Usage
  • 17 views
  • 196 downloads

Counterflowing jets: scaling factors and mean concentration fields

  • Author / Creator
    Torres Garcia, Luis A.
  • An experimental investigation of the mean scalar concentration field of jets into a uniform counterflow stream using planar laser induced fluorescence is presented. The centerline decay and radial spreading of the mean concentration field of the jet were investigated. Jet to counterflow velocity ratios ranging between 4 to 19 were used for two different jet diameters. Universal forms for the centerline concentration decay, and radial concentration profiles of the jet are presented. Scaling factors of the centerline concentration decay are introduced. The jet growth rate was found to be divided into two regions: the linear growth region and the power law growth region. The effects of inlet yaw angles on the penetration length, axial concentration decay and similarity region of the counterflowing jet are presented. A minimal effect of the tested inlet yaw angles on the concentration field was observed. Empirical expressions to predict the centerline concentration decay are given.

  • Subjects / Keywords
  • Graduation date
    2009-11
  • Type of Item
    Thesis
  • Degree
    Master of Science
  • DOI
    https://doi.org/10.7939/R3T42F
  • License
    This thesis is made available by the University of Alberta Libraries with permission of the copyright owner solely for non-commercial purposes. This thesis, or any portion thereof, may not otherwise be copied or reproduced without the written consent of the copyright owner, except to the extent permitted by Canadian copyright law.
  • Language
    English
  • Institution
    University of Alberta
  • Degree level
    Master's
  • Department
    • Department of Mechanical Engineering
  • Supervisor / co-supervisor and their department(s)
    • Fleck, Brian A. (Mechanical Engineering)
    • Wilson, David J. (Mechanical Engineering)
  • Examining committee members and their departments
    • Steffler, Peter M. (Civil Engineering)
    • Fleck, Brian A. (Mechanical Engineering)
    • Flynn, Morris R. (Mechanical Engineering)
    • Wilson, David J. (Mechanical Engineering)