Usage
  • 214 views
  • 364 downloads

Proteomic analysis of wheat (Triticum aestivum) whole roots and cell walls under water-deficit stress

  • Author / Creator
    Ganesh, Shiv
  • Wheat plants are affected by water-deficit stress in various regions of the world resulting in reduced crop productivity and thus decreased food production. To better understand the protein changes of water-deficit stress in wheat roots, comparative proteomics was performed using 2D gel electrophoresis followed by HPLC-MS/MS. Forty proteins were identified, twenty-nine of which are non-redundant. Cell walls root proteins were identified using SDS-PAGE followed by mass spectrometry, resulting in the identification of seventeen proteins. Cell wall polysaccharides were extracted from roots to identify the polysaccharide metabolic changes that occurred under water-deficit stress conditions. Using FT-IR, cellulose was found to increase while hemicellulose and pectin content decreased. Further analysis by PCA showed changes in overall polysaccharide content over time. Overall, proteins identified in wheat whole roots and cell walls, combined with indications of polysaccharide modifications in the root cell walls, give us a better understanding of wheat responses to water-deficit stress.

  • Subjects / Keywords
  • Graduation date
    Spring 2011
  • Type of Item
    Thesis
  • Degree
    Master of Science
  • DOI
    https://doi.org/10.7939/R3PG7J
  • License
    This thesis is made available by the University of Alberta Libraries with permission of the copyright owner solely for non-commercial purposes. This thesis, or any portion thereof, may not otherwise be copied or reproduced without the written consent of the copyright owner, except to the extent permitted by Canadian copyright law.