Characterization of asphaltene molecular structures by cracking under hydrogenation conditions and prediction of the viscosity reduction from visbreaking of heavy oils

  • Author / Creator
    Rueda-Velasquez, Rosa I
  • The chemical building blocks that comprise petroleum asphaltenes were determined by cracking samples under conditions that minimized alterations to aromatic and cycloalkyl groups. Hydrogenation conditions that used tetralin as hydrogen-donor solvent, with an iron-based catalyst, allowed asphaltenes from different geological regions to yield 50-60 wt% of distillates (<538°C fraction), with coke yields below 10 wt%. Control experiments with phenanthrene and 5α-cholestane confirmed low hydrogenation catalytic activity, and preservation of the cycloalkyl structures. Quantitative recovery of cracking products and characterization of the distillates, by gas chromatography-field ionization–time of flight high resolution mass spectrometry, displayed remarkable similarity in molecular composition for the different asphaltenes. Paraffins and 1-3 ring aromatics were the most abundant building blocks. The diversity of molecules identified, and the high yield of paraffins were consistent with high heterogeneity and complexity of molecules, built up by smaller fragments attached to each other by bridges. The sum of material remaining as vacuum residue and coke was in the range of 35-45 wt%; this total represents the maximum amount of large clusters in asphaltenes that could not be converted to lighter compounds under the evaluated cracking conditions. These analytical data for Cold Lake asphaltenes were transformed into probability density functions that described the molecular weight distributions of the building blocks. These distributions were input for a Monte Carlo approach that allowed stochastic construction of asphaltenes and simulation of their cracking reactions to examine differences in the distributions of products associated to the molecular topology. The construction algorithm evidenced that a significant amount of asphaltenes would consist of 3-5 building blocks. The results did not show significant differences between linear and dendritic molecular architectures, but suggested that dendritic molecules would experience slower reaction rates as they required more breakages to reach a given yield of distillates. Thermal cracking of asphaltenes in heavy oils and bitumens can dramatically reduce viscosity, enabling pipeline transportation with less solvent addition. The viscosities of the products from visbreaking reactions of two different heavy oils were modeled with lumped kinetics based on boiling point pseudo-components, and with the estimation of their individual fluid properties. The model was tuned with experimental viscosity data, and provided estimations of viscosities at different temperatures with absolute average deviations lower than 31%.

  • Subjects / Keywords
  • Graduation date
  • Type of Item
  • Degree
    Doctor of Philosophy
  • DOI
  • License
    This thesis is made available by the University of Alberta Libraries with permission of the copyright owner solely for non-commercial purposes. This thesis, or any portion thereof, may not otherwise be copied or reproduced without the written consent of the copyright owner, except to the extent permitted by Canadian copyright law.
  • Language
  • Institution
    University of Alberta
  • Degree level
  • Department
    • Department of Chemical and Materials Engineering
  • Specialization
    • Chemical Engineering
  • Supervisor / co-supervisor and their department(s)
    • Gray, Murray R. (Chemical and Materials Engineering)
  • Examining committee members and their departments
    • Dechaine, Greg (Chemical and Materials Engineering)
    • Abedi, Jalal (Chemical and Petroleum Engineering, University of Calgary)
    • Semagina, Natalia (Chemical and Materials Engineering)
    • Stryker, Jeffrey (Chemistry)