Metal-Free Sulfonate/Sulfate-Functionalized Carbon Nitride for Direct Conversion of Glucose to Levulinic Acid

  • Author(s) / Creator(s)
  • Metal-free heteroatom-doped carbonaceous materials such as carbon nitride (CN) with secondary/tertiary nitrogen-rich catalytic centers as well as chemical and thermal resilience can potentially serve as catalysts for many organic reactions. However, because of the stable alternate Csp2–Nsp2 configuration of N-linked heptazine units (C6N7), the chemical modification of CN via doping and functionalization has been a critical challenge. Herein, we report an exceptional 9.2% sulfur content in CN with sulfonate/sulfate functional groups (CNS) via a one-step in situ synthesis approach. When used as a catalyst for the dehydration/hydration of glucose, CNS catalysts demonstrate a relatively high yield and selectivity toward levulinic acid, LLA, (≈48% yield with 57% selectivity) production. CNS’s high activity of direct conversion of glucose to LLA can be attributed to the synergistic catalytic effects of multiple sulfur functionalities, better dispersibility, and microstructural porosity. The synthesized CNS catalysts offer an energy efficient direct LLA production route to bypass the multistep process of sugar to LLA conversion.

  • Date created
  • Subjects / Keywords
  • Type of Item
    Article (Published)
  • DOI
  • License
    Attribution-NonCommercial 4.0 International