This decommissioned ERA site remains active temporarily to support our final migration steps to https://ualberta.scholaris.ca, ERA's new home. All new collections and items, including Spring 2025 theses, are at that site. For assistance, please contact erahelp@ualberta.ca.
Search
Skip to Search Results
Filter
Subject / Keyword
Departments
Supervisors
Author / Creator / Contributor
Year
Collections
Languages
Item type
-
Fall 2015
Superhydrophobic surfaces are proven to be capable of reducing the skin friction in laminar and turbulent flows. These surfaces consist of micro/nano-scale hydrophobic roughness features which make the surface render a non-wetting property due to the entrainment of air pockets between the solid...
1 - 1 of 1