This is a decommissioned version of ERA which is running to enable completion of migration processes. All new collections and items and all edits to existing items should go to our new ERA instance at https://ualberta.scholaris.ca - Please contact us at erahelp@ualberta.ca for assistance!
- 78 views
- 318 downloads
High-Density Cobalt Single-Atom Catalysts for Enhanced Oxygen Evolution Reaction
-
- Author(s) / Creator(s)
-
Single atom catalysts (SACs) possess unique catalytic properties due to low-coordination and unsaturated active sites. However, the demonstrated performance of SACs is limited by low SAC loading, poor metal–support interactions, and nonstable performance. Herein, we report a macromolecule-assisted SAC synthesis approach that enabled us to demonstrate high-density Co single atoms (10.6 wt % Co SAC) in a pyridinic N-rich graphenic network. The highly porous carbon network (surface area of ∼186 m2 g–1) with increased conjugation and vicinal Co site decoration in Co SACs significantly enhanced the electrocatalytic oxygen evolution reaction (OER) in 1 M KOH (η10 at 351 mV; mass activity of 2209 mA mgCo–1 at 1.65 V) with more than 300 h stability. Operando X-ray absorption near-edge structure demonstrates the formation of electron-deficient Co-O coordination intermediates, accelerating OER kinetics. Density functional theory (DFT) calculations reveal the facile electron transfer from cobalt to oxygen species-accelerated OER.
-
- Date created
- 2023-03-30
-
- Subjects / Keywords
-
- Type of Item
- Article (Published)