This decommissioned ERA site remains active temporarily to support our final migration steps to https://ualberta.scholaris.ca, ERA's new home. All new collections and items, including Spring 2025 theses, are at that site. For assistance, please contact erahelp@ualberta.ca.
Search
Skip to Search Results- 2Monte Carlo
- 1Binary networks
- 1Deep Learning
- 1Discrete optimization
- 1Gradient estimation
- 1Machine Learning
-
Spring 2016
Monte Carlo methods are a simple, effective, and widely deployed way of approximating integrals that prove too challenging for deterministic approaches. This thesis presents a number of contributions to the field of adaptive Monte Carlo methods. That is, approaches that automatically adjust the...
-
Fall 2023
Oftentimes, machine learning applications using neural networks involve solving discrete optimization problems, such as in pruning, parameter-isolation-based continual learning and training of binary networks. Still, these discrete problems are combinatorial in nature and are also not amenable to...