Usage
  • 493 views
  • 1175 downloads

Advanced Silicon Microring Resonator Devices for Optical Signal Processing

  • Author / Creator
    Masilamani, Ashok Prabhu
  • Chip level optical interconnects has gained momentum with recent demonstrations of silicon-on-insulator (SOI) based photonic modules such as lasers, modulators, wavelength division multiplexing (WDM) filters, etc. A fundamental building block that has enabled many of these silicon photonic modules is the compact, high Q factor microring resonator cavity. However, most of these demonstrations have WDM processing components based on simple add-drop filters that cannot realize the dense WDM systems required for the chip level interconnects. Dense WDM filters have stringent spectral shape requirements such as flat-top filter passband, steep band transition etc. Optical filters that can meet these specifications involve precise placement of the poles and zeros of the filter transfer function. Realization of such filters requires the use of multiple coupled microring resonators arranged in complex coupling topologies. In this thesis we have proposed and demonstrated new multiple coupled resonator topologies based on compact microring resonators in SOI material system.

    First we explored novel microring architectures which resulted in the proposal of two new coupled microring architectures, namely, the general 2D microring array topology and the general cascaded microring network topology. We also developed the synthesis procedures for these two microring architectures. The second part of this thesis focussed on the demonstration of the proposed architectures in the SOI material system. To accomplish this, a fabrication process for SOI was developed at the UofA Nanofab facility. Using this process, ultra-compact single microring filters with microring radii as small as 1um were demonstrated. Higher order filter demonstration with multiple microrings necessitated post-fabrication microring resonance tuning. We developed additional fabrication steps to install micro heaters on top of the microrings to thermally tune its resonance. Subsequently, a thermally tuned fourth order filter response based on the cascaded microring architecture was demonstrated.

  • Subjects / Keywords
  • Graduation date
    Spring 2012
  • Type of Item
    Thesis
  • Degree
    Doctor of Philosophy
  • DOI
    https://doi.org/10.7939/R3B99G
  • License
    This thesis is made available by the University of Alberta Libraries with permission of the copyright owner solely for non-commercial purposes. This thesis, or any portion thereof, may not otherwise be copied or reproduced without the written consent of the copyright owner, except to the extent permitted by Canadian copyright law.
  • Language
    English
  • Institution
    University of Alberta
  • Degree level
    Doctoral
  • Department
  • Supervisor / co-supervisor and their department(s)
  • Examining committee members and their departments
    • Decorby, Raymond (Electrical and Computer Engineering)
    • Schwelb, Otto (Electrical and Computer Engineering, Concordia University)
    • Cadien, Ken (Chemical and Materials Engineering)
    • Karumudi, Rambabu (Electrical and Computer Engineering)