Usage
  • 8 views
  • 107 downloads

Effects of long-term inhibition of EAAT2 on the excitability of spinal dorsal horn neurons

  • Author / Creator
    Kim, Helena J
  • This thesis examined the effects of long-term inhibition of excitatory amino acid transporter 2 (EAAT2) on the excitability of dorsal horn neurons in defined-medium organotypic slice cultures (DMOTCs). Previous reports suggest that inhibition of EAAT2 may be involved in development of neuropathic pain induced by brain-derived neurotrophic factor (BDNF). Experiments were carried out using confocal Ca2+ imaging to assess the excitability of dorsal horn neurons. Long-term treatment with EAAT2 blocker, dihydrokainate (DHK), prominently increased the neuronal excitability. Long-term exposure to DHK had a significant effect on NMDA, AMPA and metabotropic glutamate subtype 1 (mGluR1) receptors. Lastly, long-term treatment with BDNF and DHK increased activity of AMPA receptors but only DHK significantly increased activity of NMDA receptors. These findings suggest inhibition of EAAT2 and BDNF may have different pathways to promote neuropathic pain and modulating the activity of EAAT2 may be a novel therapeutic approach for neuropathic pain.

  • Subjects / Keywords
  • Graduation date
    2011-06
  • Type of Item
    Thesis
  • Degree
    Master of Science
  • DOI
    https://doi.org/10.7939/R3TQ42
  • License
    This thesis is made available by the University of Alberta Libraries with permission of the copyright owner solely for non-commercial purposes. This thesis, or any portion thereof, may not otherwise be copied or reproduced without the written consent of the copyright owner, except to the extent permitted by Canadian copyright law.
  • Language
    English
  • Institution
    University of Alberta
  • Degree level
    Master's
  • Department
    • Centre for Neuroscience
  • Supervisor / co-supervisor and their department(s)
    • Smith, Peter A (Pharmacology)
  • Examining committee members and their departments
    • Kerr, Bradley J (Anesthesiology and Pain Medicine)
    • Ballanyi, Klaus (Physiology)