This decommissioned ERA site remains active temporarily to support our final migration steps to https://ualberta.scholaris.ca, ERA's new home. All new collections and items, including Spring 2025 theses, are at that site. For assistance, please contact erahelp@ualberta.ca.
Search
Skip to Search Results- 2Bootstrapping
- 2Function approximation
- 2Planning
- 2Temporal difference learning
- 2Two-timescale stochastic approximation
- 1Active learning
-
Fall 2010
We investigate the use of machine learning to create effective heuristics for single-agent search. Our method aims to generate a sequence of heuristics from a given weak heuristic h{0} and a set of unlabeled training instances using a bootstrapping procedure. The training instances that can be...
-
2009
Bhatnagar, Shalabh, Sutton, Richard, Ghavamzadeh, Mohammad, Lee, Mark
Technical report TR09-10. We present four new reinforcement learning algorithms based on actor-critic, function approximation, and natural gradient ideas, and we provide their convergence proofs. Actor-critic reinforcement learning methods are online approximations to policy iteration in which...