Usage
  • 72 views
  • 221 downloads

Thermoelastic dissipation of micro/nano beam resonators

  • Author / Creator
    Tunvir, Kazi M S
  • The work presented in this dissertation offers theoretical analysis of thermoelastic dissipation of micro/nano beam resonators operated with linear small-amplitude vibration or non-linear large-amplitude vibration under adiabatic or isothermal surface conditions. The aim is to find better design and better operating conditions for beam resonators of MEMS/NEMS for less thermoelastic dissipation. The beam resonators studied in this dissertation (which have not been studied in existing literature) include hollow tubular beams, solid beams of elliptical, triangular, or arbitrary rectangular cross-section, layered composite beams of circular and rectangular cross-sections, and stepped-beams of rectangular cross-section. For each case, detailed formulas are derived for quality factor (Q-factor) due to thermoelastic dissipation under adiabatic and isothermal surface conditions. In addition, thermoelastic dissipation in beam resonator of rectangular cross-section is analyzed for non-linear large-amplitude vibration under adiabatic or isothermal surface thermal condition with comparison to the results of small-amplitude linear vibration. The obtained results offer useful guiding ideas for design of beam resonators to achieve higher Q-factor with thermoelastic dissipation. For example, the present results show that, to achieve higher Q-factor, hollow tubular resonators with isothermal and adiabatic surface conditions are best to operate at low and high frequencies, respectively, as compared to beam resonators of solid circular or rectangular cross-section. Beam resonators of elliptical and triangular cross-sections are best to operate at high frequencies compared to solid rectangular cross-sections of same cross-sectional area and width irrespective of surface thermal conditions. In case of layered composite beams under either of the two surface thermal conditions, two-layered circular cross-sections is found better at high frequencies than three-layered rectangular cross-section of same material combination and layer sizes. Results for doubly-clamped stepped-beams show that a real beam resonator of rectangular cross-section with an undercut at a clamped end, known as a stepped-beam with single step having a change in cross-sectional size at the step in lateral direction only, provides higher Q-factor than a uniform beam of same thickness for all real lengths found in the literature. This dissertation also confirms that non-linear large-amplitude vibration is preferable over linear small-amplitude vibration for doubly-clamped beam resonators under adiabatic surface condition for which the Q-factor increases monotonically with amplitude of vibration, while the opposite is true under isothermal surface condition. The large-amplitude effect on thermoelastic dissipation becomes more significant for higher vibration frequencies than lower ones.

  • Subjects / Keywords
  • Graduation date
    2013-06
  • Type of Item
    Thesis
  • Degree
    Doctor of Philosophy
  • DOI
    https://doi.org/10.7939/R30365
  • License
    This thesis is made available by the University of Alberta Libraries with permission of the copyright owner solely for non-commercial purposes. This thesis, or any portion thereof, may not otherwise be copied or reproduced without the written consent of the copyright owner, except to the extent permitted by Canadian copyright law.
  • Language
    English
  • Institution
    University of Alberta
  • Degree level
    Doctoral
  • Department
    • Department of Mechanical Engineering
  • Supervisor / co-supervisor and their department(s)
    • Dr. Andrew Mioduchowski (Mechanical Engineering)
    • Dr. Chongqing Ru (Mechanical Engineering)
  • Examining committee members and their departments
    • Dr. Tian Tang (Mechanical Engineering)
    • Dr. Hao Zhang (Chemical and Materials Engineering)
    • Dr. Marcelo Epstein (Mechanical and Manufacturing Engineering)
    • Dr. Peter Schiavone (Mechanical Engineering)