol

The Extended MaxCol method jointly encodes MaxCol features and avatar location

using the same technique as the Extended method of Section 4.4.2:

φExt.MaxCol
k :=


φMaxCol
k if 0 ≤ k < L

φMaxCol
k mod L if g(x, y) =

⌊
k−L
L

⌋
0 otherwise

4.5 Empirical Study

The training games (Section 3.1.2) were used to design, test and parameterize the

feature generation methods above. All methods were subsequently evaluated on an
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Background Avatar Grid Number of
Subtraction Location Size Features

Basic X 16× 14 28,672
Extended X X 16× 14 2,867,200
MaxCol 32× 30 122,880
Extended MaxCol X 32× 30 12,288,000

Table 4.2: Overview of the feature generation methods described in this chapter.

additional 46 games, listed in Appendix B. The aim of the empirical evaluation was

twofold:

1. To investigate the benefits of providing the avatar location to learning agents,

and

2. To compare the performance of agents using either the oracle or online models.

Table 4.2 summarizes the differences between the feature sets. Each game’s

background was precomputed offline, using a sample trajectory containing 18,000

observations from a uniformly random policy. Across feature generation methods,

the avatar location was divided into a 10× 10 grid.

4.5.1 Reinforcement Learning Setup

Agents were trained using the SARSA(λ) reinforcement learning algorithm. The

value function was approximated using linear approximation with one of the four

feature sets of Section 4.4. The agent followed the ε-greedy policy (Sutton and

Barto, 1998), which takes uniformly random exploratory actions with probability ε

and otherwise chooses the action estimated to have the highest value.

The discount factor was set to γ = 0.999, the eligibility trace parameter λ = 0.9

and the exploration rate ε = 0.05. These values were chosen through brief empirical

experimentation. The learning rate αt was set to αt := α
maxt ‖φ(st,at)‖0 , where α is a

user-specified constant and ‖φ(st, at)‖0 is the number of non-zero features at time

t; this method is a heuristic for selecting α when the size of the feature vector is not

known ahead of time. The constant α was tuned for each specific feature generation

method by using parameter sweeps over the training games. The best values were

0.2, 0.1, 0.5, 0.5 for Basic, MaxCol, Extended and Extended MaxCol respectively.

Note that these values are not directly comparable since ‖φ(st, at)‖0 depends on the

feature generation method and the particular game being played.
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Figure 4.10: Average score over the last 500 episodes for each of the training games.
Each result is an average over 30 trials; error bars show 99% confidence intervals.

4.5.2 Training Evaluation

I first evaluated the different methods on the training games. Each feature set was

tested using 30 independent trials per game. Each trial consisted in training the

agent on a particular game for 10,000 episodes, each lasting up to 18,000 frames. A

time step from the agent’s perspective corresponds to five frames, during which the

selected action is repeated. The performance within a trial was obtained by taking

the average score obtained during the last 500 episodes of training. The reported

overall performance estimate is the average performance across all 30 trials.

The results obtained on the training games are shown in Figure 4.10. Extended

performs statistically better than Basic on 4/5 games, while Extended MaxCol per-

forms better than MaxCol on 3/5 games and worse on Asterix. These results

illustrate the advantage of using contingency awareness. It was also observed (not

shown here) that the performance of Basic agents reached a plateau within 10,000

episodes. In contrast, for Asterix, Beam Rider and Space Invaders, agents

using Extended were still learning at the end of the trial. In Asterix the lower

performance of Extended MaxCol is likely a consequence of the agent controlling

the appearance of the remaining lives icons, as discussed in Section 4.3.5; despite

this imperfect tracking, the benefits of encoding the avatar location is sufficient to

allow Extended to outperform Basic in Asterix. All learning agents perform better

than the random policy.
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Figure 4.11: Left. Baseline score distribution. Right. Inter-algorithm score dis-
tribution. Each line indicates the fraction of testing games that achieve a score at
least as high as the value on the x axis.

4.5.3 Testing Evaluation

The feature generation methods were next evaluated across forty-six games from

the test set, using the same experimental setup as for the training games. I report

the results using score distributions (described in Section 3.2); these distributions

exclude the training games.

Figure 4.11 (left) depicts the baseline score distribution for all four feature sets.

The graph demonstrates that learning took place: all methods achieve a score of

at least 1.0, representing the score of the best baseline policy, in a majority of

games. Furthermore, for games where learning occurred, incorporating contingency

information led to improvements in performance.

The differences observed in the baseline score distribution become clearer when

considering the inter-algorithm score distribution (Figure 4.11, right). Here, Ex-

tended performs better than Basic, and Extended MaxCol performs better than

MaxCol. In particular, Extended achieves the highest score on nearly half of the

games.

I also computed the proportion of testing games for which the extended methods

provide a statistically significant (non-overlapping 99% confidence intervals) advan-

tage. Extended did better than Basic in 17 games and worse in 7, while Extended

MaxCol did better than MaxCol in 22 games and worse in 6. These results highlight

the benefits of using contingency information for feature construction.
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4.5.4 Online Contingency Learning

I next compared agents using the online contingent region model to agents using

the oracle contingent region model. Figure 4.12 shows the baseline score distribu-

tions for all algorithms. Across the 46 testing games, the online Extended MaxCol

method showed significant improvements over MaxCol, while the online Extended

method did no better than Basic. Unsurprisingly, the methods using the oracle con-

tingent region model performed better than their online counterparts. As discussed

in Section 4.2.5, the single choice of divergence threshold led in many cases to a loss

of accuracy in the contingent regions predictor, which made it difficult to track the

player avatar. One possible explanation for the lack of improvement in Figure 4.12

is that the Basic feature set is sufficiently rich to handle many situations without

the need for the avatar location, in contrast to the impoverished MaxCol feature

set.

All six methods were also compared using inter-algorithm scores, as shown in

Figure 4.13. A single score range computed from all six algorithms was used for

normalization. Extended MaxCol with the online contingent region model outper-

formed MaxCol, but did not achieve the performance level of the offline method.

The online Extended method rarely achieved the best score for a game, as indicated

by the low fraction of games for which its inter-algorithm score is 1.0; across all

games it performed roughly the same as the Basic method.
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4.5.5 Discussion

The empirical results above provide evidence towards the validity of using contingent

regions to improve the performance of reinforcement learning agents. On the other

hand, the less-than-ideal performance of the online contingent region model suggests

the need for a different approach to the no-reset, stochastic setting; such an approach

would need to improve both the learning of its colour distribution models and the

subsequent comparison of the output colour distributions.

4.6 Conclusion

In this chapter I proposed a formalization of the notion of contingency awareness.

In turn, I described algorithms for

• Learning a contingent region model,

• Tracking the avatar location using the output of such a model, and

• Extending a feature generation method for Atari 2600 games using the avatar

location.

These algorithms were then put together into a reinforcement learning agent

that learned to play arbitrary Atari 2600 games. As with any architecture, this

approach is only as strong as its weakest link; thus, the decrease in accuracy when

using the online contingent region model leads to a decrease in agent performance.
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Furthermore, avatar tracking from the output of a contingent region model is only

meaningful if the model output reflects the presence of an avatar; this assumption

is violated in side-scroller games and games with a three-dimensional perspective.

Despite these limitations, the empirical results of Section 4.5 suggest the benefits of

contingency-based feature generation for many Atari 2600 games.

Beyond the Atari 2600, the notion of contingency awareness naturally extends

to domains in which the observation space is factored (Degris et al., 2006). It also

seems plausible that contingency awareness could be useful for option discovery,

for example by restricting option policies to only use contingent regions as state

information.

The main failure of this chapter is perhaps the sub-par performance of the on-

line contingent region model. In Chapter 6 I describe the quad-tree factorization

(QTF) algorithm, which can learn forward models of Atari 2600 games and could be

used to improve the online contingent region model. As QTF implicitly learns both

action-conditional and action-independent models (through variable length predic-

tion contexts) it could be extended to answer the question: is this pixel affected by

the agent’s choice of action? This idea may be investigated in future work.

4.7 Related Work

Although the notion of contingency awareness presented in this chapter is novel, the

idea of exploiting a sense of location has been studied from various angles. Closest

is the work of Hausknecht et al. (2012), where the self is identified in preprocessed

Atari 2600 frames using an information gain approach. This approach differs from

the contingency awareness-based detection of avatars: it relies on an object detec-

tion step whose purpose is to label important pixels according to the object class to

which they belong. While object detection simplifies feature generation and plan-

ning, it is in general a complex problem to which we still lack an error-free solution.

Leffler et al. (2007) studied the relocatable action model formalism, in which the

effect of actions are grouped into types. Effectively, this allows faster learning of

environment models by assuming invariance, such as translation invariance, in the

transition function. Relocatable action models can be used to encode a form of

agent egocentrism similar to contingency awareness, but learning such a model re-

quires knowing additional domain knowledge. An interesting, but computationally

expensive approach by Bowling et al. (2006) to the problem of map learning also
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explicitly considers action invariance across states.

While the definition of contingency awareness (Definition 4.1.1) is not tied to

feature generation, it is chiefly for this purpose that it is used in this chapter. The

term lifelong learning (Thrun and Mitchell, 1993) describes the idea of an agent

accreting knowledge of its world, often in the form of a set of features or rep-

resentation, through a long period of undirected interactions with its environment.

Greedy feature construction approaches were investigated within the context of con-

nectionist function approximation and partially observable grid worlds (Ring, 1997)

and continuous-sensor robotic domains (Pierce and Kuipers, 1997). More recently,

Oudeyer et al. (2007) proposed an approach wherein the agent explores its envi-

ronment through an objective function based on learning improvement; the agent

then partitions its observation space based on differences in sensor predictions. Sto-

ber and Kuipers (2008) similarly studied learning an agent’s high-level environment

representation from raw sensors in the context of a Pong clone. An alternative

approach to the question of lifelong learning, laid out in the work of Sutton et al.

(2011), studies how an agent can gain knowledge about its environment by simulta-

neously learning a myriad of prediction problems. This approach seems particularly

promising as it explicitly seeks to obtain a general representation of the agent’s en-

vironment, similar to the objectives of deep learning algorithms (Bengio, 2009). The

contingency awareness approach is more restricted in scope than lifelong learning,

and so perhaps more easily implemented for new domains.

Another interesting line of research is the design of algorithms that explicitly seek

features that improve an agent’s return. The U-Tree algorithm (McCallum, 1995)

progressively expands a tree-based value function based on statistical differences

in expected return; the parti-game algorithm (Moore and Atkeson, 1994) similarly

decomposes the continuous state space of deterministic environments into variable

resolution partitions using a cost-to-goal objective function. The Bellman error

(Williams and Baird, 1993) has been used in a variety of way to generate features:

Menache et al. (2005) used it in conjunction with gradient descent-based algorithms

to optimize radial basis functions, Keller et al. (2006) constructed basis functions

using neighborhood component analysis, and Parr et al. (2007) also constructed

basis functions for linear approximation and provided theoretical guarantees for

their approach. While contingency awareness does not rely on the agent’s return, it

is often the case that the components of the observation directly under the agent’s
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control, in particular the avatar location, strongly determine reward.
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“Stability,” said the Controller. “stability. No civilization without social
stability. No social stability without individual stability.”

Brave New World
Aldous Huxley

Chapter 5

Tug-of-War Linear Value
Function Approximation

The quality of policies obtained through linear value function approximation (Sec-

tion 2.1.3) depends on the quality of the features used in the approximation. De-

signing good features for a particular application is usually time-consuming, and

the resulting features can rarely be transferred to new domains. An alternative

approach is to exhaustively generate many features through a set of simple rules,

and then perform feature selection or dimensionality reduction. Such a set of rules

may, for example, enumerate all k-wise combinations of boolean predicates. Many

successful applications of linear value function approximation have implicitly relied

on this approach. Tile coding, a canonical example of exhaustive feature gener-

ation for continuous-state reinforcement learning, jointly encodes quantized state

variables. Tile coding has been applied to standard benchmark domains (Sutton,

1996), to learn to play keepaway soccer (Stone et al., 2005), in multiagent robot

learning (Bowling and Veloso, 2003), to train bipedal robots to walk (Schuitema

et al., 2005; Tedrake et al., 2004) and to learn mixed strategies in the game of Goof-

spiel (Bowling and Veloso, 2002). In the game of Go, Silver et al. (2007) obtained

good features by enumerating all stone patterns up to a certain size; Sturtevant

and White (2006) similarly produced promising results for Hearts by using a feature

generation method that enumerated all 2-, 3- and 4-wise combinations of a set of

atomic features.

Because exhaustive feature generation often generates more features than can

reasonably stored in memory, features generated this way are usually hashed to a

A version of this chapter has been published and presented at the Neural Information Processing
Systems Conference (Bellemare et al., 2012b).
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smaller vector. The traditional approach in reinforcement learning is to tightly cou-

ple hashing with feature generation and consider hashing as part of the generation

process, rather than as part of the approximation process. Such a tight coupling

ignores the potentially harmful effects of hashing; in typical hashed tile coding, for

example, the inner product of two feature vectors is a biased estimate of the inner

product between the original (unhashed) vectors. In other words, hashing as it is

usually used in reinforcement learning is an unaccounted-for source of error in the

value function approximation process.

Recent advances in sketch data structures (e.g. Achlioptas, 2003; Cormode and

Muthukrishnan, 2005) and in the study of sparse Johnson-Linderstrauss transforms

(Dasgupta et al., 2010; Kane and Nelson, 2010) have produced new algorithms and

theoretical support for hashing techniques. One such sketch, the tug-of-war sketch1

(Cormode and Garofalakis, 2005), leads to unbiased inner products; its computa-

tional simplicity is particularly well-suited to linear value function approximation.

The aim of this chapter is to describe tug-of-war hashing, based on its namesake

sketch, as an alternative to the standard hashing used in feature generation for re-

inforcement learning. This chapter provides a bound on the approximation error of

SARSA(1) with tug-of-war hashing, and a number of empirical results showing the

superior performance of tug-of-war hashing over standard hashing.

This chapter is divided as follows. Section 5.1 describes previous theoretical

results on hashing and sketches necessary to the rest of the chapter. Section 5.2

then provides notation relevant to hashing in the context of linear value function

approximation. Following this, Section 5.3 gives the main theoretical result of the

chapter: the convergence of SARSA(1) with tug-of-war hashing. Finally, in Section

5.4 I describe a series of experiments comparing standard hashing and tug-of-war

hashing, first considering small benchmark problems before moving on to value

function approximation in Atari 2600 games.

5.1 Background

In this section I review the prior work on which this chapter’s contribution is built.

1Another popular name for the tug-of-war sketch is Fast-AGMS, derived from the initials of the
inventors of its predecessor, the AGMS sketch.
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5.1.1 Universal Families of Hash Functions

Let [n] := {1, 2, . . . , n} ⊂ N. A hash function h : [n]→ [m] maps elements from [n]

to [m] in constant time; typically, n � m. I denote by H(n,m) a family of such

functions, and omit the arguments to H(n,m) whenever unambiguous. H is said to

be a universal family of hash functions if, drawing h uniformly at random from H

we have

P (h(i1) = h(i2)) =
1

m

for all i1, i2 ∈ [n], i1 6= i2 (Carter and Wegman, 1979). A pairwise independent

universal family offers a stronger guarantee: for all i1, i2 ∈ [n], i1 6= i2 and k1, k2 ∈

[m], we have

P (h(i1) = k1, h(i2) = k2) ≤ 1

m2
. (5.1)

The notion of pairwise independence similarly generalizes to k-wise indepen-

dence, for any integer k ≤ n; for all integers l < k, a k-wise independent family is

also l-wise independent. When H(n,m) is a n-wise independent universal family,

we call it a ∞-wise independent family, or more simply an independent universal

family.

The notion of k-wise independence arises in the computation of h(a). In this

thesis I use the H2 class2 introduced by Carter and Wegman (1979). Let p > n be a

prime number and two integers a, b ∈ {0, 1, 2, . . . , p − 1}. Define the hash function

ha,b(i) : [n]→ [m] as

ha,b(i) := ai+ b mod p mod m.

In their work, Carter and Wegman showed that the family H2 := {ha,b : a, b ∈

{0, 1, 2, . . . , p − 1}} is pairwise independent. That is, drawing a hash function uni-

formly at random from the set H2 satisfies Equation 5.1. Similarly, the hash function

ha,b,c,d(i) := ai3 + bi2 + ci+ d mod p mod m

leads to a 4-wise independent family of hash functions; this family is denoted H4 :=

{ha,b,c,d : a, b, c, d ∈ {0, 1, 2, . . . , p− 1}}.
2Carter and Wegman denoted this family as H1, but here I use the subscript to denote the

number of terms in the hash function polynomial.
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5.1.2 The Tug-of-War Sketch

The tug-of-war sketch was developed to approximate inner products of large vectors

(Cormode and Garofalakis, 2005). The name “sketch” refers to the data structure’s

function as a summary of a stream of data. As with other sketches (Cormode

and Muthukrishnan, 2005; Nelson and Woodruff, 2010), the tug-of-war sketch has

two components: a hashing procedure, which maps elements to a hash table, and

a duplication procedure, which ensures a high-probability bound on the resulting

approximation.

In the canonical sketch setting, a large count vector θ ∈ Rn is summarized

using a sketch vector θ̃ ∈ Rm. At each time step a vector φt ∈ Rn is received;

the purpose of the sketch vector is to approximate the count vector θt :=
∑t

i=1 φi.

Given h : [n]→ [m] drawn from a pairwise independent family and ξ : [n]→ {−1, 1}

drawn from a 4-wise independent family, the tug-of-war sketch maps φt to a vector

φ̃t whose ith component φ̃t,i is defined as

φ̃t,i :=

n∑
j=1

I[h(j)=i]φt,jξ(j), (5.2)

where φt,j is the jth component of the original vector. Throughout this chapter,

this operation is referred to as tug-of-war hashing. Intuitively, the hash function

h encodes which of the m buckets the jth feature is hashed to, while ξ indicates

whether to add or subtract feature φt,j from the bucket. Using matrix notation,

Equation 5.2 becomes

φ̃t := Hφt

where H ∈ {0,±1}m×n is the tug-of-war hashing matrix whose elements are defined

as Hij := I[h(j)=i]ξ(j).

Let θ̃t :=
∑t

i=1 φ̃i. For an arbitrary φ ∈ Rn and its corresponding vector φ̃ ∈ Rm,

we have

Eh,ξ[θ̃t · φ̃] = θt · φ.

In other words, the tug-of-war sketch produces unbiased estimates of inner prod-

ucts. The proof relies on the following property of the ξ function:
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Eξ[ξ(j1)ξ(j2)] =

{
1 if j1 = j2
0 otherwise

(by pairwise independence) (5.3)

Now, consider that θ̃ =
∑t

i=1 φ̃i, and consider an arbitrary φt′ , where the index

t′ is used solely for ease of notation. Then θ̃t · φ̃t′ =
∑t

i=1 φ̃i · φ̃t′ and

Eh,ξ[φ̃i · φ̃t′ ] = φTi H
THφt′

= Eh,ξ

 n∑
j1=1

n∑
j2=1

I[h(j1)=h(j2)]φi,j1φt′,j2ξ(j1)ξ(j2)


=

n∑
j1=1

n∑
j2=1

Eh
[
I[h(j1)=h(j2)]

]
Eξ [ξ(j1)ξ(j2)]φi,j1φt′,j2

=

n∑
j=1

φi,jφt′,j = φi · φt′ .

The proof stems from the independence of h and ξ and Equation 5.3. The

tug-of-war sketch stores a number of sketch vectors θ̃1, θ̃2, . . . , constructed from k

independently drawn matrices H1, . . . ,Hk. The dot product θt ·φt′ is then estimated

as the median of the set of dot products {θ̃it · φ̃it′}, where φ̃it′ := Hiφt′ and i ∈ [k].

This enables us to derive a high probability bound on the sketch’s approximation

error.

5.1.3 Johnson-Lindenstrauss Transforms

A Johnson-Linderstrauss transform maps a set of points in Rn to a smaller space

Rm while preserving distances between points (Achlioptas, 2003). The Johnson-

Linderstrauss lemma (Frankl and Maehara, 1988) states the existence of such a

transform for any set of vectors:

Lemma 5.1.1 (Johnson-Linderstrauss). Given ε > 0, m,n, k ∈ N such that m ≥

O(ε−2 log k), for every set P of k vectors in Rn there exists a mapping f : Rn → Rm

such that for all x, y ∈ P ,

(1− ε) ‖x− y‖22 ≤ ‖f(x)− f(y)‖22 ≤ (1 + ε) ‖x− y‖22

A variety of Johnson-Linderstrauss transforms have been proposed (Achlioptas,

2003; Maillard and Munos, 2009; Li et al., 2006; Kane and Nelson, 2010). A common

Johnson-Linderstrauss transform is the random projection (Indyk and Motwani,
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1998). Given a set of vectors P := {x1, x2, . . . , xk}, let R ∈ Rm×n be a matrix

whose elements are drawn from N (0, 1), the standard normal distribution. The

random projection of xi is Rxi, and R is a Johnson-Linderstrauss transform in the

sense that if m ≥ O(ε−2 log n
δ ) then for any xi, xj ∈ P , with probability 1 − δ we

have

(1− ε) ‖xi − xj‖22 ≤ ‖Rxi −Rxj‖
2
2 ≤ (1 + ε) ‖xi − xj‖22

5.1.4 Tug-of-War Hashing as a Johnson-Linderstrauss Transform

The theoretical contribution of this chapter relies on interpreting tug-of-war hashing

as a particular form of Johnson-Linderstrauss transform. As discussed in Section

5.1.2, tug-of-war hashing can be described using a matrix H whose elements are

the composition of the two hash functions h and ξ. Unlike the random projection

matrix R, whose elements are drawn i.i.d., the elements of the columns of H are not

i.i.d.: Hi,j = 1 =⇒ Hi,k = 0 ∀k ∈ [n], k 6= j. Despite this difference, tug-of-war

hashing is, under certain conditions, a Johnson-Linderstrauss transform. This result

is formally stated in the following theorem:

Theorem 5.1.1 (Dasgupta et al. (2010), Theorem 2). Let h : [n] → [m] and

ξ : [n] → {−1, 1} be two independent hash functions chosen uniformly at random

from ∞-universal families and let H ∈ {0,±1}m×n be a matrix with entries Hij =

I[h(j)=i]ξ(j). Let ε < 1, δ < 1
10 , m = 12

ε2
log
(

1
δ

)
and c = 16

ε log
(

1
δ

)
log2

(
m
δ

)
. For any

given vector x ∈ Rn such that ‖x‖∞ ≤
1√
c
, with probability 1 − 3δ, H satisfies the

following property:

(1− ε) ‖x‖22 ≤ ‖Hx‖
2
2 ≤ (1 + ε) ‖x‖22 .

Theorem 5.1.1 states that, under certain conditions on the input vector x, tug-of-

war hashing approximately preserves the norm of x. When δ and ε are constant, the

requirement on ‖x‖∞ can be waived by applying Theorem 5.1.1 to the normalized

vector u = x
‖x‖2

√
c
.

5.2 Notation

Before providing the main theoretical result of this chapter – the convergence of

SARSA(λ) with tug-of-war hashing – I first provide the notation needed to describe

the role of hashing in linear value function approximation.
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5.2.1 Standard Hashing

Recall that φ : S × A → Rn maps state-action pairs to feature vectors, and that

the value function Qπt (s, a) is approximated as θt · φ(s, a). With standard hashing,

the feature vector φ(s, a) ∈ Rn is reduced to a smaller vector φ̂(s, a) ∈ Rm using

a hash function h : [n] → [m]. Let Ĥ ∈ Rm×n be a matrix whose elements are

Ĥi,j := I[h(j)=i]. The standard hashing feature vector φ̂ is defined as:

φ̂(s, a) := Ĥφ(s, a)

By contrast to tug-of-war hashing, the entries of the standard hashing matrix Ĥ

are not multiplied by ξ(j). This form of hashing has been successfully used in many

reinforcement learning applications (Sutton, 1996; Stone et al., 2005; Schuitema

et al., 2005).

Let θ̂t be the weight vector representing the standard hashing approximation of

Qπ(s, a), θ̂t · φ̂(s, a). If φ(s, a) has k non-zero entries, computing θ̂t · φ̂(s, a) takes

O(k) operations: for each feature, one hash from [n] to [m] and one addition.

5.2.2 Tug-of-War Value Function Approximation

Tug-of-war hashing behaves in the same manner as standard hashing, with the

addition of the ξ hash function. Given the tug-of-war hashing matrix H described

in Section 5.1.2, the tug-of-war feature vector is defined as:

φ̃(s, a) := Hφ(s, a)

Similarly, the tug-of-war value function approximation is defined as Q̃t(s, a) :=

θ̃t · φ̃(s, a), where θ̃t is the tug-of-war weight vector. If φ(s, a) has k non-zero entries,

the additional cost of computing θ̃t · φ̃(s, a) rather than θ̂t · φ̂(s, a) is O(k). More

precisely, this is the cost of evaluating

ξ′(i) := ai3 + bi2 + ci+ d mod p mod 2 (5.4)

for every i ∈ [n] such that φi(s, a) 6= 0, with the multiplication φi(s, a)ξ(i) imple-

mented as an if/else statement over ξ′(i). In practice, Equation 5.4 can be efficiently

implemented using the decomposition ξ′(i) = d+ i(c+ i(b+ ia)) mod p mod 2 and,

on a 64-bit computer3, p = 231 − 1; the algorithm’s theoretical guarantees do not

3On 32-bit computers one may instead choose p = 213 − 1 or p = 217 − 1.
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depend on the particular choice of p. Overflow is avoided by applying the mod p

operation after every multiplication and, if necessary, providing i mod p as the input

to ξ.

5.3 Convergence of Tug-of-War SARSA(1)

Recall the SARSA(λ) update equations (Section 2.1.2). The equivalent tug-of-war

SARSA(λ) equations are

δ̃t ← rt + γθ̃t · φ̃(st+1, at+1)− θ̃t · φ̃(st, at)

ẽt ← γλẽt−1 + φ̃(st, at)

θ̃t+1 ← θ̃t + αδ̃tẽt. (5.5)

The aim of this section is to show that the tug-of-war SARSA(1)4 equations

converge to a solution, and to provide an upper bound on the approximation error

introduced by tug-of-war hashing. The point of reference in the upper bound is the

error of linear function approximation without hashing, i.e. when the full vector φ ∈

Rn is used to approximate Q(s, a). The first part of the proof, Lemma 5.3.1, applies

Theorem 5.1.1 to bound the error in the inner product between a set of vectors.

I then apply Theorem 2.1.1 to prove the convergence of tug-of-war SARSA(1); a

simple application of the triangle inequality and Lemma 5.3.1 yields the desired

bound. Of note, the bound provided here is somewhat tighter, as well as more

general, than the bound that was originally presented (Bellemare et al., 2012b).

Lemma 5.3.1. Let x1 . . . xK and y be vectors in Rn. Let H ∈ {0,±1}m×n with ε,

δ and m defined as in Theorem 5.1.1. With probability at least 1 − 3(K + 1)δ, for

all k ∈ {1, . . . ,K},

xk · y − ε|xk · y| ≤ Hxk ·Hy ≤ xk · y + ε|xk · y|.

Proof. The proof given here is an adaptation of the proof of Maillard and Munos

(2009), and involves studying the eigenvalues of H within the subspace spanned by

x1, . . . , xK and y. For notational simplicity, define xK+1 := y. Let X ∈ Rn×(K+1)

be the matrix whose columns are x1, . . . , xK+1:

4The proof technique used here does not seem to carry to the case of arbitrary λ ∈ [0, 1].
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X :=

 | . . . |
x1 . . . xK+1

| . . . |


Denote by C the subspace spanned by the columns of X and by C⊥ the corre-

sponding nullspace. Let p := rank(C) ≤ K+1 such that also rank(C⊥) = n−p, and

denote by c1, c2, . . . , cp an orthonormal basis for C; thus we can express any vector

xk, k = 1 . . .K + 1, as a linear combination xk =
∑p

i=1 αk,ici with αk,i ∈ R. Now

decompose H into two matrices H := H1 + H2 such that for all x ∈ C, H2x = 0

and for all x ∈ C⊥, H1x = 0. Effectively, the subspace spanned by the rows of H2 is

orthogonal to C and the subspace spanned by the rows of H1, orthogonal to C⊥. It

follows that HTH = HT
1 H1 +HT

2 H2. Now we apply Theorem 5.1.1 to c1, c2, . . . , cp:

with probability 1− 3pδ ≥ 1− 3(K + 1)δ, for every ci, i = 1 . . . p, we have

(1− ε) ‖ci‖22 ≤ ‖Hci‖
2
2 ≤ (1 + ε) ‖ci‖22

Because ci ∈ C, H2ci = 0 and ‖Hci‖22 = ‖H1ci‖22. The above equation can then

be expressed to highlight the eigenstructure of H1:

(1− ε)cTi ci ≤ cTi HT
1 H1ci ≤ (1 + ε)cTi ci,

thus guaranteeing that the largest eigenvalue of HT
1 H1 is at most 1 + ε and its

smallest eigenvalue, at least 1− ε. Because HT
1 H1 is symmetric, the eigenvalues of

HT
1 H1−I are similarly bounded between −ε and ε. We can then prove the statement

of the lemma. We rewrite the dot product Hxi ·Hxj as

Hxi ·Hxj = H1xi ·H1xj (by choice of H1)

= xTi H
T
1 H1xj

= xTi xj + xTi (HT
1 H1 − I)xj

≤ xTi xj + ε|xTi xj |

= xi · jj + ε|xi · xj |

The lower bound is derived from a similar argument, thus completing the proof.

Recall from Section 2.1.4 the matrix with rows φ(s, a), Φ ∈ R|S||A|×n. Here I

similarly denote by Φ̃ ∈ R|S||A|×m the matrix of tug-of-war feature vectors φ̃(s, a),
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such that Φ̃ := HΦ. I consider the case of SARSA(1) learning Qπ(s, a) for a given

policy π and MDP M = 〈S,A, P,R, γ〉. We make the following assumptions, of

which 1–3 are restated from Section 2.1.4:

Assumptions

1. The Markov chain induced by π and M is ergodic with unique stationary

distribution µ ∈ Dist(S ×A),

2. Φ has full column rank, i.e. there are no redundant features,

3. The step-sizes αt are positive, nonincreasing and predetermined; furthermore,∑∞
t=0 αt =∞ and

∑∞
t=0 α

2
t <∞,

4. Φ̃ has full column rank.

When the last assumption is not satisfied, SARSA(1) converges to a set of solu-

tions Θ̃π satisfying the bound of Theorem 5.3.1.

Theorem 5.3.1. Let M = 〈S,A, P,R, γ〉 be an MDP and π : S → Dist(A) be a

policy. Let Φ ∈ R|S||A|×n be the matrix of full feature vectors and Φ̃ ∈ R|S||A|×m

be the matrix of tug-of-war vectors. Denote by µ the stationary distribution on

(S,A) induced by π and P . Let ε < 1, δ < 1, δ′ = min
{

1
10 ,

δ
3(|S||A|+1)

}
and m ≥

12
ε2

log 1
δ′ . Under assumptions 1-4), SARSA(1) with tug-of-war hashing (Equations

5.5) converges to a unique θ̃π ∈ Rm and with probability at least 1− δ

∥∥Φ̃θ̃π −Qπ
∥∥
µ
≤ ‖Φθπ −Qπ‖µ + ε ‖Φθπ‖µ ,

where Qπ ∈ R|S||A| is the exact value function and θπ = arg minθ ‖Φθ −Qπ‖µ.

Proof. First note that Theorem 2.1.1 implies the convergence of SARSA(1) with

tug-of-war hashing to a unique solution θ̃π. We apply Lemma 5.3.1 to the set

{φ(s, a) : (s, a) ∈ S ×A} and θπ. By our choice of m, for all (s, a) ∈ S ×A and with

probability at least 1− 3(|S||A|+ 1)δ′ = 1− δ,

|Hφ(s, a) ·Hθπ − φ(s, a) · θπ| ≤ ε|θπ · φ(s, a)| .

SARSA(1) converges to θ̃π = arg minθ

∥∥∥Φ̃θ −Qπ
∥∥∥
µ
; compared to Φ̃θ̃π, the solu-
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tion Φ̃Hθπ is thus an equal or worse approximation to Qπ. It follows that

∥∥Φ̃θ̃π −Qπ
∥∥
µ
≤

∥∥Φ̃Hθπ −Qπ
∥∥
µ
≤
∥∥Φ̃Hθπ − Φθπ

∥∥
µ

+
∥∥Φθπ −Qπ

∥∥
µ

=

√ ∑
s∈S,a∈A

µ(s, a)
[
Hφ(s, a) ·Hθπ − φ(s, a) · θπ

]2
+ ‖Φθπ −Qπ‖µ

≤
√ ∑
s∈S,a∈A

µ(s, a)
[
ε|θπ · φ(s, a)|

]2
+ ‖Φθπ −Qπ‖µ

≤ ε ‖Φθπ‖µ + ‖Φθπ −Qπ‖µ ,

where the second inequality follows from Lemma 5.3.1.

Of note, the error term in Theorem 5.3.1 is proportional to the µ-weighted state-

value approximation Q(s, a) = θπ · φ(s, a). The significance of this error term can

be made clearer through Hölder’s inequality. Given two vectors x, y ∈ Rn, Hölder’s

inequality states that

|x · y| ≤ ‖x‖p‖y‖q,

where p, q ∈ (0,∞] such that 1
p+ 1

q = 1. Using this inequality, we can derive a bound

for the common occurrence in reinforcement learning domains where the agent is

provided with a sparse, binary feature vector φ. This case arises, for example, when

using tile coding. Assuming that φ is composed of k binary features, such that for

all s ∈ S, a ∈ A, |φ(s, a)| = k, applying Hölder’s inequality with p = 1, q =∞ yields

∥∥Φ̃θ̃π −Qπ
∥∥
µ
≤ ‖Φθπ −Qπ‖µ + ε ‖Φθπ‖µ

≤ ‖Φθπ −Qπ‖µ + ε sup
s∈S,a∈A

|θπ · φ(s, a)|

≤ ‖Φθπ −Qπ‖µ + εk ‖θπ‖∞ ,

showing that in this case the tug-of-war error directly depends on the largest com-

ponent of the weight vector θπ. Hölder’s inequality can similarly be used to recover

the bound given in the original paper (Bellemare et al., 2012b).

Although the tug-of-war sketch produces unbiased estimates of inner products,

Theorem 5.3.1 implies that the tug-of-war value function approximation is a biased

estimate of the full feature vector approximation. This bias arises from complex

interactions between the TD-error δ̃t and φ̃t in Equation 5.5. These interactions

are due to the self-referential nature of the TD error, and are difficult to analyze
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in closed form; instead, in the next section I provide empirical results that directly

study this value function bias.

5.4 Empirical Study

This section begins with an empirical comparison of the bias and mean squared

error of standard hashing and tug-of-war hashing, then moves on to experimental

results on two benchmark domains and Atari 2600 games. The list of testing games

used in this section is provided in Appendix B.

Benchmark Domains

Mountain Car is a two-dimensional, continuous-state domain widely used for bench-

marking reinforcement learning algorithms (Sutton, 1996; Sutton and Barto, 1998).

In Mountain Car (Figure 5.1, left), the agent’s goal is to navigate an underpowered

car from the bottom to the top of a hill. The agent has access to three actions:

forward, backward and stay. At each time step the agent receives a reward of -1,

except at the goal where it receives no reward.

Acrobot (Figure 5.1, right) is a four-dimensional, continuous-state benchmark

domain (Sutton, 1996). The agent’s goal is to bring the tip of a two-jointed pen-

dulum above a fixed height by varying the torque at the second joint; three torque

values are available. As in Mountain Car, the agent receives a reward of -1 at every

step except at the goal.

Implementation Notes

All agents in this section learn using SARSA(λ) and behave according to the ε-greedy

action selection mechanism. The hash function h is drawn uniformly at random from

the H2 family and ξ, from the H4 family (Section 5.1.1). Throughout, the feature

vector weights are initialized to 0; this ensures that every state is assigned the same

initial value. Both Mountain Car and Acrobot feature vectors are constructed using

tile coding, a feature generation method that divides the state space into overlapping

tilings (Miller and Glanz, 1996; Sutton, 1996). Figure 5.2 depicts a typical tiling

of the space, in which the range of every state variable is divided into a number of

equal intervals. Each tile corresponds to a binary feature, and each tiling is offset

from its predecessor. If k denotes the number of tilings, then the resulting feature

vector φ(st, at) contains k non-zero entries at each time step t. The Mountain Car
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Figure 5.1: Left. The Mountain Car domain. Right. The Acrobot domain. Both
figures are reproduced from the work of Sutton (1996).

Tilings

Range of state variable

Figure 5.2: Example tile coding over a two-dimensional state-space. For clarity,
only two tilings are depicted.

state is represented using 10 9 × 9 tilings and the Acrobot state, 48 6 × 6 × 6 × 6

tilings. The procedure for generating features in Atari 2600 games is described in

Appendix A.

5.4.1 Bias of Tug-of-War Hashing

The aim of this section is to provide empirical evidence that the bias in the tug-of-

war value function estimate is significantly smaller than the bias in the value function

obtained through standard hashing. In this experiment, the agent uses SARSA(0)

to learn the full vector approximation (no hashing) to a value function over a short

trajectory in either the Mountain Car or Acrobot domain. Simultaneously the agent
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also applies SARSA(0) with standard hashing and tug-of-war hashing (Section 5.5).

Bias is computed as the difference between exact and hashed value functions.

One trial in the experiment consists in recording updates along a fixed, 1,000-

step trajectory obtained by following an ε-greedy policy. At every step of this

trajectory the agent updates a full feature weight vector θt using SARSA(0) with

γ = 1.0 and α = 0.01. Parallel to this update the agent also updates a tug-of-war

weight vector θ̃t and standard hashing weight vector θ̂t using the same values of γ

and α. Both methods use a hash table size of m = 100 and the same randomly

selected hash function h ∈ H2; tug-of-war hashing also use a randomly selected

hash function ξ ∈ H4. At every step the experiment records the difference in value

function approximations:

Q̂t(st, at)−Qt(st, at) := θ̂t · φ̂(st, at)− θt · φ(st, at) (standard hashing)

Q̃t(st, at)−Qt(st, at) := θ̃t · φ̃(st, at)− θt · φ(st, at) (tug-of-war hashing)

The experiment consisted in one million trials, each using hash functions selected

uniformly at random, and served to estimate two quantities:

1. the relative biases
|E[Q̂t(st,at)]−Qt(st,at)|

|Qt(st,at)| and
|E[Q̃t(st,at)]−Qt(st,at)|

|Qt(st,at)|

2. the mean squared errors E (Q̂t(st,at)−Qt(st,at))2
Qt(st,at)2

and E (Q̃t(st,at)−Qt(st,at))2
Qt(st,at)2

Figure 5.3 shows the results of this experiment. The difference is unequivocal:

the bias from tug-of-war hashing is minimal compared to the bias from standard

hashing.

5.4.2 Tug-of-War Hashing for Control

So far in this chapter the focus has been on the evaluation aspect of reinforcement

learning: estimating the value function for a fixed policy π, and determining the

approximation error of tug-of-war hashing with respect to this value function. A

related question is how tug-of-war hashing affects control. In the control case, the

aim is to produce a policy that achieves high return. Theorem 5.3.1 provides no

guidance with respect to control, nor do the bias results of the previous section

guarantee than tug-of-war SARSA(λ) achieves better policies than SARSA(λ) with

standard hashing. Here I empirically compare the control performance of SARSA(λ)

with standard and tug-of-war hashing on Mountain Car and Acrobot.
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Figure 5.3: Bias and mean squared error in Mountain Car. Note the log scale;
both values are relative to the exact value function estimate at time t (see text for
details). Note that the relative bias and mean squared errors at t = 0 are defined
to be 0 (not shown on the graphs).

For each domain and each hashing method I performed a parameter sweep over

the learning rate α and selected the best value which did not cause the value es-

timates to diverge5. For Mountain Car these values were α = 0.5 (standard hash-

ing) and α = 0.2 (tug-of-war hashing); for Acrobot these values were respectively

α = 0.02 and α = 0.1. Other parameters were set to γ = 1.0, λ = 0.9, ε = 0.0.

I experimented with hash table sizes m ∈ [20, 1000] for Mountain Car and m ∈

[100, 2000] for Acrobot. Each experiment consisted of 100 trials; the sources of

inter-trial variation were the choice of hash function(s) and random action selection

by the ε-greedy policy. One trial consisted of 10,000 episodes whose length was

restricted to a maximum of 5,000 steps. At the end of each trial, I disabled learning

by setting α = 0 and evaluated the agents on an additional 500 episodes.

Figure 5.4 shows the performance of standard hashing and tug-of-war hashing

as a function of the hash table size. When the hashed vector is small relative to

the full vector – but not so small that approximation becomes simply impossible

–, tug-of-war hashing performs better than standard hashing. This is especially

true in Acrobot, where the number of features (over 62,000) necessarily results in

harmful collisions. Note that the right half of the Mountain Car graph in Figure 5.4

describes the regimen where m, the size of the hashed feature vector, is close to n

the size of the original feature vector (10× 10× 9 = 810 for Mountain car). In this

case, both algorithms naturally perform equivalently.

5As in Section 4.5.1, the actual learning rate αt is α divided by maxt ‖φ(st, at)‖0.
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Figure 5.4: Performance of standard hashing and tug-of-war hashing in two bench-
mark domains. The performance of the random agent is provided as reference.

5.4.3 Evaluation on Atari 2600 Games

To conclude this chapter, I now provide empirical results comparing the two hashing

methods on a suite of Atari 2600 games. By virtue of its size, the Atari 2600 platform

offers a challenging set of domains for reinforcement learning agents. The feature

generation scheme used here (see Appendix A for details) produces over half a billion

potential features; explicitly representing such a feature vector is not an option, and

so hashing becomes necessary.

I trained ε-greedy SARSA(0) agents using both standard hashing and tug-of-war

hashing with hash tables of size m = 1,000, 5,000 and 20,000. I chose the step-size

α using a parameter sweep over the training games, selecting the best-performing

α that never resulted in divergence in the value function6. For standard hashing,

α = 0.01, 0.05, 0.2 for m = 1,000, 5,000 and 20,000, respectively. For tug-of-war

hashing, α = 0.5 across table sizes. I set γ = 0.999 and ε = 0.05. Each experiment

was repeated over ten trials lasting 10,000 episodes each; episodes were limited to

18,000 frames to avoid issues with non-terminating policies. One time step lasted

five frames, during which the selected action was repeated.

Figure 5.5 compares the inter-algorithm score distributions (Section 3.2) of

agents using either standard hashing or tug-of-war hashing for m = 1,000, 5,000

and 20,000. Tug-of-war hashing consistently outperforms standard hashing across

hash table sizes. For each m and each game, I also performed a two-tailed Welch’s

t-test with 99% confidence intervals to determine the statistical significance of the

6The actual learning rate αt is α divided by maxt ‖φ(st, at)‖0.
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Figure 5.5: Inter-algorithm score distributions over fifty-five Atari 2600 games.
Higher curves reflect higher normalized scores.

average score difference between the two methods. For m = 1,000, tug-of-war hash-

ing performed statistically better in 38 games and worse in 5; for m = 5,000, it

performed better in 41 games and worse in 7; and for m = 20,000 it performed bet-

ter in 35 games and worse in 5. The results on Atari 2600 games confirm what was

observed on Mountain Car and Acrobot: in practice, tug-of-war hashing performs

much better than standard hashing. Furthermore, computing the ξ function took

less than 0.3% of the total experiment time, a negligible cost in comparison to the

benefits of using tug-of-war hashing.

5.5 Conclusion

In this chapter I adapted tug-of-war hashing to value function approximation. The

main contributions of this work are

1. A convergence guarantee for SARSA(1) with tug-of-war hashing,

2. A bound on the additional approximation error due to tug-of-war hashing,

and

3. Empirical results showing the superiority of tug-of-war value function approx-

imation, compared to value function approximation using standard hashing.

In most empirical results in this chapter, the hash table size was chosen much

lower than what a modern computer’s memory can support. It is therefore reason-

able to wonder whether tug-of-war hashing is necessary in practical applications,

or if its improved performance is simply an artifact of experimental design. I now

provide a few reasons why tug-of-war hashing should still be preferred to standard

hashing in the context of value function approximation.
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1. Theoretical guarantees. Interpreting tug-of-war hashing as a Johnson-

Linderstrauss transform allows us to guarantee its good behaviour.

2. Minimal overhead. In most applications, the additional cost of computing

the ξ function is negligible.

3. Learning about more tasks. In settings where the agent must learn about

many policies or tasks, such as with the Horde architecture (Sutton et al.,

2011), the memory required to store value functions restricts scalability.

In all but a few domains, tug-of-war hashing offers something more than standard

hashing without a significant computational cost. Wherever linear value function

approximation with hashing is used to solve large reinforcement learning domains,

it is my expectation that tug-of-war hashing will improve performance.

An oft-heard criticism of hashing is that, when memory is limited it is bound

to negatively affect performance, while if memory is not an issue we should avoid

it altogether. This criticism is perhaps best answered with a quote from Sutton

(1996): “Hashing frees us from the curse of dimensionality in the sense that memory

requirements need not be exponential in the number of dimensions, but need merely

match the real demands of the task.”

5.6 Related Work

While hashing has long been established for linear value function approximation

(Sutton, 1996), the study of random projections (Frankl and Maehara, 1988) in

this context is fairly recent. Using well-established theoretical tools, Ghavamzadeh

et al. (2010) provided finite-sample bounds on the approximation error arising from

the use of least-squared temporal difference (LSTD) learning (Bradtke and Barto,

1996) in conjunction with random projections; however, the practical benefits of

their method remains to be empirically validated.

Sketch algorithms, while not based on the Johnson-Linderstrauss lemma, also

use hashing to approximate large vectors. The Count-Min sketch (Cormode and

Muthukrishnan, 2005), which was the starting point of the work presented in this

chapter, uses hashing and feature duplication to guarantee a bound on the L1 norm

of the approximated vector. The tug-of-war sketch (Cormode and Garofalakis, 2005)

uses the same tools to provide similar guarantees on the L2 norm of a vector; it differs
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from the Count-Min sketch through its use of {−1, 1} variables, as was done here.

Other sketches have been studied and improved for various purposes, such as the

Cauchy sketches used by Nelson and Woodruff (2010) to obtain a fast sketch for L1

norms. A good comparison of various sketches from a practical perspective can be

found in the work of Rusu and Dobra (2007).

Although random projections are powerful and mathematically elegant, their

naive application requires O(mn) time, where n is the dimension of the input space

and m the dimension of the output space. To overcome this computational hurdle,

Achlioptas (2003) proposed a sparse random projection, represented as a matrix

whose m rows each contains k ∼ n
3 nonzero entries. He further proposed to use

{−1,+1}, rather than normally distributed variables, to speed up the projection.

This work was later followed by even sparser random projections (Li et al., 2006),

using k ∼ 1√
n

and a slightly different theoretical analysis.

Using hashing in machine learning is computationally appealing: hashing is much

faster than random projections, even of the sparse variety. The idea of combining

hashing to kernel methods was championed by Shi et al. (2009). In this work

the authors studied hash kernels, which approximate the typical inner product of

a kernel with a hash function, and suggested that the large number of duplicate

features in a typical machine learning application ensures smooth behaviour in hash

kernels. Additional theoretical results on this topic were provided by Weinberger

et al. (2009), leading to an approximation bound that depends strongly on the

inf-norm of the input vectors. Simultaneously, Dasgupta et al. (2010) provided an

interpretation of hashing as a Johnson-Linderstrauss transform; their work is the

basis of the theoretical results in this chapter. Kane and Nelson (2010) subsequently

improved their results to provide some definitive answers as to the benefits and

limitations of using hashing as a Johnson-Linderstrauss transform. Of note, their

work applies to k-independent hash functions; such functions can be implemented in

practice, in contrast to the fully independent functions required by Dasgupta et al.

(2010).
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The universe (which others call the Library) is composed of an indefinite,
perhaps an infinite, number of hexagonal galleries [...] From any hexagon
the upper or lower stories are visible, interminably.

The Library of Babel
Jorge Luis Borges

(Translation Anthony Kerrigan)

Chapter 6

Model Learning in Large,
Factored Domains

In the previous two chapters I described algorithms directly or indirectly aimed at

improving model-free reinforcement learning methods such as SARSA(λ). Model-

free methods, as their name implies, seek to learn a policy without using a forward

model of the environment. While such methods are often simple to deploy, using

a forward model can greatly simplify the agent’s decision-making process. For ex-

ample, UCT (Kocsis and Szepesvári, 2006), POCMP (Silver and Veness, 2010) and

FSSS (Walsh et al., 2010) can all be used to produce refined value function estimates

tailored to the current situation facing the agent. Within the context of Bayesian

reinforcement learning, forward search can provide a principled means to explore

the environment (Asmuth and Littman, 2011; Guez et al., 2012). Having access to

a model also allows for hybrid techniques such as Dyna (Sutton, 1991; Silver et al.,

2008) and TD-Search (Silver et al., 2012), which use a model of the environment

to enhance the performance of more traditional model-free reinforcement learning

techniques.

When the environment dynamics are unknown a priori, model-based agents must

learn their model from experience. A variety of promising approaches have been

recently put forward; of note, Doshi-Velez (2009), Walsh et al. (2010), Veness et al.

(2010), Veness et al. (2011), Nguyen et al. (2012), and Guez et al. (2012) have

collectively demonstrated that it is feasible to learn good probabilistic models of

small but challenging domains containing various degrees of partial observability and

stochasticity. However, most of these methods have yet to be applied to domains

A version of this chapter has been published and presented at the International Conference on
Machine Learning (Bellemare et al., 2013b).
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whose observation space is as large as the space of Atari 2600 game screens.

Although learning arbitrary environment dynamics is challenging, many domains

of interest possess a structured observation space. In turn, this structure enables

us to derive efficient model learning algorithms. This chapter provides a theoreti-

cal framework for describing a particular kind of observation structure: recursively

decomposable observation spaces. From this theoretical framework I derive an algo-

rithm for learning forward models in domains with recursively decomposable obser-

vation spaces. Key to this algorithm is its efficient Bayesian model averaging over a

large class of factorizations of the observation space. While prior work on factored

models (Ross and Pineau, 2008; Poupart, 2008; Diuk et al., 2009) has assumed a

known factorization, this new algorithm is guaranteed to asymptotically perform as

well as any factorization within its class.

The second part of this chapter provides an instantiation of the general algo-

rithm for recursively decomposable spaces. This instantiation, the quad-tree fac-

torization (QTF) algorithm, is easily applied to the Atari 2600 observation space

by recursively decomposing the image space into image patches. As a result, we

can efficiently learn a variable-resolution forward model of Atari 2600 games. In

turn, this variable decomposition allows us to sample quickly whenever large image

patches are sufficient. In the implementation described here, QTF requires only a

fraction more computation than an equivalent algorithm learning a forward model

using only the finest-resolution factorization available; essentially, memory is the

limiting factor of our implementation. At the end of this chapter I provide a variety

of model learning results exemplifying the benefits of using QTF.

This chapter is divided as follows. In Section 6.1 I review the Context Tree

Weighting algorithm of Willems et al. (1995); its extensions Context Tree Switching

and Action-Conditional CTW; and describe the Sparse Sequential Dirichlet estima-

tor. Following this, Sections 6.2 and 6.3 lay out the general framework of recursive

factorizations. Section 6.4 then describes the quad-tree factorization algorithm.

Empirical results on using QTF for learning forward models of Atari 2600 games

are then given in Section 6.5.

6.1 Background

This chapter builds on the work of Willems et al. (1995) on the Context Tree Weight-

ing algorithm and its recent extension to the approximate AIXI setting by Veness
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et al. (2011). I now review both ideas and additional improvements that enable us

to learn forward screen models of Atari 2600 games.

This section (and the rest of the chapter) uses the AIXI notation described in

Section 2.2. The Context Tree Weighting algorithm, however, was designed for the

compression setting. As such, in what follows I focus on the sequence prediction

problem: predicting xn given x<n. By contrast, the case that interests us is the

action-conditional sequence prediction problem: predicting xn given (ax)<n and an;

thus at the end of this section I discuss the extension of Context Tree Weighting to

action-conditional environment models.

6.1.1 Context Tree Weighting

The Context Tree Weighting (CTW) algorithm (Willems et al., 1995) is a method

for modelling binary sequences in the context of universal data compression. The al-

gorithm’s appeal lies in that it asymptotically achieves the lower bound on encoding

k-Markov sequences: sequences for which the probability distribution over the next

symbol xn only depends on {xn−k, . . . , xn−1}. To achieve this lower bound, CTW

combines three key components: prediction suffix trees, the Krichevsky–Trofimov

parameter estimator, and Bayesian model averaging.

Prediction Suffix Trees

In the binary compression setting, a (binary) prediction suffix tree (PST) (Rissanen,

1983; Ron et al., 1996) is a proper binary tree whose leaves correspond to probability

distributions over the binary alphabet X . Formally, a binary PST is described as

a pair T := (S,Ψ) where S is a proper and complete set of suffices and Ψ is a set

of probability distributions over X . The PST maps each binary string x1:n ∈ X n

to a probability distribution over the next symbol xn+1 ∈ X by first mapping x1:n

to the matching suffix s ∈ S, then mapping s to its corresponding probability

distribution ψ ∈ Ψ. Figure 6.1 depicts a depth 3 binary prediction suffix tree; each

leaf l corresponds to a unique suffix s(l) ∈ S and contains a Bernoulli distribution

parametrized by θs(l). Whenever unambiguous, l directly refers to the suffix s(l), so

that θl := θs(l).

Let d be the depth of T . Given a string c ∈ S of length k ≤ d, let xc1:n denote

the substring xi1xi2 . . . xim of x1:n such that1 for all ij , j ≤ m, xij−k:ij−1 = c. A

1For convenience, x1:n can be extended to non-positive indices by defining xi = 0 for i < 1.
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Figure 6.1: A binary prediction suffix tree. Each leaf corresponds to a Bernoulli
distribution parametrized by θl, where l ∈ X ∗ is the path (of length at most 3) from
the root to the leaf.

prediction suffix tree T = (S,Ψ) thus partitions x1:n into |S| substrings, where each

substring corresponds to a different context.

The KT Estimator

When the parameters θl at the leaves are unknown they must be learned from data.

In Context Tree Weighting this is done by treating the data falling under each leaf

as being generated by a stationary, memoryless source; θl is then estimated using

the Krichevsky–Trofimov (KT) estimator.

The Krichevsky-Trofimov estimator, first proposed by Krichevsky and Trofimov

(1981), represents the uncertainty over the parameter θl using a prior Beta 1
2
, 1
2
(θl).

This prior is a special case of the Beta distribution, defined as

Betaa,b(θ) :=
θa−1(1− θ)b−1

B(a, b)
,

where a and b are parameters of the Beta distribution and B(a, b) is the Beta function

defined as

B(a, b) :=

∫ 1

x=0
xa−1(1− x)b−1dx .
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Consider a random Bernoulli variable X whose parameter θ is unknown, and de-

note by Pr(θ) the Beta prior Betaa,b(θ) over this parameter. Suppose that we observe

k samples x1, . . . , xk ∼ X. By Bayes’ rule, the posterior distribution Pr(θ|x1, . . . , xk)

is

Pr(θ|x1, . . . , xk) :=
Pr(x1, . . . , xk|θ) Pr(θ)∫ 1

0 Pr(x1, . . . , xk|θ′) Pr(θ′)dθ′

which can be shown to simplify to

Pr(θ|x1, . . . , xk) := Beta(a+N1, b+N0),

where Nx :=
∑k

i=1 I[xi=x]. Thus the parameters a and b (and posterior parameters

a + N1 and b + N0) can be interpreted as counting how many times each symbol

has been observed. Since Pr(x1, . . . , xk|θ) is distributed according to a Binomial

distribution, the Beta prior is said to be conjugate to the Binomial distribution.

Furthermore,

Eθ [Betaa,b(θ)] =
a

a+ b

The KT estimator assigns prior counts a = b = 1
2 ; these counts are updated with

every new symbol. This particular choice of prior counts guarantees uniform con-

vergence of the KT estimator to the Bernoulli distribution it estimates (Krichevsky

and Trofimov, 1981), and is used to derive the bound of Lemma 6.1.1 below. Given

a string x1:n, denote by Nx(x1:n) :=
∑n

i=1 I[xi=x] the number of occurrences of x ∈ X

in x1:n and define the probability assigned to x by the KT estimator as

KT(x|x1:n) :=
I[x=0]N0(x1:n) + I[x=1]N1(x1:n) + 1

2

N0(x1:n) +N1(x1:n) + 1
(6.1)

The following lemma, due to Willems et al. (1995), bounds the redundancy of

the KT estimator:

Lemma 6.1.1. Let x1:n ∈ X n be a binary string generated by a Bernoulli source µ

with unknown parameter θµ. Let µ(x1:n) := θ
N1(x1:n)
µ (1−θµ)N0(x1:n) be the probability

of x1:n under µ, and let KT(x1:n) :=
∏n
i=1 KT(xi|x<i) be the probability of x1:n

under the KT estimator. Then

− log2KT (x1:n)− (− log2 µ(x1:n)) ≤ 1

2
log2(n) + 1
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Context Tree Weighting

The idea behind the Context Tree Weighting algorithm is to perform Bayesian model

averaging over the set of all possible, bounded depth prediction suffix trees with KT

estimators at the leaves. Let T be the set of all prediction suffix trees of depth at

most d; in what follows d is assumed fixed. For a given tree T ∈ T, T := (S,Ψ),

denote by ρT : X n → [0, 1] the model described by this tree, with Ψ the set of KT

estimators corresponding to the suffix set S. The Context Tree Weighting mixture

ξ : X n → [0, 1] is defined as

ξ(x1:n) :=
∑
T ∈T

wT ρT (x1:n), (6.2)

where wT := 2−Γd(T ) is a prior weight on ρT ; Γd(T ) is the description length of T

(Willems et al., 1995). For T := (S,Ψ) the particular form of this description length

is

Γd(T ) := |S| − 1 + |{s : s ∈ S, |s| 6= d}|,

such that
∑
T ∈TwT = 1. As d is assumed fixed, below I simply use Γ(T ) to denote

the description length of T with respect to the set of all possible prediction suffix

trees of depth at most d.

The right-hand side of Equation 6.2 is a sum over a doubly-exponential number

of terms (there are O(22d) prediction suffix trees of depth at most d). The key

idea behind CTW is to express this equation recursively. Let KT(xc1:n) denote the

probability of the substring xc1:n under the KT estimator. More explicitly,

KT(xc1:n) :=
n∏
i=1

KT(xci |xc<i),

where xci denotes the ith symbol in the subsequence xc1:n. The recursive Context

Tree Weighting equation is

CTW(xc1:n) :=

{
KT(xc1:n) if |c| = d
1
2KT(xc1:n) + 1

2CTW(x0c
1:n)CTW(x1c

1:n) otherwise
(6.3)

with ξ(x1:n) = CTW(xε1:n).

Equation 6.3 enables us to process a string x1:n in time O(dn); the algorithm’s

memory is similarly bounded by O(dn). In practice, it is possible to optimize CTW

in a variety of ways to improve its efficiency (Willems and Tjalkens, 1997).
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Given a prediction suffix tree T := (S,Ψ), define the model ρT (x1:n) as

ρT (x1:n) :=
∏
s∈S

KT (xs1:n) .

Intuitively, ρT (x1:n) partitions x1:n according to its suffix set S, and uses a

separate KT estimator for each resulting substring. The following theorem bounds

the redundancy of Context Tree Weighting with respect to T, the set of models

using prediction suffix trees of depth at most d.

Theorem 6.1.1 (Willems et al. (1995)). Let T denote the set of all prediction

suffix trees of depth at most d with KT estimators at the leaves. Given a string

x1:n, the redundancy of Context Tree Weighting with respect to any model ρT (x1:n),

T = (S,Ψ) with suffices s ∈ S of length at most d and fixed parameters is given by

− log2 ξ(x1:n)− (− log2 ρT (x1:n)) ≤ Γ(T ) + |S|z
(
n

|S|

)
,

where

z(x) :=

{
x for 0 ≤ x < 1
1
2 log2 x+ 1 for x ≥ 1

Theorem 6.1.1 follows from the redundancy bound on individual KT estimators

(Lemma 6.1.1) and the bound on mixture models (Equation 2.5). The first term in

the bound, Γ(T ), is the cost associated with the unknown tree structure; the second

term is the cost associated with learning the parameters at the leaves of the tree.

Of note, Theorem 6.1.1 shows that the cost of learning the best tree structure is

bounded by the complexity of the model, embodied in the description length Γ(T ).

Algorithm

The Context Tree Weighting stores its variables within a context tree: a perfect

binary tree of depth d. At every node c in this context tree, we store the following:

1. A weighted probability CTW(xc1:n) ∈ (0, 1], and

2. A KT estimator KTc.

In what follows, whenever unambiguous c refers to either a node of the context

tree or its corresponding context string. Let x1:n be the string of symbols observed

so far, and xc1:n be the substring observed by the estimator KTc. This estimator
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contains counts Nx(xc1:n) for all x ∈ X , as well as the probability of the substring xc1:n

observed by KTc, KT(xc1:n). When a node c is created, the counts of its estimator

KTc are initialized to 1
2 and its weighted probability to 1.

When a new symbol xt is observed, CTW recursively updates all d + 1 nodes

along the path of the current context xt−d:t−1 according to Equation 6.3. The root

of the tree corresponds to the empty context string ε.

To predict a new symbol, CTW predicts the symbol probability Pr(xt = x |x<t)

as

Pr(xt = x |x<t) =
CTW(x<tx)

CTW(x<t)
, (6.4)

whose numerator is easily obtained by updating then reverting the context tree

with x given an already observed string x<t. Note that Equation 6.4 matches the

symbol probability ρ(xn | (ax)<nan) under an environment model in the AIXI setting

(Equation 2.4). Alternatively, Pr(xt = x |x<t) can be recursively computed without

modifying the tree. Given a context string c, define the recursive symbol probability

Pc(xt, x<t) as

Pc(xt, x<t) :=

{
KT(x |x<t) if |c| = d
αcKT(x |x<t) + (1− αc)Pz(c,x<t)(xt, x<t) otherwise

(6.5)

where z(c, x<t) := xt−1−|c|c is the extension of c according to x<t and

αc :=

{ 1
2
KT(xc<t)

CTW(xc<t)
if |c| < d

1 otherwise

It then follows that Pr(xt = x |x<t) = Pε(xt, x<t). Equation 6.5 can be inter-

preted as a mixture over d + 1 KT estimators, each defined over nested substrings

of x<t; the posterior weight assigned to each estimator KT (xc<t) is the product

αc
∏
s∈W (c)(1−αs), where W (c) is the set of strict suffices of c, including the empty

suffix ε.

The Context Tree Weighting algorithm is summarized as Algorithm 1. As dis-

cussed above, its run time per step is a constant O(d) and up to d nodes are added

at every time step.

6.1.2 Context Tree Switching

Context Tree Switching (Veness et al., 2012) is a recent extension of Context Tree

Weighting. As its name implies, CTS replaces the model weighting step in Equation
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Algorithm 1 Context Tree Weighting

Require: A context tree T initialized with a root node ε
Initialize the root node ε

for t = 1 . . . n do
Output probability distribution Pr(xt |x<t) from CTWε

Observe xt
recursive-update(ε, d, xt, x1:t−1)

end for

recursive-update(node v, depth d, symbol x, context x1:m)
Update KTv with x
if d = 0 then

return ; v is a leaf
else

if child(v, xm) = null then
Create child(v, xm)
Set CTWchild(v,xm) = 1, initialize its KT estimator to (1

2 ,
1
2)

end if
recursive-update(child(v, xm), d− 1, x, x1:m−1)
CTWv ← 1

2KTv + 1
2

∏
x′∈{0,1}

CTWchild(v,x′)

end if
return

6.2 by a switching operation. The fundamental idea behind this operation is to

incorporate a switch probability α to the mixture ξ(x1:n). Using a switch probability

allows the model to mix over all model sequences.

At every node c of its context tree, CTS stores the following:

1. A weighted probability CTS(xc1:n) ∈ (0, 1],

2. A KT estimator KTc, and

3. The auxiliary quantities kc and sc.

As previously, denote by KT(x |xc1:n) the probability of observing x according

to KTc and by CTS(x |xc1:n) the probability of observing x according to the dis-

tribution over x implied by CTS(xc1:n); as with CTW (i.e. Equation 6.4), both of

these quantities can respectively be computed directly or from the weighted prob-

abilities KT(xc1:n) and CTS(xc1:n). Context Tree Switching replaces the weighting

step (updating CTW(xc1:n)) in Algorithm 1 with the following updates:

75



CTS(xc1:n) ← KT(xc1:n) if |c| = d, otherwise:

CTS(xc1:n) ← kc,n−1KT(xn |xc<n) + sc,n−1CTS(xn |xz(c,x<n)
<n )

kc,n ← (1− αn+1)kc,n−1KT(xn |xc<n) + αn+1sc,n−1CTS(xn |xz(c,x<n)
<n )

sc,n ← (1− αn+1)sc,n−1CTS(xn |xz(c,x<n)
<n ) + αn+1kc,n−1KT(xc1:n),

where z(c, x<n) := xn−|c|−1c is the extension of c according to x<n, and αt := 1
t .

The purpose of the time indices to kc,n and sc,n is algorithmic clarity: only the most

current values (kc,n and sc,n) ever need to be stored, and initially kc,0 = sc,0 = 0.5.

While each CTW node constructs a mixture model from its KT estimator and

the mixture models of its children by weighing the two according to their block

probabilities over the whole data, a CTS node instead puts more weight on recent

predictions through the switching term αn+1. Let ξCTS(x1:n) := CTS(xε1:n). The

following Theorem gives a bound on the redundancy of Context Tree Switching:

Theorem 6.1.2 (Veness et al. (2012)). Given a string x1:n, the redundancy of Con-

text Tree Switching run with parameter depth d with respect to any model ρT (x1:n),

T = (S,Ψ) with suffices s ∈ S of length at most d and fixed parameters is given by

− log2 ξCTS(x1:n)− (− log2 ρT (x1:n)) ≤ Γ(T ) + |S|z
(
n

|S|

)
+ (d+ 1) log2 n,

where

z(x) :=

{
x for 0 ≤ x < 1
1
2 log2 x+ 1 for x ≥ 1

Theorem 6.1.2 guarantees that the cost of switching is at most (d + 1) log2 n

compared to weighting. However, while CTW performs well with respect to any

fixed model in T, CTS performs well with respect to the set of all possible sequences

of models in T; in practice, CTS has been shown to outperform CTW (Veness et al.,

2012).

6.1.3 The Sparse Sequential Dirichlet Estimator

Although Section 6.1.1 described prediction suffix trees and Context Tree Weight-

ing using the KT estimator, any estimator suitable for memoryless and stationary
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sources may be used. In particular, one limitation of the KT estimator as defined

above is its restriction to a binary alphabet. Although the KT estimator can be

extended to a finite set of symbols using a Dirichlet prior, the redundancy bound of

Lemma 6.1.1 then becomes linear in |X | (Tjalkens et al., 1993b).

It is not uncommon to be faced with a large alphabet X from which only a

small subset Y ⊂ X is used. For example, although we may want to predict an

English text using the set of all valid combinations of letters from the Latin alpha-

bet, only a comparatively small subset of words constitutes valid English language.

The Sparse Sequential Dirichlet estimator (SSD, Veness and Hutter (2012)) is an

estimator for stationary, memoryless sources whose redundancy bound depends only

logarithmically on |X |.

Let SSD(xn |x<n) denote the probability assigned to xn by an SSD estimator

that has observed x<n. This probability is defined as

SSD(xn |x<n) :=

 αn
1

|X |−|U(x<n)| if c(xn, x<n) = 0

(1− αn)
Nxn (x<n)+ 1

2

n+ 1
2
|U(x<n)|−1

otherwise
,

where Nx(x<n) :=
∑n−1

i=1 I[xi=x] is the number of times x occurs in x<n, U(x<n) :=

{x : x ∈ X , Nx(x<n) > 0} and αn := 1
n . Effectively, the SSD estimator assigns

a uniform probability to all unseen symbols, and estimates the probability of seen

symbols using a KT estimator over U(x<n); the two probabilities (unseen and seen

symbols) are combined by means of the decaying αn term. The following Theorem

bounds the redundancy of the SSD estimator:

Theorem 6.1.3 (Veness and Hutter (2012)). Given alphabets X and Y such that

Y ⊆ X , for all n ∈ N, for all x1:n ∈ Y we have

− log2 SSD(x1:n)− (− log2 KTY(x1:n)) ≤ log2 n+ |Y| log2 |X |,

where KTY(x1:n) denotes the probability assigned to x1:n by the KT estimator using

the alphabet Y.

While other approaches have been put forward for dealing with sparse alphabets

(Friedman and Singer, 1999; Tjalkens et al., 1993a), the SSD estimator has the

advantage of being both algorithmically elegant and computationally efficient.
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6.1.4 Context Trees as AIXI Models

Context Tree Weighting has been cast into the AIXI setting by Veness et al. (2011),

resulting in an algorithm called Action-Conditional CTW. In Action-Conditional

CTW, actions are treated as side information available to Context Tree Weighting

(or Switching). This is done by appending an encoding of the action history a1:n (or

part thereof) to the context string xn−d:n−1. It is then possible to derive a bound

on how well the true environment is modelled:

Lemma 6.1.2 (Simplified from Veness et al. (2011)). Let µ be an environment

expressible as a prediction suffix tree with binary KT estimators at the leaves, T :=

(S,Ψ), of depth at most d. Then for the Action-Conditional Context Tree Weighting

ξCTW run with depth parameter d′ ≥ d, we have

Eµ
[

µ(x1:n | a1:n)

ξCTW (x1:n | a1:n)

]
≤ Γ(T ) + |S|z

(
n

|S|

)
,

where z(x) is defined as in Theorems 6.1.1 and 6.1.2.

In short, Lemma 6.1.2 states that k-Markov environments can be modelled by

the Context Tree Weighting algorithm adapted to the AIXI setting. The given

bound arises as a sum of different costs: the cost of learning the tree structure, and

the individual parameters at each node. It thus easily extends to environments ex-

pressible with multi-alphabet KT estimators, and from there to environment models

using SSD or other memoryless estimators.

6.2 Factored Environment Models

While Action-Conditional CTW is a powerful tool for learning environment models,

its treatment of percepts as atomic entities precludes its direct application to the

Atari 2600. To see this, recall that a single game screen is composed of 160 × 210

7-bit pixels: thus the Atari 2600 observation space O contains 27×160×210 different

screens. The first step in developing a CTW-like algorithm for the Atari 2600 is to

define the notion of a factored environment model : a model whose observation space

can be decomposed into a Cartesian product of factors.

Consider a percept space X := X1 × · · · × Xk, the Cartesian product of k ∈ N

subspaces. First, let X<i := X1 × · · · × Xi−1 for 1 ≤ i ≤ k. Given a string x1:n ∈

(X1 × · · · × Xk)n, denote by xit ∈ Xi or xXit ∈ Xi the ith component of xt ∈ X , with
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1 ≤ i ≤ k and 1 ≤ t ≤ n. Further denote by X ni := (Xi)n and X n<i := (X<i)n the

n-dimensional string subspaces, with X ni 3 xi1:n := xi1x
i
2 . . . x

i
n.

Now, given an action space A and a factored percept space X := X1 × · · · × Xk,

a k-factored environment is defined by a tuple (ρ1, . . . , ρk), where each component

of the tuple is an environment model factor

ρi :=
{
ρin : (A×X )n−1 ×A×X<i → Dist(Xi)

}
n∈N

for 1 ≤ i ≤ k, with each ρin defining a parametrized probability mass function. Using

the chain rule, this naturally induces a factored environment given by

ρ(x1:n | a1:n) =
n∏
t=1

ρ(xt | ax<t)

=

n∏
t=1

k∏
i=1

ρit(x
i
t | ax<tatx<it )

=
k∏
i=1

ρi(xi1:n | a1:n),

where the final line uses the notation

ρi(xi1:n | a1:n) :=
n∏
t=1

ρit(x
i
t | ax<tatx<it ).

One can easily verify that a k-factored environment satisfies the chronological

condition (Section 2.2), and is therefore a valid environment.

6.3 Recursive Factorizations

The goal of this chapter is to develop an algorithm that performs Bayesian model

averaging over a large class of factored environment models. To do so, I now intro-

duce an efficiently computable class of structured factorizations. As noted in the

introduction, this section focuses on a domain-independent presentation and defers

to Section 6.4 a more concrete instantiation tailored to the Atari 2600 platform.

Although the presentation focuses on factoring the observation space, the reward

can be modelled by using an additional environment model factor.

Definition 6.3.1. A recursively decomposable space of nesting depth d = 0 is a set.

When d ∈ N, a recursively decomposable space is the set formed from the Cartesian

product of two or more recursively decomposable spaces of nesting depth d− 1. The
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Oi := Oi,1 ×Oi,2 i ∈ {1, 2}

O := O1 ×O2

Figure 6.2: A recursively decomposable space.

number of factors in the Cartesian product defining a recursively decomposable space

F at a particular nesting depth is denoted by dim(F), and is defined to be 1 if the

nesting depth is 0.

Figure 6.2 shows an instance of a recursively decomposable space O of nesting

depth 2, naturally represented as a tree. The leaves of the tree correspond to sets

O1,1, O1,2, O2,1, and O2,2. Such sets may, for example, describe individual sensors

on a robot. In what follows, the notation Ok denotes the kth factor of the Cartesian

product defining the recursively decomposable space O.

A recursively decomposable space can clearly be factored in many possible ways.

The following definition describes the set of all possible factorizations of a recursively

decomposable space:

Definition 6.3.2. Given a recursively decomposable space F with nesting depth at

least d ∈ N, the set Cd(F) of all recursive factorizations of F is defined by

Cd(F) :=
{
F
}
∪


dim(F)

ą

i=1

Si : Si ∈ Cd−1 (Fi)

 , (6.6)

with C0(F) :=
{
F
}

.

Returning to the example of Figure 6.2, this gives the following set of factoriza-

tions:

C2(O) :=
{
O,

O1 ×O2,

O1,1 ×O1,2 ×O2,

O1 ×O2,1 ×O2,2,

O1,1 ×O1,2 ×O2,1 ×O2,2

}
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Notice that although the number of factorizations for the above example is small,

in general the number of possible factorizations grows super-exponentially in the

nesting depth. In particular, if F can be described as a binary tree of depth d, then

the number of possible factorizations is O(22d); this corresponds to the number of

prediction suffix trees of depth up to d (Veness et al., 2012).

6.3.1 A Prior over Recursive Factorizations

The next step is to describe a prior on Cd(F). The aim is to design a prior similar

to the Context Tree Weighting prior: it should both support efficient computation

and be biased towards simpler (more compact) factorizations.

From the recursive construction of Cd(F) in Equation 6.6 stem two cases that

need to be considered: either we stop decomposing the space F (corresponding to

the {F} term in Equation 6.6) or we continue to split it further. This observation

naturally suggests the use of a hierarchical prior, which recursively subdivides the

remaining prior weight amongst each of the two possible choices. If we use a uniform

weighting for each possibility, this gives a prior weighting of 2−Γd(f), where Γd(f)

returns the total number of stop/split decisions needed to describe the factorization

f ∈ Cd(F), with the base case of Γ0(f) := 0 (since when d = 0, no stop or split

decision needs to be made). As desired, this prior weighting is identical to the

prior weighting of Context Tree Weighting over tree structures. Furthermore, it

constitutes a valid prior, as one can show
∑

f∈Cd 2−Γd(f) = 1 for all d ∈ N.

One side-effect of this recursive construction is that it assigns more prior weight

towards factorizations containing smaller amounts of nested substructure. For in-

stance, in the example above 2−Γ2(O) = 1
2 , while 2−Γ2(O1×O2,1×O2,2) = 1

8 . Such a

prior is appealing when the computational complexity of a factorization is propor-

tional to its size, as is the case for the quad-tree factorization of Section 6.4. As

with CTW, the prior also implicitly contains structure that makes model averaging

easier, as the next section details.

6.3.2 Recursively Factored Mixture Environment Models

After defining a prior over factorizations, I now combine it with the model averaging

technique described in Section 2.2 to define the class of recursively factored mixture

environment models.

The first step is to describe the set of base environment model factors from which
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each factored environment is formed. This requires specifying an environment model

factor for each element of the set of possible stopping points

Sd(F) := {F} ∪
dim(F)⋃
i=1

Sd−1(Fi) for d > 0,

with S0(F) := {F}, within a recursively decomposable space F of nesting depth

d. In the previous example, S2(O) = {O,O1,O2,O1,1,O1,2,O2,1,O2,2}; to apply

the factorization {O1×O1,2×O2,1} we need a model with base environment model

factors fO1 , fO1,2 and fO2,1 , where fs denotes the base environment model factor

corresponding to the stopping point s ∈ Sd(F). Effectively, each of these factors

operates on a separate alphabet (O1, O1,2, O2,1). More precisely, each environment

model factor needs an appropriate type signature that depends on both the history

and the parts of the percept space preceding it. For instance, an environment model

factor processing O2 at time n depends on a history string that is an element of the

set (A×O)n−1 ×A×O1. Similarly, an environment model factor for O2,2 depends

on a history string from the set (A×O)n−1 ×A×O1 ×O2,1. Now, given a history

ax1:n and a d ≥ 0 times recursively decomposable space F , a recursively factored

mixture environment is defined as

ξdF (x1:n | a1:n) :=
∑

f∈Cd(F)

2−Γd(f)ρf (x1:n | a1:n), (6.7)

where each factored model is defined by a product of environment model factors

ρf (x1:n | a1:n) :=
∏

τ∈U(f)

fτ (xτ1:n | a1:n),

with U(f) ⊂ Sd(F) the set of stopping points in the factorization f ∈ Cd(F). Note

that ξ0
F (x1:n | a1:n) = fF (x1:n | a1:n).

Notice that there exists a significant amount of shared structure in Equation 6.7,

since each environment model factor can appear multiple times in the definition of

each factored environment model. This property, along with the recursive definition

of the prior in Section 6.3.1, allows us to derive the identity

ξdF (x1:n | a1:n) =
1

2
fF (xF1:n | a1:n) +

1

2

dim(F)∏
i=1

ξd−1
Fi (x1:n | a1:n), (6.8)

that allows us to compute Equation 6.7 efficiently.
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Proof. Along the lines of the argument used to prove Lemma 2 in Willems et al.

(1995), we write

ξdF (x1:n | a1:n) =
∑

f∈Cd(F)

2−Γd(f)ρf (x1:n | a1:n)

=
∑

f∈Cd(F)

2−Γd(f)
∏

τ∈U(f)

fτ (xτ1:n | a1:n)

=
1

2
fF (xF1:n | a1:n) +

∑
f∈Cd\{F}

2−Γd(f)
∏

τ∈U(f)

fτ (xτ1:n | a1:n)

=
1

2
fF (xF1:n | a1:n) +

1

2

∑
f1∈

Cd−1(F1)

· · ·
∑

fdim(F)∈
Cd−1(Fdim(F))

dim(F)∏
i=1

2−Γd−1(fi)
∏

τ∈U(fi)

fτ (xτ1:n | a1:n)

=
1

2
fF (xF1:n | a1:n) +

1

2

dim(F)∏
i=1

 ∑
f∈Cd−1(Fi)

2−Γd−1(f)ρf (x1:n | a1:n)


=

1

2
fF (xF1:n | a1:n) +

1

2

dim(F)∏
i=1

ξd−1
Fi (x1:n | a1:n).

Equation 6.8 is essentially an application of the Generalized Distributive Law

(Aji and McEliece, 2000), a key computational concept underlying many efficient

algorithms. By using dynamic programming to compute each ξdF term only once,

the time overhead of performing exact model averaging over Cd(F) is reduced to

just O(n|Sd(F)|). Furthermore, provided each base environment model factor can

be updated online and the {ξdF ′}F ′∈Sd(F) terms are kept in memory, each percept can

be processed online in time O(|Sd(F)|). The size of Sd(F) is in general dominated

by the number m of spaces of depth 0, yielding a method that is effectively linear

in m. For example, if F can be represented by a binary tree of depth d, there are

m = 2d spaces of depth 0, |Sd(F)| = 2d+1 − 1 and the algorithm described here

performs model averaging over O(22d) factorizations.

As the technique performs exact model averaging, the bound of Equation 2.5

applies:

Theorem 6.3.1. Given a recursively decomposable space F with nesting depth d ∈
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Figure 6.3: Example quad-tree factorization of a Space Invaders screen. Each
labelled square corresponds to a factor.

N, for all a1:n ∈ An, x1:n ∈ X n, and f ∈ Cd(F), we have

− log2 ξ
d
F (x1:n | a1:n)− (− log2 ρf (x1:n | a1:n)) ≤ Γd(f) ,

and for any environment µ,

D1:n(µ ‖ ξdF ) ≤ Γd(f) +D1:n(µ ‖ ρf ).

Hence the technique described above is asymptotically competitive with the best

factorization in Cd(F).

6.4 Quad-Tree Factorization

Section 6.3 provides a general framework for specifying recursively factored mixture

environment models. The aim of this section is to give an example of how this

framework can extend existing model learning algorithms to domains with large

observation spaces, such as Atari 2600 games. The quad-tree factorization (QTF)

technique I now describe is particularly suited to image-based observation spaces.

Although QTF is presented in Atari 2600 terms, it is easily extended to other do-

mains whose observation space exhibits two-dimensional structure.

Recall the notation from Section 3.3: Dx and Dy denote totally ordered sets

of row and column indices, with the joint index space given by D := Dx × Dy; C

denotes a finite set of possible pixel colours; a pixel is a tuple (x, y, c) ∈ Dx×Dy×C;

finally, an observation o is defined as a set of |D| pixels, with each location (x, y) ∈ D

uniquely corresponding to a single pixel (x, y, c). The set of all possible observations

is denoted by O.
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I now describe a natural way to recursively decompose O using a quad-tree

split operator that divides each region into four equal parts; an example of such

a decomposition is shown in Figure 6.3. For a given D′x ⊆ Dx whose ordered ele-

ments are x1, x2, x3, . . . , xn, denote by l(D′x) :=
{
x1, x2, . . . , xbn/2c

}
and by h(D′x) :={

xbn/2c+1, xbn/2c+2, . . . , xn
}

the lower and upper halves of D′x; similarly let l(D′y) and

h(D′y) denote the two halves of D′y ⊆ Dy. Let

OD′x,D′y :=
{{

(x, y, c) : x ∈ D′x, y ∈ D′y, (x, y, c) ∈ o
}

: o ∈ O
}

be the set of image patches that can occur in the region defined by D′x and D′y,

noting that O = ODx,Dy . Assuming for now that |Dx| and |Dy| are both divisible by

2d, the recursively decomposable space FdDx,Dy on O is then recursively defined as

FdD′x,D′y :=


OD′x,D′y if d = 0

Fd−1
l(D′x),l(D′y) ×F

d−1
l(D′x),h(D′y) ×

Fd−1
h(D′x),l(D′y) ×F

d−1
h(D′x),h(D′y)

otherwise
(6.9)

The base case corresponds to indivisible image patches of size |Dx|/2d×|Dy|/2d.

These image patches are used to form larger image patches. Also note that there is

a one-to-one correspondence between elements of FdDx,Dy and O. Whenever |Dx| or

|Dy| is not divisible by 2d, as is the case with Atari 2600 games, a simple solution

is to enlarge Dx and Dy appropriately and insert pixels whose colour is a special

out-of-screen colour, as was also done in Section 4.2.22.

6.4.1 Algorithm

Algorithm 2 provides pseudocode for an online implementation of QTF. The algo-

rithm is invoked once per time step; its arguments are the top-level space FdDx,Dy , its

nesting depth d, and the current percept. The algorithm recursively updates the base

environment model factor fF corresponding to F as well as its factors {Fi}4i=1. The

fF and ξdF variables respectively store the values fF (xF1:n | a1:n) and ξdF (x1:n | a1:n);

both sets of variables are initialized to 1. As QTF is a meta-algorithm, any suitable

set of base environment model factors may be used. In my implementation, I avoid

numerical issues such as underflow by storing and manipulating probabilities in the

logarithmic domain.

2Having each dimension divisible by 2d is not strictly required, but it considerably simplifies the
implementation details.

85



If C represents the (uniform) cost of updating a single base environment model

factor and performing the addition and subtraction necessary to update the term

ξdF , then the computational cost of running QTF is at most 4
3 |D|C, which is easily

derived by summing the geometric series.

Algorithm 2 Online Quad-Tree Factorization

Require: A quad-tree decomposable space F
Require: A nesting depth d ∈ N
Require: A percept xt at time t ∈ N

qtf(F , d, xt)
Update fF with xFt
if d > 0 then

for i = 1 . . . 4 do
qtf(Fi, d− 1, xt)

end for

ξdF ←
1
2 fF + 1

2

4∏
i=1

ξd−1
Fi

else
ξdF ← fF

end if

6.4.2 Switching Quad-Tree Factorization

In the same manner that the weighting operation of Context Tree Weighting can

be replaced by a switching operation (Section 6.1.2), the weighting operation in

QTF can also be replaced by a switching operation. In practice, this leads to faster

learning: the algorithm quickly switches from using small, more easily-learned image

patches to larger patches which take more samples to model but are more accurate.

The switching quad-tree factorization algorithm is described in Algorithm 3.

The only difference between this new algorithm and QTF is the need to store, at

each QTF node, two quantities kF and sF ; both are initialized to 0.5.

6.5 Empirical Study

As with the other contributions of this thesis, I evaluated the quad-tree factorization

using the Arcade Learning Environment (Section 3.1.1); the algorithm was first

designed and optimized using the training games and subsequently evaluated on

fifteen testing games; these games were selected uniformly at random from the

larger set of testing games. The games used in this chapter are listed in Appendix
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Algorithm 3 Online Switching Quad-Tree Factorization

Require: A quad-tree decomposable space F
Require: A nesting depth d ∈ N
Require: A percept xt at time t ∈ N

sqtf(F , d, xt)
z ← ξdF
pf ← the probability of xFt according to fF
Update fF with xFt

if d > 0 then
for i = 1 . . . 4 do
qi ← sqtf(Fi, d− 1, xt)

end for
αt+1 ← 1

t+1

ξdF ← kF pf + sF
4∏
i=1

qi

kF ← (1− αt+1)kF pf + αt+1sF
4∏
i=1

qi

sF ← (1− αt+1)sF
4∏
i=1

qi + αt+1kF pf

 simultaneously

else
ξdF ← fF

end if

return ξdF/z ; the probability of xFt under the switching model ξdF

B.

6.5.1 Experimental Setup

For practical reasons, I used a quad-tree factorization that considered image patches

ranging in size from 32×32 down to 4×4; this corresponds to a nesting depth of 3.

Empirically, I found that larger patch sizes generalized poorly, while smaller patches

performed worse due to limited contextual information. Each patch was predicted

using a context tree switching (CTS) model (Section 6.1.2); to handle the large

image patch alphabets, Sparse Sequential Dirichlet estimators (Section 6.1.3) were

used at the CTS nodes. Each prediction was made using a patch context composed

of eleven neighbouring patches from the current and previous time steps, similar in

spirit to the P-context trees of Veness et al. (2011). This patch context also encoded

the most recent action. The exact features used are provided in Appendix A.

To curb memory usage and improve sample efficiency, I incorporated a set of

well-established techniques into my implementation. For each patch size, a single
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CTS model was shared across patch locations, giving a limited form of translation

invariance. Finally, each CTS model was implemented using hashing (Willems and

Tjalkens, 1997) so as to better control memory usage. In practice, I found that

larger hash tables always resulted in better results; in the results below the hash

table used 1 million entries per tree depth, for a total of 12 million entries.

I compared QTF with factored models using a fixed patch size (4×4, 8×8, 16×16,

32×32). Each model was trained on each game for 10 million frames, using a policy

that selected actions uniformly at random and then executed them for k frames,

where k was also chosen uniformly at random from the set K := {4, 8, 12, 16}.

This policy was designed to visit more interesting parts of the state space and thus

generate more complex trajectories. The models received a new game screen every

fourth frame, yielding 15 time steps per second of play. Predicting at higher frame

rates was found to be easier, but led to qualitatively similar results while requiring

more wall-clock time per experiment.

Time Steps Correct
4×4 8×8 16×16 32×32 QTF

Asterix 0.748 1.17 1.11 1.44 1.44
Beam Rider ≈ 0 0.007 0.100 0.227 0.185
Freeway 0.303 4.64 2.21 1.63 3.20
Seaquest 0.019 0.427 0.157 2.39 1.85
Space Invaders 0.606 0.502 0.736 0.274 0.830

Amidar 13.0 12.9 13.1 13.3 13.4
Crazy Climber 0.347 0.758 0.650 2.50 2.66
Demon Attack 0.004 0.004 0.006 0.013 0.026
Gopher 0.048 0.375 0.747 2.27 2.28
Krull 0.014 0.083 0.482 1.14 0.233
Kung-Fu Master 2.87 3.17 3.35 3.57 3.53
Ms. Pacman 0.047 0.096 0.264 0.434 0.463
Pong 0.319 1.79 2.50 3.99 3.97
Private Eye 0.000 ≈ 0 0.001 0.010 0.003
River Raid 0.513 0.643 0.672 1.76 1.68
Star Gunner 0.041 0.417 0.659 1.48 0.802
Tennis 3.04 4.35 4.01 4.94 4.74
Up and Down 0.354 0.704 1.77 1.64 2.20
Wizard of Wor 0.957 0.946 0.961 0.520 0.519
Yars’ Revenge ≈ 0 0.003 0.005 0.005 0.008

Table 6.1: Average number of forward time steps correctly predicted for the fixed-
size and QTF models. The first five games constitute the training set. Highest
per-game accuracy is indicated in bold blue.
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6.5.2 Results

After training, I evaluated the models’ ability to predict the future conditional on

action sequences. This evaluation phase took place over an additional 8000 frames,

with action sequences again drawn by selecting actions uniformly at random and

executing them for k ∈ K frames. At each time step t, each model was asked to

predict 90 steps ahead and recorded how many frames were perfectly generated.

Predictions at t+k were thus made using the true history up to time t and the k−1

already sampled frames.

Table 6.1 summarizes the result of this evaluation. Which patch size best predicts

game screens depends on a number of factors, such as the size of in-game objects,

their frame to frame velocity and the presence of animated backgrounds. QTF

achieves a level of performance reasonably close to the best patch size, above 95%

in 13 out of 20 games. In some games, QTF even improves on the performance

of the best fixed-size model. Ultimately, Theorem 6.3.1 ensures that QTF will

asymptotically achieve a prediction accuracy comparable to the best decomposition

available to it.

Sequential, probabilistic prediction algorithms such as QTF are often evaluated

based on their n-step average logarithmic loss, defined as 1
n

∑n
i=1− log2 ξ(xi | ax<iai)

for an environment model ξ. This measure has a natural information theoretic

interpretation: on average, losslessly encoding each percept requires this many bits.

While counting the number of correct future frames is a conservative measure and

is heavily influenced by the sampling process, the logarithmic loss offers a more

fine-grained notion of predictive accuracy. As shown in Table 6.2, the quad-tree

factorization achieves significantly lower per-frame loss than any fixed-size model.

In view that each frame contains 160×210×7 = 235, 200 bits of data, the results for

Pong and Freeway – achieving a logarithmic loss of 3 bits per frame – are particularly

significant.

6.5.3 Discussion

The benefits of predicting observations using environment model factors correspond-

ing to larger image patches are twofold. Large regular patterns, such as the invaders

in Space Invaders, can easily be represented as a single symbol. When using a

base model such as CTS, which treats symbols atomically, sampling from QTF is

often faster as fewer symbols need to be generated. Thus the quad-tree factorization
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Logarithmic Loss (Base 2)
4×4 8×8 16×16 32×32 QTF

Asterix 81.83 29.44 188.2 2166 17.77
Beam Rider 850.6 335.4 710.8 4059 68.63
Freeway 12.68 8.19 50.88 251.1 3.05
Seaquest 101.8 173.9 1328 7887 51.26
Space Invaders 161.3 129.5 678.2 8698 27.99

Amidar 35.74 36.58 168.1 815.9 9.95
Crazy Climber 205.5 161.0 446.9 2172 40.84
Demon Attack 716.9 1587 5502 19680 531.1
Gopher 72.85 28.24 66.02 608.9 9.97
Krull 615.4 1103 4025 15220 245.2
Kung-Fu Master 74.62 59.33 179.9 1012 20.87
Ms. Pacman 109.2 183.5 1053 6362 48.9
Pong 33.75 13.71 23.07 121.0 3.24
Private Eye 453.5 623.4 1922 7956 162.6
River Raid 298.5 256.5 1034 6055 77.35
Star Gunner 438.0 481.2 1980 10790 139.2
Tennis 178.5 290.7 945.6 4134 93.6
Up and Down 1461 2220 5104 14490 854.7
Wizard of Wor 134.3 81.98 277.9 1778 26.42
Yars’ Revenge 667.4 1251 3264 20810 493.3

Table 6.2: Per-frame logarithmic loss for the fixed-size and QTF models, averaged
over the whole training sequence. The first five games constitute our training set.
The lowest loss is indicated in bold blue.

produces a forward model of Atari 2600 games which is both efficient and accurate.

In my experiments, I used Context Tree Switching (CTS) models as environ-

ment model factors. One limitation of this approach is that CTS has no provision

for partial symbol matches: altering a single pixel within an image patch yields

a completely new symbol. This presents a significant difficulty, as the size of the

alphabet corresponding to F grows exponentially with its nesting depth d. The

results of Table 6.2 are symptomatic of this issue: larger patch size models tend to

suffer higher loss. As QTF is a meta-algorithm independent of the choice of environ-

ment model factors, other base models perhaps better suited to noisy inputs may

improve predictive accuracy, for example locally linear models (Farahmand et al.,

2009), dynamic bayes networks (Walsh et al., 2010), and neural network architec-

tures (Sutskever et al., 2008).
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6.6 Conclusion

In this chapter, I described an algorithm for learning forward models of large factored

domains such as Atari 2600 games. The main contributions are

1. A framework for describing recursive factorizations,

2. An instantiation of this framework, quad-tree factorization (QTF), applicable

to observation spaces with two-dimensional structure such as Atari 2600 game

screens, and

3. Empirical and theoretical results showing the validity of the approach: QTF

performs as well as the best factorization within its recursively defined class

of factorizations.

The chief benefit of using such a framework, and more specifically the quad-

tree factorization, is that it obviates the need to choose a factorization a priori.

The model learning results presented here illustrate the importance of the domain-

independent approach: different Atari 2600 games do, in fact, require different

factorizations. The quad-tree factorization algorithm can be said to be domain-

independent as it provably works well across the set of Atari 2600 games.

There is another contribution that emerges, indirectly, from the work described

in this chapter. To the best of my knowledge, the QTF model implemented here is

the first to tackle observation spaces of the magnitude of Atari 2600 game screens.

While the forward models learned here are by no means equal in power to the true

Atari 2600 simulator, this work constitutes an encouraging step forward.

Simultaneously, the question arises of how to best act given an imperfect model

of the environment. Recently, Joseph et al. (2013) argued that, when no member

of the model class can represent the true environment, a mismatch arises between

model accuracy and model usefulness: the best policy may not rely on the most

accurate model. How to best address this issue is likely to be key in a real-world

setting; in such a setting, the sheer complexity of the world in which our agents are

immersed precludes learning error-free models.

6.7 Related Work

Learning environment models has been an ongoing area of study since the first days

of reinforcement learning research (Sutton, 1991; Thrun and Mitchell, 1993). In
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fully observable environments, Sutton et al. (2008) recently investigated the effects

of combining Dyna planning with linear function approximation, while Hester et al.

(2010) learned the dynamics of a Nao robot in order to improve its sample efficiency

when learning to kick in preparation for the RoboCup competition. Holmes and

Isbell (2006) developed a tree-based method for concisely modelling deterministic,

partially observable environments; by virtue of the environment’s determinism, it is

possible to exactly model its dynamics using a prediction suffix tree augmented with

loops. Talvitie and Singh (2008) proposed the notion of partial models: models that

predict only a portion of the future observation. The authors argued that partial

models are simpler to learn in partially observable domains, and are often sufficient

to learn to behave well or predict reward. Recently, predictive state representations

(PSRs, Littman et al., 2002) were shown to constitute a practical tool for learning

the dynamics of partially observable environments (Boots et al., 2010). In this work,

the authors proposed a relaxed version of a PSR, the transformed PSR (TPSR), that

can easily be learned from data; they then showed that TPSRs can learn a model

of a simple three-dimensional environment observed through a 768-pixel camera,

and finally showed how this model was powerful enough to allow planning in this

domain. Similar to the work presented in this chapter and in Veness et al. (2011),

where compression techniques are used to model the world, Farias et al. (2010) pro-

posed a model learning approach based on the Lempel-Ziv compression algorithm.

Although related to their work, the quad-tree factorization algorithm tackles an or-

thogonal problem, namely the selection of a good observation factorization from a

large recursive class of factorizations.

A variety of model learning solutions have been proposed for reinforcement learn-

ing domains with factored state or observation spaces. The typical framework used

by such solutions is the Factored Markov Decision Process (Boutilier et al., 2000),

which assumes that the environment can be represented by a dynamic bayes network

(DBN) in which each state variable at time t + 1 is stochastically determined by a

subset of variables at time t. Degris et al. (2006) proposed an algorithm that learns

the model of a factored MDP environment using a decision tree; after learning, the

algorithm then performs value iteration using this model. Strehl et al. (2007) pro-

posed a theoretically-grounded algorithm for simultaneously learning the structure

and parameters of a DBN environment model; their work provides a probably ap-

proximately correct (PAC) bound on the number of samples needed to learn a DBN
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with bounded maximum in-degree. Following this work, Diuk et al. (2009) adapted

an exploration scheme known as the Adaptive k-Meteorologists to the problem of

exploration in reinforcement learning, also assuming a DBN model of the environ-

ment. Common to these algorithms is their focus on modelling state variables (with

the assumption that the environment is Markov); by contrast, the recursive factor-

ization described here explicitly considers factored observations rather than factored

states.

To handle partially observable environments, McCallum (1995) proposed a series

of algorithms, culminating with U-Tree, which constructs a tree-based representation

of the agent’s history. Shani et al. (2005) expanded on this idea to explicitly model

a POMDP using Utile Suffix Memory (U-Tree’s precursor). More recently, Poupart

(2008) and Ross and Pineau (2008) simultaneously studied the idea of Bayesian

learning of a POMDP model. In the Bayesian setting, the agent begins with a

prior over possible POMDPs and updates its prior with each new observation-action

pair, enabling it to act in a Bayes-optimal way (given sufficient computation). Both

approaches considered POMDP models described by DBNs and Dirichlet priors over

the DBN parameters and propose to track the posterior over DBNs using particle

filtering.

93



The young man saw himself in the mirror behind the bar. “I said I was a
different man, James,” he said. Looking into the mirror he saw that this
was quite true. “You look very well, sir,” James said. “You must have had
a very good summer.”

The Sea Change
Ernest Hemingway

Chapter 7

Conclusion

In this thesis I proposed three new algorithms suited to factored reinforcement

learning domains. The first of these algorithms stems from a formal definition of

contingency awareness, and consists in learning a model of such contingency and sub-

sequently using it to detect the location of the player avatar in Atari 2600 games.

This location is then used to improve the feature set used to perform value function

approximation. The second algorithm, tug-of-war hashing for linear value function

approximation, combines existing ideas from the sketch literature and recent work

on random projections to improve over the standard hashing scheme previously

used in linear value function approximation. My final contribution is the quad-tree

factorization (QTF) algorithm and the more general framework of recursive factor-

izations in which it falls. QTF performs efficient Bayesian model averaging over

a large class of factored models suitable for observation spaces with an underlying

two-dimensional structure, such as the image space of Atari 2600 games. A fourth,

albeit minor contribution can be found in Chapter 3, where I proposed the score

distribution as a method for properly comparing empirical results on a large set of

domains. As part of my thesis, I also worked on making a new release of the Arcade

Learning Environment available to interested researchers.

The overarching aim of this work was to investigate fast, scalable reinforcement

learning algorithms that can be easily applied to arbitrary Atari 2600 games. This

domain-independence requirement was upheld by empirically validating each algo-

rithm on a large set of games. Although the empirical results presented here will

surely be bettered within the coming year, part of their relevance is to show that

scientific progress is possible, on large, semirealistic domains such as Atari 2600

games.
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One critical aspect of reinforcement learning this thesis neglects is the question

of exploration. As it has amply been demonstrated elsewhere (White and White,

2010; Li et al., 2009; Kolter and Ng, 2009; Dearden et al., 1999), exploration is a vital

component of any reinforcement learning agent. Two of the three contributions made

here, contingency awareness and forward model learning, can be directly exploited

for exploration purposes: in one case by explicitly performing exploration in the

simpler, two-dimensional space of the player avatar, and in the other by looking for

action sequences that result in high model uncertainty. How to best formalize and

utilize these ideas is a question left for future work.

Most of the work in this thesis could also be validated on other large, factored

domains. In the game of Starcraft, for example, Churchill et al. (2012) has studied

k-unit coordination. Here both the action and state spaces involved are simply

too large for most techniques; tug-of-war SARSA(λ) could then be used to learn

an approximate value function based on exhaustive generation of simple Starcraft

features.

Finally, none of the learning agents produced over the course of this thesis achieve

even reasonable human-player scores on the full gamut of Atari 2600 games. Many of

the standard reinforcement learning tools – such as ε-greedy exploration, exhaustive

feature generation, and single time-scale policies – are simply unsuited to the com-

plexity of Atari 2600 games. Consider, for example, the well-known Pitfall!. In

Pitfall!, the player’s goal is to navigate from screen to screen, avoiding two-frame

crocodiles and pixelated quicksand, looking for jewels and gold that increase their

score. Despite the game’s conceptual simplicity, no domain-independent algorithm

has been shown to satisfactorily tackle it. Effectively, there remains a large gap

between, on one hand, our abstract understanding of most Atari 2600 games, and

on the other the low-level control required to play them; filling this gap is perhaps

one of the most difficult challenges ahead of us.
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Appendix A

Algorithmic Details

A.1 Atari 2600 Feature Generation

In Chapter 5, I omitted for clarity the exact method used to generate the features

necessary to approximate the value function of Atari 2600 games; this appendix now

fills this omission. A c-coloured pattern ζ is a set of pixels sharing a common colour

c. For a given image o ∈ O, the a× b c-coloured pattern at (x, y) is defined as

ζa,bx,y(o, c) := {(x′, y′, c) : (x′, y′, c) ∈ pa,bx,y(o)}

Intuitively, ζa,bx,y(o, c) describes the set of pixels taking on colour c within a a× b

tile whose top-left corner is (x, y). These colour patterns form the basis of our

feature generation process. Similar to the image patch indices described in Section

3.3, define the c-colour pattern index as

ıa,bx,y(o, c) :=

y+b−1∑
y′=y

x+a−1∑
x′=x

2a(y′−y)+(x′−x)I[ox′,y′=c] , (A.1)

where the previous encoding of ox,y is now replaced by a binary encoding indicating

whether pixel (x′, y′, c′) matches colour c. Note, in particular, that the index 0

corresponds to the absence of colour c anywhere within the tile of size a× b located

at (x, y). Below, this binary index encoding is generalized to encode arbitrary tuples.

We define the set of all a× b c-coloured patterns for observation o as

Za,b(o, c) := {(x, y, ıa,bx,y(o, c)) : (x, y) ∈ D}

The next step is to encode the presence of patterns within a a′ × b′ tile located

at (x′, y′). For a given colour c, the set of a × b c-coloured pattern indices present

in this tile is
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patternsa,b,c(o, a
′, b′, x′, y′) := {ıa,bx,y(o, c) : (x, y) ∈ la

′,b′

x′,y′(o), ı
a,b
x,y(o, c) 6= 0}

This somewhat unwieldy definition now allows us to encode which patterns are

present in o jointly with their location, in the same fashion as Equation A.1.

To reduce the number of patterns provided to the agent at each time step, I

consider the foreground image, as was originally suggested by Naddaf (2010), rather

than all pixels. Recall from Section 4.4.1 the definition of a foreground image ō

given a background image bg ∈ O:

ō := {(x, y, c) : (x, y, c) ∈ o, c 6= bgx,y}.

Note that ō ⊂ o: the foreground image does not constitute a full, 160× 210 set

of pixels. However, none of the equations above explicitly require such a full set: we

can just as easily extract patterns from ō as from o.

Let R := {{a1, b1}, . . . {ar, br}} denote a set of tile sizes, and p a maximum

pattern size (in the experiments of Chapter 5, p = 3). Feature generation proceeds

by encoding the presence of patterns of size 1× 1, 2× 2, . . . p× p within each screen

tile. This process is summarized as Algorithm 4 (recall that dw and dh denote

the screen width and height, respectively). Figures A.1 and A.2 depict extracted

patterns for game screens respectively taken from Seaquest and Space Invaders.

We add a further level of refinement to the feature set by jointly encoding the

presence of colour patterns together with the avatar location; this location is ob-

tained using the tools developed in Chapter 4. Here we take a slightly different ap-

proach from Chapter 4: instead of quantizing the estimated avatar location (xa, ya),

the whole screen is translated by an amount corresponding to said location. The

translated screen translate(o, xa, ya) ∈ O is defined as:

translate(o, xa, ya) := {(x, y, c) : (xa + x, ya + y, c) ∈ o, x ∈ D∗x, y ∈ D∗y},

where D∗x := {x : x = 0 or x ∈ Dx or −x ∈ Dx} is the extension of the set of columns

indices Dx to negative values, with Dy defined similarly. Thus translate(o, xa, ya)

defines a screen whose (0, 0) location corresponds to the estimated avatar position.

The extension to D∗x and D∗y is necessary to encode both positive and negative offsets

from the avatar position. With minor modifications, Algorithm 4 can be used to

generate a location-dependent feature vector φ′. The feature vector used in Chapter
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Algorithm 4 Colour Pattern-Based Feature Generation

Require: An input image o ∈ O
Require: A background image bg
Require: Parameters R, p

Initialize feature vector φ← 0
Extract ō the foreground image
for (al, bl) ∈ R do

for i = 0 . . . dwal − 1 do

for j = 0 . . . dhbl − 1 do
for k = 1 . . . p do

for c ∈ C do
for index ∈ patternsk,k,c(ō,

dw
al
, dhbl , i× al + 1, j × bl + 1) do

Encode the tuple (l, i, j, k, c, index) as an integer q
φq ← 1

end for
end for

end for
end for

end for
end for

5 is the concatenation of both location-dependent and location-independent feature

vectors.

Implementation Notes

The tuple encoding method used in Algorithm 4 produces integers that must be

stored in 64-bit precision numbers and subsequently hashed. More specifically, a

tuple (x1, x2, . . . , xl) whose integer variables range (without loss of generality) from

0 to X1, X2, . . . , Xl produces integers q ranging from 0 to X1X2 . . . Xl − 1. By

only considering c-coloured patterns whose top row contains a pixel of colour c, the

total number of i × i c-coloured patterns in a single screen is idwdh; with a few

optimizations, the feature vector output by Algorithm 4 can be generated in time

O(rp3dwdh), excluding the time needed to perform hashing. To provide a sense of

practicality, consider that a reasonable Java implementation with r = 3 and p = 6

which also performs avatar tracking runs at 60 frames per second, or real-time, using

a single 2.4Ghz Intel Core i5 processor. A parallel implementation of both avatar

tracking and feature generation would result in much higher speeds.
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Figure A.1: Colour patterns of size up to 6 × 6 extracted from a given Seaquest
screen. Top. Original screen. Middle. Mosaic of 1856 extracted patterns. Bot-
tom. Mosaic of extracted patterns (detail).
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Figure A.2: Colour patterns of size up to 6 × 6 extracted from a given Space In-
vaders screen. Top. Original screen. Middle. Mosaic of 4452 extracted patterns.
Bottom. Mosaic of extracted patterns (detail).
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A.2 QTF: Base Environment Model Factors

As described in Section 6.5, the QTF forward model predicted using base environ-

ment model factors corresponding to 32×32, 16×16, 8×8 and 4×4 image patches.

Each patch was predicted using a single CTS model shared across all patches of the

same size. I now detail the process of making predictions using this CTS model; in

what follows a fixed patch size model is assumed, with the implementation easily

extending to the quad-tree factorization.

Recall the notation for the screen width, dw, and screen height dh. For a patch

size a×b, define the set of tile locations La,b := {(x, y) : x, y ∈ N, ax < dw, by < dh};

a factored model operating on patches of size a× b makes |L| predictions per screen.

Recall also the definition of an image patch index (Section 3.3):

ıa,bx,y(o) :=

y+b−1∑
y′=y

x+a−1∑
x′=x

|C|a(y′−y)+(x′−x)bit(ox′,y′).

In AIXI notation, upon receiving a new screen ot ∈ O the CTS model must

predict |L| symbols, corresponding to {ıa,bax,by(ot) : (x, y) ∈ La,b}. Note that ıa,bax,ay(ot)

ranges from 0 to |C|a×b; the index is therefore first hashed down to a 32-bit integer

ı̂a,bax,by(ot). As a, b are fixed and the coordinates ax, by, implied, I denote by ı̂x,y,t :=

ı̂a,bax,ay(ot). The following ordered set of features is provided to the CTS model as

context for the prediction of ı̂a,bx,y,t:

1. ı̂a,bx,y,t−1 2. ı̂a,bx,y,t−2 3. ı̂a,bx−1,y,t−1

4. ı̂a,bx,y−1,t−1 5. ı̂a,bx,y+1,t−1 6. ı̂a,bx+1,y,t−1

7. The last action taken 8. ı̂a,bx−1,y,t−2 9. ı̂a,bx,y−1,t−2

10. ı̂a,bx,y+1,t−2 11. ı̂a,bx+1,y,t−2

Out-of-bounds image patches, as well as patches from t ≤ 0, are mapped to index

0. This particular context was designed using the training games; other contexts

led to slightly different but qualitatively comparable results. In effect, the shared

CTS model treats image patches as integer symbols, which are understood by its

SSD estimators as coming from an alphabet of (finite) size |C|a×b.

The final step in the screen prediction process is to transform the set of CTS

predictions, P := {ı̂x,y,t : (x, y) ∈ La,b}, into a 160 × 210 Atari 2600 game screen.

This is done by performing a reverse lookup on the elements ı̂x,y,t ∈ P to obtain the

corresponding image patch p; this image patch is then copied onto location (ax, by)

of the output screen prediction.
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Appendix B

List of Games

B.1 Training Games

The following games were used, across all chapters, in the design and parameter

optimization of this thesis’s algorithms:

• Asterix

• Beam Rider

• Freeway

• Seaquest

• Space Invaders

B.2 Testing Games: Chapter 4

The following games were used to evaluate the algorithms of Chapter 4.

Alien Amidar Assault
Asteroids Atlantis Bank Heist
Battle Zone Berzerk Bowling
Boxing Breakout Carnival
Centipede Chopper Command Crazy Climber
Double Dunk Enduro Fishing Derby
Frostbite Gopher Gravitar
H.E.R.O. Ice Hockey James Bond
Journey Escape Kangaroo Krull
Kung-Fu Master Montezuma’s Revenge Ms. Pacman
Name This Game Pooyan Pong
Private Eye Q*Bert River Raid
Road Runner Robotank Star Gunner
Time Pilot Tutankham Up and Down
Venture Wizard of Wor Zaxxon
Video Pinball
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B.3 Testing Games: Chapter 5

The following games were used to evaluate the algorithms of Chapter 5.

Alien Amidar Assault
Asteroids Atlantis Bank Heist
Battle Zone Berzerk Bowling
Boxing Breakout Carnival
Centipede Chopper Command Crazy Climber
Demon Attack Double Dunk Elevator Action
Enduro Fishing Derby Frostbite
Gopher Gravitar H.E.R.O.
Ice Hockey James Bond Journey Escape
Kangaroo Krull Kung-Fu Master
Montezuma’s Revenge Ms. Pacman Name This Game
Pooyan Pong Private Eye
Q*Bert River Raid Road Runner
Robotank Star Gunner Tennis
Time Pilot Tutankham Up and Down
Venture Video Pinball Wizard of Wor
Yar’s Revenge Zaxxon

B.4 Testing Games: Chapter 6

The following games were used to evaluate the algorithms of Chapter 6.

Pong Wizard of Wor Kung-Fu Master
Gopher Yar’s Revenge Amidar
Tennis Star Gunner Ms. Pacman
Demon Attack Private Eye Crazy Climber
River Raid Up and Down Krull
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