Usage
  • 23 views
  • 147 downloads

Specific phage based bacteria detection using microcantilever sensors

  • Author / Creator
    Glass, Nicholas
  • Resonant microcantilevers are promising transducers for bacteria detection because of their high sensitivities. Surface stress and mass from adsorbates affect the resonant frequency. We developed a novel method for decoupling the frequency contributions of a change in mass and surface stress on a cantilever sensor validated in theoretical, finite element and experimental framework. Bacteria capture was achieved by several different chemical immobilization of T4 phages. The most successful bacteria capturing surface produced bacterial densities of about 11 bacteria/100^m2. The developed theory is then applied to determine captured bacterial mass on the cantilevers. This provides an estimate of the bacteria mass on the cantilever. Two different functionalizations resulted in predicted bacterial densities of 5 bacteria/100^m2 and 3 bacteria/100^m2. Poor densities relative to surface capture experiments is caused by the boundary effects of the cantilever in solution.

  • Subjects / Keywords
  • Graduation date
    2009-11
  • Type of Item
    Thesis
  • Degree
    Master of Science
  • DOI
    https://doi.org/10.7939/R3NP6X
  • License
    This thesis is made available by the University of Alberta Libraries with permission of the copyright owner solely for non-commercial purposes. This thesis, or any portion thereof, may not otherwise be copied or reproduced without the written consent of the copyright owner, except to the extent permitted by Canadian copyright law.
  • Language
    English
  • Institution
    University of Alberta
  • Degree level
    Master's
  • Department
    • Electrical and Computer Engineering
  • Supervisor / co-supervisor and their department(s)
    • Evoy, Stephane (Electrical and Computer Engineering)
  • Examining committee members and their departments
    • Brett, Michael (Electrical and Computer Engineering)
    • Szymanski, Christine (Biological Sciences)