This decommissioned ERA site remains active temporarily to support our final migration steps to https://ualberta.scholaris.ca, ERA's new home. All new collections and items, including Spring 2025 theses, are at that site. For assistance, please contact erahelp@ualberta.ca.
Search
Skip to Search Results- 3Nitrous oxide
- 2Nitrifier denitrification
- 1Ammonia oxidizing bacteria
- 1Ammonia-oxidizers
- 1Denitrification
- 1Greenhouse gas production
-
Fall 2016
Aerobic methanotrophic bacteria lessen the impact of the greenhouse gas methane (CH4) not only because they are a sink for atmospheric methane but also because they oxidize it before it is emitted to the atmospheric reservoir. Aerobic methanotrophs, unlike anaerobic methane oxidizing archaea,...
-
Exploring nitrifier denitrification in Nitrosomonas communis and Nitrosomonas europaea through physiology and proteomic analysis
DownloadSpring 2023
The current understanding of how ammonia oxidizing bacteria (AOB) produce the potent greenhouse gas nitrous oxide is incomplete and inaccurate since most studies are focused on the model organism for the group, Nitrosomonas europaea, which does not represent the physiological diversity of AOB....
-
Fall 2016
Ammonia oxidizers come from two different domains of life, the Archaea and Bacteria, and control a vital step in the global biogeochemical Nitrogen cycle; the conversion of ammonia to nitrite. They are abundant in a wide range of environments including marine and freshwaters, terrestrial soils,...