Towards setting credible speed limits: Identifying factors that affect driver compliance on urban roads

  • Author(s) / Creator(s)
  • Road geometry, vehicle characteristics, and weather conditions are all factors that impact a driver’s perception of a safe or credible speed and, consequently, the driver’s decision on whether or not to comply with the posted speed limit. In fact, the role a road’s environment plays in a driver’s perception of a credible speed limit is a topic that has attracted the interest of many researchers in recent years. Despite that, not many studies have considered using empirical data to investigate what features of the road environment influence a driver’s compliance choice. This paper aims to address this matter by exploring the relationships between features of the road surroundings (geometric, temporal factors, and weather conditions) and driver compliance with speed limits. The paper uses data from almost 600 different urban roads in the city of Edmonton, at which over 35 million vehicle spot speeds were collected. Compliance was represented using a categorical ordered response variable, and mixed-effects-logistic-regression models were fitted. Two different models were built, one for arterials and another for collector roads. In general, the findings show that the more restricted drivers become, particularly on arterials, the more likely drivers are to comply with speed limits; potential restrictions include on-street parking and the absence of lateral shoulders. Furthermore, higher traffic activity during peak hours, and presumably on shoulder 16 weekdays, both increase the likelihood of compliance on arterials. Similarly, posted speed limits and traffic volume are both positively correlated with compliance on both arterial and collector roads. The findings of this research provide evidence of the existence of an empirical relationship between road features and compliance, highlighting the importance of setting credible speed limits on roads and the possibility of achieving higher compliance rates through modifications to the road environment.

  • Date created
  • Subjects / Keywords
  • Type of Item
    Article (Draft / Submitted)
  • DOI
  • License
    Attribution-NonCommercial-NoDerivatives 4.0 International