This is a decommissioned version of ERA which is running to enable completion of migration processes. All new collections and items and all edits to existing items should go to our new ERA instance at https://ualberta.scholaris.ca - Please contact us at erahelp@ualberta.ca for assistance!
Search
Skip to Search Results- 2Artificial Intelligence
- 2Heuristic Search
- 2Planning
- 1Active Stratified Sampling
- 1Cluster-and-Conquer
- 1Learning Heuristic Functions
-
Fall 2013
Many important problems can be cast as state-space problems. In this dissertation we study a general paradigm for solving state-space problems which we name Cluster-and-Conquer (C&C). Algorithms that follow the C&C paradigm use the concept of equivalent states to reduce the number of states...
-
Spring 2016
This thesis proposes, analyzes and tests different exploration-based techniques in Greedy Best-First Search (GBFS) for satisficing planning. First, we show the potential of exploration-based techniques by combining GBFS and random walk exploration locally. We then conduct deep analysis on how...