This is a decommissioned version of ERA which is running to enable completion of migration processes. All new collections and items and all edits to existing items should go to our new ERA instance at https://ualberta.scholaris.ca - Please contact us at erahelp@ualberta.ca for assistance!
- 93 views
- 243 downloads
Turbidity Mitigation in an Oil Sands Pit Lake through pH Reduction and Fresh Water Addition
-
- Author(s) / Creator(s)
-
Currently, tailings ponds are used to contain oil sands process-affected water (OSPW) and fluid fine tailings (FFT) generated from the Alberta oil sands mining operations. In 2016, the government of Alberta introduced a tailings management directive providing guidance for reclamation efforts in Alberta’s oil sands mining projects. Pit lakes, one of the proposed reclamation strategies, are designed to support a healthy aquatic ecosystem and to provide a storage location for FFT and OSPW. In 2013, Syncrude Canada Ltd. began testing a full-scale demonstration pit lake project, named Base Mine Lake (BML). However, high turbidity [approximately 71–231 nephelometric turbidity units (NTU)] has been observed in the BML cap water due to the resuspension of FFT; this turbidity inhibits the development of a healthy aquatic ecosystem. The goal of this water column study, which tested two different water dilutions (60% OSPW and 20% OSPW), was to improve BML cap water clarity by reducing pH through CO2 addition. Of these mixtures, only the one containing 60% OSPW with added CO2 showed significant water clarity improvement (P ≤ 0.001), and an approximately 60-day lag period preceded a rapid increase in water clarity (96.8% turbidity reduction). By contrast, only minor improvement in water clarity was observed for other mixtures: 20% OSPW with CO2 added (77.9% turbidity reduction) and 60% OSPW with no CO2 added (81.6% turbidity reduction). Taken together, these results suggest that water clarity can be improved by CO2-induced pH reduction and that the ionic strength of the solution is an important factor in turbidity
removal through CO2 addition. -
- Date created
- 2018-01-01
-
- Subjects / Keywords
-
- Type of Item
- Article (Published)