Usage
  • 102 views
  • 487 downloads

Community Mining: Discovering Communities in Social Networks

  • Author / Creator
    Chen, Jiyang
  • Much structured data of scientific interest can be represented as networks, where sets of nodes or vertices are joined together in pairs by links or edges. Although these networks may belong to different research areas, there is one property that many of them do have in common: the network community structure, which means that there exists densely connected groups of vertices, with only sparser connections between groups. The main goal of community mining is to discover these communities in social networks or other similar information network environments. We face many deficiencies in current community structure discovery methods. First, one similarity metric is typically applied in all networks, without considering the differences in network and application characteristics. Second, many existing methods assume the network information is fully available, and one node only belongs to one cluster. However, in reality, a social network can be huge thus it is hard to access the complete network. It is also common for social entities to belong to multiple communities. Finally, relations between entities are hard to understand in heterogeneous social networks, where multiple types of relations and entities exist. Therefore, the thesis of this research is to tackle these community mining problems, in order to discover and evaluate community structures in social networks from various aspects.

  • Subjects / Keywords
  • Graduation date
    2010-11
  • Type of Item
    Thesis
  • Degree
    Doctor of Philosophy
  • DOI
    https://doi.org/10.7939/R3JH1C
  • License
    This thesis is made available by the University of Alberta Libraries with permission of the copyright owner solely for non-commercial purposes. This thesis, or any portion thereof, may not otherwise be copied or reproduced without the written consent of the copyright owner, except to the extent permitted by Canadian copyright law.
  • Language
    English
  • Institution
    University of Alberta
  • Degree level
    Doctoral
  • Department
    • Department of Computing Science
  • Supervisor / co-supervisor and their department(s)
    • Goebel, Randy (Computing Science)
    • Zaiane, Osmar (Computing Science)
  • Examining committee members and their departments
    • Stroulia, Eleni (Computing Science)
    • Lin, Guohui (Computing Science)
    • Ester, Martin (Simon Fraser University)
    • Shiri, Ali (School of Library and Information Studies)